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Absence of spin liquid phase in the J1 − J2 Heisenberg model on the square lattice
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We perform an in-depth investigation of the phase diagram of the J1 − J2 Heisenberg model on the square
lattice. We take advantage of density matrix renormalization group and fully augmented matrix product states
methods and reach unprecedented accuracy with large bond dimensions. We utilize excited-level crossing
analysis to pinpoint the phase transition points. It was believed before that there exists a narrow spin liquid
phase sandwiched by the Néel antiferromagnetic (AFM) and valence bond solid (VBS) phases. Through careful
finite-size scaling of the level crossing points, we find a direct phase transition between the Néel AFM and
VBS phases at J2/J1 = 0.535(3), suggesting the absence of an intermediate spin liquid phase. We also provide
accurate results for ground-state energies for a variety of sizes, from which we find that the transition between
the Néel AFM and VBS phases is continuous. These results indicate the existence of a deconfined quantum
critical point at J2/J1 = 0.535(3) in the model. From the crossing of the first derivative of the energies with J2

for different sizes, we also determine the precise location of the first-order phase transition between the VBS and
stripe AFM phases at J2/J1 = 0.610(5).

DOI: 10.1103/PhysRevB.109.L161103

Introduction. The exploration of quantum phases and phase
transitions in strongly correlated systems has long captivated
the attention of physicists [1–3]. Such investigations pro-
vide crucial insights not only into the fundamental behavior
of matter, but also into the exotic phenomena exhibited by
these systems [4–15]. The J1 − J2 Heisenberg model on the
square lattice is a prominent example. The Hamiltonian of the
model is

H = J1

∑

〈i, j〉
Si · S j + J2

∑

〈〈i, j〉〉
Si · S j, (1)

where Si is the spin-1/2 operator on site i, and the summations
are taken over nearest-neighbor (〈i, j〉) and next-nearest-
neighbor (〈〈i, k〉〉) pairs, as shown in Fig. 1(a). This model,
which comprises nearest-neighboring (J1, the energy unit in
this work) and next-nearest-neighboring (J2) exchange in-
teractions, exhibits a delicate interplay between competing
magnetic interactions. This competition makes the model a
well-known playground to search for exotic quantum states
[quantum spin liquids (QSL), for example] other than on a ge-
ometrically frustrated lattice such as a kagome lattice [16–20].
The understanding of this kind of exotic states may serve
as a critical piece in unraveling the enigmatic behavior of
doped Mott materials and high-temperature superconductivity
[21–27].

Over the past three decades, enormous research effort has
been dedicated to the exploration of the phase diagram of the
J1 − J2 Heisenberg model on the square lattice. This model
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has become a focal point in the study of quantum mag-
netism. It has become evident that distinct magnetic orders
emerge at different regimes of the parameter space. In the
zero J2 limit, the ground state displaces Néel antiferromag-
netic (AFM) order [28] which stretches to a finite J2 value.
In the opposite limit where J2 is infinitely large, the model
decouples into two isolated Heisenberg models on the two
sublattices of the original square lattice. A large but finite J2

couples these two sublattices and the ground state is known
to have the so-called stripe AFM order [29,30]. In the in-
termediate range, roughly encompassing 0.5 � J2 � 0.6, an
intriguing nonmagnetic regime emerges. These insights have
been gleaned through a multifaceted approach, including ex-
act diagonalizations [29,31–33], series expansions [34–36],
density-matrix renormalization group (DMRG) [37–39], (infi-
nite) projected entangled-pair state [(i)PEPS] [40–44], neural
network [45], and quantum Monte Carlo (QMC) [30,46,47].

However, despite the wealth of results and analyses, the
nature of the nonmagnetic regime in the 0.5 � J2 � 0.6 range
remains a subject of intense debate and active research. Within
this intriguing region, several competing states have been
found with a variety of methods. These states include colum-
nar valence bond solid (VBS) [35,48,49] and plaquette VBS
[33,38,50,51], as well as quantum spin liquids with [37] or
without [39,42,45,46] a spin gap.

Much of the controversy surrounding this topic can be
attributed to the difficulty of simulating large systems with
enough accuracy and the challenges posed by finite-size scal-
ing of the order parameters or gaps, which could introduce
large uncertainties near the critical points [52–56]. To address
these issues, we adopt the level-spectroscopy approach, in
which the finite-size transition points are determined through
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FIG. 1. (a) The illustration of the J1 − J2 Heisenberg model on
the square lattice, with black and dashed blue lines indicating the
nearest-neighboring interaction J1 and next-nearest-neighboring in-
teraction J2, respectively. (b) The ground-state phase diagram of
the J1 − J2 Heisenberg model on the square lattice with J2 (we
set J1 = 1 as the energy unit). We find three different phases with
the variation of J2: Néel AFM, VBS, and stripe AFM. We find a
direct continuous phase transition between the Néel AFM and VBS
phases at JN-V

2 = 0.535(3), ruling out the existence of a quantum spin
liquid phase between them, indicating the existence of a deconfined
quantum critical point between the Néel AFM and VBS phases. At
JV-S

2 = 0.610(5), a first-order transition occurs between the VBS and
stripe AFM phases.

the identification of excited-level crossings [39,52,55–60].
This approach was widely adopted in very recent studies
of the same model studied in this work and other models
[39,45,61,62]. The smooth size dependence exhibited by these
crossing points allows for more reliable extrapolations to the
thermodynamic limit, surpassing the limitations encountered
in past studies relying solely on order parameters, thus allow-
ing us to accurately determine the phase boundaries.

In this Letter, we perform an in-depth investigation of the
J1 − J2 Heisenberg model on the square lattice using state-
of-the-art numerical techniques, including DMRG [63–65]
and the recently developed Fully Augmented Matrix Prod-
uct States (FAMPS) methods [66]. We take advantage of the
SU(2) symmetry in the calculations and reach bond dimension
(kept states) up to as large as 15 000 SU(2) multiplets, which
contains about 60 000 U(1) states. For FAMPS [66], we pre-
serve up to equivalently 22 000 U(1) states [67]. We obtain
accurate results on cylinders with width up to 14 by care-
ful extrapolations with truncation errors in both DMRG and
FAMPS. By utilizing the level spectroscopy combined with
reliable finite-size scaling, we find a direct phase transition

between Néel AFM and VBS phases at JN-V
2 = 0.535(3)—in

contrast to the previous predictions of a QSL phase between
them. We observe no tendency of singularity in the first and
second derivative of the ground-state energy with respect to J2

at this transition point, indicating that the transition between
the Néel AFM and VBS phases is continuous. This evidence
implies that this transition is a deconfined quantum critical
[7,8] type. The characterization of this transition deserves
further investigation. We also determine the precise location
of the first-order phase transition between the VBS and stripe
phases at JV-S

2 = 0.610(5) from the crossing of the first deriva-
tive of the energies with J2 for different sizes. An illustration
of the phase diagram is shown in Fig. 1(b).

Methods. DMRG is now arguably the workhorse for
the accurate simulation of one-dimensional and quasi-one-
dimensional quantum systems [63–65]. As a variational
method, the wave-function ansatz of DMRG is known as
matrix product states (MPS) [68–70], which is defined as

|MPS〉 =
∑

{σi}
Tr[Aσ1 Aσ2 Aσ3 · · · Aσn ]|σ1σ2σ3 · · · σn〉, (2)

where A is a rank-3 tensor with one physical index σi

with dimension d and two auxiliary indices with dimen-
sion D. DMRG has also been widely used in the study of
two-dimensional quantum systems with narrow cylinder ge-
ometries [22,23,25–27].

In the pursuit of even higher accuracy and the alleviation of
the entanglement limitation in the simulation of wider systems
with DMRG, we resort to a recently developed method named
FAMPS [66]. FAMPS is an extension of DMRG by adding
an additional layer of tensors known as disentanglers [71]
connecting to the physical indices of DMRG. It is defined as

|FAMPS〉 = D(u)|MPS〉, (3)

where D(u) = ∏
m um denotes an additional disentangler

layer. This extension empowers FAMPS with the extraordi-
nary capability to produce more accurate results for wider
quantum systems, while maintaining the computational ef-
ficiency [O(D3)] [66,72,73] of DMRG with small overhead
[O(d4)].

Moreover, we have invested efforts into optimizing the
code efficiency. Through techniques such as parallelization
and the exploitation of SU(2) symmetry [74,75], we are able
to push the kept states which determine the accuracy of the
simulation in DMRG and FAMPS to an unprecedented value,
i.e., 60 000 (22 000) U(1) states for DMRG (FAMPS), setting
a higher limit of the numerical simulation.

We employ these state-of-the-art numerical techniques on
a diverse set of L × 2L cylinder systems, spanning a range
of sizes from L = 6 to L = 14 and J2 values from J2 =
0.45 to J2 = 0.65, and giving well-converged results with
extrapolation with truncation errors in DMRG and FAMPS
calculations.

As mentioned earlier, we utilize the level crossing of ex-
cited states with different quantum numbers to determine the
phase transition points. For excitations in the S = 0 sector,
we target multiple states [64,76,77] in the S = 0 subspace
since the ground state lies in the S = 0 sector. For excitations
in the S = 1 and S = 2 sectors, we obtain the energies by
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performing the calculation in the desired subspace to obtain
the excited state.

Level spectroscopy. We begin our investigation by study-
ing the region between the Néel AFM and the VBS phases.
Historically, the regime encompassing 0.5 � J2 � 0.6 has
been a focal point of considerable debate and intensive re-
search. Numerous investigations, predominantly reliant on
order parameters, have sought to elucidate the distinct phases
characterizing this intricate region. Recent developments
have resulted in a growing consensus that the emergence
of the VBS state occurs within this region with onset J2

varying from 0.52 to 0.56 [38,42,45,78]. However, a con-
tentious issue lingers concerning the potential possibility of
a QSL phase at smaller values of J2 (approximately J2 ≈ 0.5)
[38,40,41,43,45]. This controversy primarily arises from the
finite-size scaling of order parameters or gaps, which could
introduce large uncertainties near the critical points, thus chal-
lenging the precise determination of critical points and phase
boundaries within this regime [55].

In Refs. [39,52,55–60], the authors introduced a numeri-
cal level-spectroscopy method, wherein finite-size transition
points are identified through excited energy crossings. This
approach is rooted in the fundamental understanding that
quantum phases are distinguished by their distinctive char-
acteristics within excitation spectra. In finite-size systems,
low-lying excitations bear distinct quantum numbers cor-
responding to different phases, rendering them invaluable
probes for the detection and characterization of phase tran-
sitions. This innovative approach is known to have a smooth
finite-size scaling [55], allowing us to accurately determine
the phase boundary. This method was also adopted in recent
studies of the same model studied in this work [39,45]. Specif-
ically, the crossing point between the singlet and quintuplet
excited states, denoted as Jc1

2 , is interpreted as the Néel AFM
phase boundary, and the crossing point between the singlet
and triplet excited states, marked as Jc2

2 , is identified as the
onset of the VBS phase [39].

In Ref. [39], the authors determined the phase diagram by
DMRG with the level-spectroscopy method. However, due
to the limited system sizes calculated in Ref. [39], it is not
easy to determine the actual finite-size scaling behavior of the
excited-level crossing points.

Our current study leverages the enhanced capabilities of
both DMRG and advanced FAMPS algorithms, enabling us to
accurately simulate systems with sizes up to L = 14 and per-
form more reliable analyses of the finite-size scaling behavior
of the level-crossing points. Figure 2 presents the excited-level
crossing points Jc1

2 and Jc2
2 as a function of 1/L. The excited-

level crossing points for L � 10 are consistent between the
previous work [39] and our results. Remarkably, it is clear
from the data that the crossing points scale as 1/L instead of
the previously assumed 1/L2 [59,60]. In Fig. 2(b), we also
show a plot of crossing points versus 1/L2 for the same data,
which clearly deviates from a straight line.

Extrapolating the level-crossing points through linear fits
yields Jc1

2 = 0.537(4) and Jc2
2 = 0.533(1), suggesting a direct

transition between the Néel AFM and VBS phases, ruling out
the presence of an intermediate QSL phase. We also perform
the same linear fit of the level-crossing points for systems on
torus accurately calculated by Nomura et al. in [45], which
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FIG. 2. (a) The excited-level crossing points Jc1
2 and Jc2

2 as a
function of 1/L. The singlet-quintuplet crossing point Jc1

2 is in-
terpreted as a Néel AFM phase boundary and the singlet-triplet
crossing point Jc2

2 is identified as the onset of a VBS phase [39].
We also include the results from Ref. [39], which are consistent
with our results. The extrapolated critical points by linear fits are
Jc1

2 = 0.537(4), Jc2
2 = 0.533(1), providing strong evidence in favor

of a direct transition between the Néel AFM and VBS states, ruling
out the presence of an intermediate QSL phase. (b) We plot the same
data in (a) by changing the x axis to 1/L2. We can clearly see the
deviation from a straight line of the data. (c) The difference of the two
crossing points, �Jc = Jc2

2 − Jc1
2 , vs 1/L. We can clearly see that �Jc

scales linearly with 1/L and vanishes in the thermodynamic limit.

gives Jc1
2 = 0.5344(7) and Jc2

2 = 0.538(2), consistent with our
results.

Furthermore, we also show the difference of the two cross-
ing points, �Jc = Jc2

2 − Jc1
2 , as a function of 1/L in Fig. 2(c)

which goes to zero linearly with 1/L, indicating the absence
of an intermediate spin liquid phase.

In Fig. 3, we show how to determine the crossing points
of excitation levels by taking the 10 × 20 cylinder system
as an example. Results for other sizes can be found in the
Supplemental Material [79]. In Fig. 3(a), we plot the energies
for the singlet and quintuplet excitations for J2 = 0.42 and
0.43. With the extrapolations of truncation errors, we obtain
the accurate energies of the singlet and quintuplet excitations
and the difference between them, as shown in Fig. 3(c). Then
a linear interpolation gives the crossing point (i.e., the point
where E2 − E0 = 0). Using a similar procedure, we determine
the crossing point for singlet and triplet excitations, as de-
picted in Figs. 3(b) and 3(d).
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FIG. 3. Energies of the excitations in the S = 0, 1, and 2 sectors
for a few J2 values of a 10 × 20 cylinder system calculated by
DMRG. In (a) and (b), DMRG energies are plotted as a function
of truncation errors. We keep maximally equivalent 40 000 U(1)
states in these DMRG calculations to ensure the convergence of
the results. The excited state in the S = 0 sector is calculated with
the multitarget states’ DMRG algorithm [64,76,77]. (c), (d) The
interpolation procedure to determine the excited-level crossing points
for singlet-quintuplet and singlet-triplet excitations, respectively.

In the Supplemental Material [79], we calculate the stag-
gered magnetization of the Néel AFM order at J2 = 0.5,
which is clearly nonzero (about 0.05). This result shows that
J2 = 0.5 is in the Néel AFM phase. The boundary of the
Néel AFM phase obtained from the finite-size scaling of the
crossing point of correlation length is J2 = 0.530 (details can
be found in the Supplemental Material [79]), consistent with
the results from level-crossing analysis.

Energetics. We also study the behavior of ground-state
energy versus J2 to detect the quantum phase transitions.
Figure 4(a) shows the ground-state energy density e and its
first derivative ∂e/∂J2 as a function of J2. We calculate ∂e/∂J2

from the expectation value of the J2 term in the ground state
according to the Feynman-Hellmann theorem. We show re-
sults for both torus systems (6 × 6 and 8 × 8) and cylinder
systems (8 × 16, 10 × 20, and 12 × 24). Here we only show
the results with the largest bond dimensions reached (the con-
vergence of these results with bond dimensions can be found
in the Supplemental Material [79]).

At the aforementioned critical point, JN-V
2 = 0.535, it is

intriguing to note that ∂e/∂J2 is continuous. This behavior
strongly suggests that the transition between the Néel AFM
and the VBS phases is continuous. This observation aligns
with the concept of deconfined quantum critical point (DQCP)
[7,8], which is proposed to elucidate the continuous phase
transition between the Néel AFM state and the VBS state.
We notice that the deconfined criticality near J2 = 0.54 was
claimed before [38,40,43,45,78,81]. We also calculate the sec-
ond derivative of the ground-state energy with respect to J2,
i.e., ∂2e/∂J2

2, using the finite-difference method, as shown
in Fig. 4(b). Interestingly, there is no tendency of singularity
at the critical point between the Néel AFM and the VBS
phases near JN-V

2 = 0.535 in ∂2e/∂J2
2, suggesting that the
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FIG. 4. (a) The ground-state energy per site e and its first deriva-
tive ∂e/∂J2 as a function of J2 for L × L systems with periodic
boundary conditions (PBCs) and L × 2L systems with cylinder
boundary conditions (CBCs). Here, we find that the phase transition
between Néel AFM and VBS phases at JN-V

2 = 0.535 is continuous.
The crossing point of ∂e/∂J2 gives a precise location of the first-order
transition between VBS and stripe AFM phases at JV-S

2 = 0.610
(see the text for more discussions). (b) The second derivative of
the ground-state energy as a function of J2 for different systems.
The calculations are performed using DMRG, with a maximum of
equivalent 60 000 U(1) states retained, except for 6 × 6 PBC systems
which are calculated by exact diagonalization [80].

phase transition is a high-order one. Further characterization
of this phase transition requires additional investigations.

Finally, we shift our focus to the easier segment of the
phase diagram. It was established that a first-order phase
transition exists between the VBS and stripe AFM phases
at J2 ≈ 0.6 [29,30]. In Fig. 4(a), we can clearly find a dis-
continuity in the ∂e/∂J2 plot near J2 = 0.6. As elucidated
in Ref. [82], for a first-order transition, finite-size scaling
analysis reveals a distinct point denoted as h(L). At this point
h(L), the quantity Mper[h(L), L] remains constant with the
varying of system size L. Furthermore, the difference between
h(L) and hc is bounded by O(e−L ). Here, h represents the
parameter driving the phase transition, hc is the critical point
at the thermodynamic limit, while Mper corresponds to either
the order parameter or the first derivative of the free-energy
density. The exponentially small difference between h(L) and
hc suggests the existence of a fixed point for the first derivative
of the free-energy density and allows us to accurately deter-
mine the location of the first-order transition. In Fig. 4(a), we
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can clearly find a fixed point in ∂e/∂J2 at J2 = 0.610. We thus
conclude that the first-order transition between the VBS and
stripe AFM phases occurs at J2 = 0.610(5).

Conclusions. With accurate DMRG and FAMPS results
and careful finite-size scaling of the excited-level crossing
points, we demonstrate a direct phase transition between
the Néel AFM and the VBS phases at JN-V

2 = 0.535(3)
for the J1 − J2 Heisenberg model on the square lattice, in-
dicating the absence of the previously claimed intermediate
quantum spin liquid phases [37,39,42,45,46]. Moreover, the
results from energy show that the phase transition is continu-
ous, suggesting a deconfined quantum critical point at JN-V

2 =
0.535(3), which deserves further explorations. We also deter-
mine the precise location of the first-order phase transition
between the VBS and stripe phases at JV-S

2 = 0.610(5) from
the crossing of the first derivative of energy for different
system sizes.

Looking ahead, the absence of a spin liquid phase in the
J1 − J2 Heisenberg model on the square lattice prompts fur-
ther inquiries into the roles of additional interactions and
lattice geometries in shaping the behavior of quantum materi-
als [16,17,19,78,81].
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