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In superconductivity, a surge of interests in enhancing Tc is ever mounting, where a recent focus is toward
multiband superconductivity. In Tc enhancements specific to two-band cases, especially around the Bardeen-
Cooper-Schrieffer to Bose-Einstein condensate crossover considered here, we have to be careful about how
quantum fluctuations affect the many-body states, i.e., particle-hole fluctuations suppressing the pairing for
attractive interactions. Here, we explore how to circumvent the suppression by examining multichannel pairing
interactions in two-band systems. With the Gor’kov-Melik-Barkhudarov (GMB) formalism for particle-hole
fluctuations in a continuous space, we look into the case of a deep dispersive band accompanied by an incipient
heavy-mass (i.e., quasiflat) band. We find that, while the GMB corrections usually suppress Tc significantly, this
in fact competes with the enhanced pairing arising from the heavy band, with the trade-off leading to a peaked
structure in Tc against the band-mass ratio when the heavy band is incipient. The system then plunges into a
strong-coupling regime with the GMB screening vastly suppressed. This occurs prominently when the chemical
potential approaches the bound state lurking just below the heavy band, which can be viewed as a Fano-Feshbach
resonance, with its width governed by the pair-exchange interaction. The diagrammatic structure comprising
particle-particle and particle-hole channels is heavily entangled, so that the emergent Fano-Feshbach resonance
dominates all the channels, suggesting a universal feature in multiband superconductivity and superfluidity.

DOI: 10.1103/PhysRevB.109.L140504

Introduction. Multiband electronic systems and their multi-
component superconducting phases can harbor novel quantum
effects. Superconductivity and its microscopic theory initiated
by Bardeen, Cooper, and Schrieffer (BCS) give a conceptual
impact on various research fields that encompass nuclear and
particle physics as well [1–3]. Moreover, the discoveries of
high-Tc superconductors, such as cuprates [4] and iron pnic-
tides [5], have ignited renewed interests toward the realization
of higher-temperature superconductivity.

Crucial factors for amplification of superconductivity are
mainly twofold: the interparticle interaction and the electronic
band structure. For an attractive interaction, the question is
designing the ways to enhance the magnitude of the in-
teraction for one-band cases. A pivotal factor then is the
crossover from the BCS regime with loosely bound Cooper
pairs to the Bose-Einstein condensation (BEC) regime with
tightly bound pairs when the strength of the attraction is
increased and/or the carrier density is reduced [6–9]. While
it is difficult to control the interaction in situ in con-
densed matters, the BCS-BEC crossover was realized about
two decades ago in ultracold Fermi gases near the Fano-
Feshbach resonance [10–13]. Recently, the realization of
solid-state systems in the BCS-BEC crossover regime has also
been reported in FeSe superconductors [14–18], LixZrNCl
[19,20], and organic superconductors [21] by tuning carrier
densities.

If we go over to multiband superconductors and super-
fluids, the increased degrees of freedom can host diverse
quantum phenomena [22]. For example, a multiband con-
figuration with shallow and deep bands plays a crucial role
typically in FeSe [23]. A remarkable feature of the multiband
BCS-BEC crossover is a reduction of pairing fluctuations in
the strong-coupling regime [24–27] which tends to suppress
the superconducting critical temperature Tc. This screening
effect is consistent with the observation of missing pseudogap
in FeSe [28], whereas the pseudogap induced by pairing fluc-
tuations is expected in the single-band BCS-BEC crossover
[29–33]. Regarding the realization of strong-coupling sys-
tems, geometrical quantum confinement in the form of slabs
or stripes causes interference between wave functions associ-
ated to different subbands, inducing superconducting shape
resonances when the chemical potential is close to one
of the subband bottom [34]. Moreover, an interband pair-
exchange coupling in two-band systems leads to a kind of the
Suhl-Kondo mechanism [35,36] which modifies the effective
attraction in each band [37–39], so that this can be evoked
for realizing the BCS-BEC crossover. Unconventional phase
transitions have also been reported even in simple two-band
models without complicated band structures nor impurities
[40–45]. Such multiband characters may be further enhanced
when the effective mass in the second band is heavy (flat or
quasiflat band) [46]. Recently, a resonant enhancement of Tc in
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a multiband system near a topological Lifshitz transition has
also been studied in spin-orbit-coupled artificial superlattices
[47–49].

The multiband BCS-BEC crossover has been studied in-
tensively, but an important point about fluctuations is still
unclear. Namely, in single-band models, the particle-hole
fluctuations for attractive interactions, as formulated by
Gork’ov-Melik-Barkhudarov (GMB) [50], significantly re-
duce Tc. Quantitatively, the GMB correction is known to
reduce Tc in single-band systems by a factor (4e)1/3 � 2.2
in the weak-coupling (BCS) limit [51]. Thus an imperative
question is to find out how the GMB correction arises in
two-band systems. This becomes crucial, in our view, when
the second band is incipient, where the chemical potential μ

is close to the bottom of the second band and the band starts to
be occupied. Intuitively, this situation is expected to strongly
affect the interaction via the pair-exchange coupling.

Recently, the evolution of Tc along the BCS-BEC crossover
has been experimentally detected in a single-band ultracold
system of atomic fermions [52]. By comparing with the the-
oretical prediction of the GMB, which was originally devised
for the BCS regime but then extended to the BCS-BEC
crossover in Ref. [51], the existence of the GMB correction
and its evolution has indeed been experimentally confirmed,
after 60 years of the pioneering GMB paper [50]. Thus the
question of how the GMB correction on Tc discussed in
Ref. [51] will behave in two-band models is of both funda-
mental and practical importance.

Motivated by these backgrounds, the present Letter the-
oretically explores the GMB screening effects on Tc in a
two-band system consisting of a dispersive (light-mass) band
and a quasiflat (heavy-mass) band with intraband attractive
interactions accompanied by interband pair-exchange cou-
plings. We focus on the situation where the heavy band is
incipient (with the chemical potential close to the bottom of
the second band) to fathom how the heavy band can dominate
the dispersive band. For that, we have extended the GMB
approach to two-band systems in terms of the simplified dia-
grammatic approach developed in Ref. [53]. In particular, the
different effective masses of dispersive and quasiflat bands are
considered here, in contrast to Ref. [23] where only equal-
mass two bands were considered and hence the effects of the
incipient quasiflat band were unraveled.

Two-band system composed of dispersive and quasiflat
bands. We consider a two-band model in continuum in three
dimensions described by the Hamiltonian

H =
∑
k,σ,n

ξk,nc†
k,σ,nck,σ,n +

∑
k,k′,q,n,n′

Unn′b†
k,q,nbk′,q,n′ , (1)

where c†
k,σ,n creates a fermion with momentum k and spin

σ =↑,↓ in band n(= 1, 2), and b†
k,q,n ≡ c†

k+q/2,↑,nc†
−k+q/2,↓,n

is a pair-creation operator. ξk,n = εk,n − μ + E0δn,2 is the ki-
netic energy in band n measured from the chemical potential
μ, where εk,n = k2/2mn (mn is the effective mass of band n)
and E0 is the band offset between the two bands [see Fig. 1(a)].
In this work, we assume that the upper band (n = 2) has a
heavier effective mass, m2 � m1.

To characterize the intraband interaction strength Unn, we
use a scattering length ann given by mn

4πann
= U −1

nn + mn�
2π2 for

FIG. 1. (a) The band structure of the two-band model considered
here with a light-mass first band and a heavy-mass second band
with intraband (U11,U22) and interband (U12 = U21) couplings, and
the band offset E0. The chemical potential μ is set to be close to
the bottom of the second band. (b) Diagrammatic representation
of the many-body T matrix �̂ in the GMB formalism that comprises
the intraband interaction through the screened coupling Û sc (encir-
cled in red), and the GMB correction for the interband pair-exchange
interaction through the pair-exchange-induced coupling λ̂ and the
diagonal component �̂d (encircled in blue).

n = 1, 2, where � is the momentum cutoff that is needed in
continuum models [40]. We can roughly translate � as the
bandwidth in lattice models. For simplicity, we assume that
the intraband interaction is independent of the band index,
U22 = U11. The coupling U11 within the dispersive band is
kept weak in such a way that the corresponding scattering
length is negative, k0a11 = −1.0 here. The interband pair-
exchange couplings are U12 and U21 (=U21 for the Hermiticity
of H). It is convenient to introduce a dimensionless coupling
as Ũ12 ≡ U12

√
m1m2k0

2π2 = Ũ21, where we have introduced a mo-
mentum scale k0 ≡ √

2m1E0.
Many-body T matrix with particle-hole fluctuations. Let us

now present the equation for Tc with the GMB screening effect
in the present two-band system based on the diagrammatic
approach. As displayed in Fig. 1(b), the many-body T matrix
�̂ in the 2 × 2 matrix representation for band indices reads

�̂(q) = Û sc − Û sc
̂(q)�̂(q) − λ̂(q)〈χ̂〉�̂d(q), (2)

where q = (q, iν) is the four-momentum index with boson
Matsubara frequency ν = 2πT ( ∈ Z), and

Û sc =
(

U sc
11 U12

U21 U sc
22

)
(3)

is the coupling constant matrix. Its diagonal components in-
volve the GMB screening for U11 and U22 as U sc

nn = Unn/(1 +
Unn〈χnn〉) with the averaged particle-hole bubble 〈χnn〉 [53].
Here, we have simplified the framework following Ref. [51],
which should be qualitatively valid, as indicated by Tc in
Ref. [53] being similar to Ref. [51] across the BCS-BEC
crossover. For μ − E0δn,2 > 0, we obtain

〈χnn〉 = mn

4π2

∫ 1

−1
ds

∫ ∞

0

kdk

qn
f (ξk,n)ln

∣∣∣∣qn − 2k

qn + 2k

∣∣∣∣, (4)

where we have defined qn ≡ √
2mn(μ − E0δn,2)(1 + s) and

the Fermi distribution function f (ξk,n) = (eξk,n/T + 1)−1.
When μ − E0δn,2 < 0 where the Fermi surface is absent for
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FIG. 2. Superconducting critical temperature Tc against the ef-
fective mass ratio m2/m1 and chemical potential μ/E0 at Ũ12 = 10−3

and �/k0 = 10. The solid and dotted curves show the GMB and BCS
results, respectively.

band n, we get 〈χnn〉 = − mn
2π2

∫ ∞
0 dk f (ξk,n). This treatment

reflects an aspect that the particle-hole bubble is strongly
suppressed in the BEC regime, where the chemical potential
strongly deviates from the Fermi energy that in the weak-
coupling limit is given by EF,n = (3π2ρn )2/3

2mn
for a given number

density ρn [25] and can become negative [51,53], leading
to a progressively exponential suppression of the particle-
hole bubble of the GMB correction. In Eq. (2), 
̂(q) =
diag[
11(q),
22(q)] is the particle-particle bubble with


nn(q) = −
∑

k

1 − f (ξk+q,n) − f (ξ−k,n)

iν − ξk+q,n − ξ−k,n
. (5)

The very last term of Eq. (2) [Fig. 1(b), bottom line]
represents the GMB correction [see Fig. 1(b)], which
consists of the pair-exchange-induced coupling λ̂(q) =
diag[−U12U21
22(q),−U12U21
11(q)], along with the
particle-hole bubble 〈χ̂〉 ≡ diag(〈χ11〉, 〈χ22〉) and the diago-
nal component of the T matrix, �d(q) = diag[�11(q), �22(q)],
so that particle-particle and particle-hole channels are heavily
entangled. Based on the Thouless criterion [54], Tc is obtained
where [�i j (q = 0)]−1 = 0 is achieved [25,26]. For details
about the formalism, see Supplemental Material [55].

Interplay between pairing and particle-hole fluctuations.
Let us now present the numerical result for the superconduct-
ing critical temperature Tc incorporating the GMB correction
in Fig. 2, where the pair-exchange coupling is set to be Ũ12 =
10−3 (we frequently employ this value to discuss the effect of
heavy mass m2 in the main text; for different Ũ12, see Supple-
mental Material [55]). For comparison, the BCS result without
the GMB correction is also displayed. Large enhancements
in Tc can be found for large m2/m1 = 10, 100, particularly
in BCS but also for GMB. In the limit of m2/m1 → ∞,
the Thouless criterion without the GMB correction simplifies
to [55]

1 + U eff
22 �3

6π2
F (E0 − μ) = 0, (6)

where U eff
22 ≡ U22 − U12
11(0)U21/[1 + U11
11(0)], and we

have defined F (x) ≡ tanh(x/2Tc )
2x , which exhibits a maximum at

x = 0 (i.e., μ = E0). In this limit, Eq. (6) can be easily satis-
fied around μ = E0 even for small U11 and U22 for sufficiently
large �. While this fact is reminiscent of the enhanced pairing
near the Lifshitz transition around a van Hove singularity,
the BCS result with larger m2/m1 in Fig. 2 shows a weak
μ dependence because the width of F (E0 − μ) is ∼Tc/E0

(�14 here). We note that the strong enhancement of Tc/E0

is associated with the cutoff-dependent effective interaction
U eff

22 �3 in Eq. (6). In other words, Tc depends on how far
the quasiflat dispersion extends in the momentum space in
band 2.

If we turn to the GMB result (solid lines in Fig. 2), we
find that the GMB correction significantly reduces Tc from the
BCS result, particularly for large m2/m1. This comes from the
particle-hole bubble 〈χ22〉, which blows up for large m2/m1.
For μ − E0 � 0, we have an expression

〈χ22〉 = m2
√

2πm2Tc

4π2
Li1/2(−z), (7)

where z = e(μ−E0 )/Tc is an effective fugacity and Lis(x) is
the polylogarithm. Specifically, for μ → E0 (i.e., z → 1), we
have 〈χ22〉 = −m2

√
2πm2Tc

4π2 (1 − √
2)ζ (1/2) with the Riemann

zeta function ζ (1/2) � −1.46. This leads to a divergent be-
havior of 〈χ22〉 ∝ m3/2

2 for m2 → ∞. Such a tendency persists
for μ > E0 as seen in Fig. 2.

A notable feature in Fig. 2 is that Tc is much larger for
m2/m1 >∼10 than for m2/m1 � 1 even with the strong GMB
reduction. Let us examine this more closely in Fig. 3(a1),
which compares the m2/m1 dependence of Tc between BCS
and GMB at μ/E0 = 0.6 with Ũ12 = 10−3. While the BCS
result has the saturation of Tc at larger m2/m1 as expected from
Eq. (6), the GMB result exhibits a peak of Tc around a finite
m2/m1 = 3.5, beyond which Tc decreases monotonically with
m2/m1. We can interpret the remarkable result as signifying a
competition between the enhanced pairing due to the strong
attraction in Eq. (6) and the strong GMB reduction. The
trade-off results in an optimal mass ratio, which depends on
the momentum cutoff (∼bandwidth in lattice models) in the
incipient heavy band, but the peaked structure persists when
� is varied; see Supplemental Material [55]. To accurately
evaluate the cutoff dependence, we would have to adopt some
kind of renormalization scheme, which will be an interesting
future work. We note that Tc does not exhibit a peak in the
μ/E0 dependence as shown in Fig. 3(a2).

Suppressed particle-hole fluctuations near the Fano-
Feshbach resonance. We can further capture the behavior of
Tc in terms of an underlying resonance. For that, let us look
at the ratio T GMB

c /T BCS
c between BCS and GMB schemes

in Figs. 3(b1) and 3(b2). This ratio measures the extent to
which the GMB screening is at work. In both of m2/m1 and
μ/E0 dependencies, T GMB

c /T BCS
c exhibits a peaked behavior.

Around m2/m1 = 1.0, one can find T GMB
c /T BCS

c � 0.4 (for
k0a11 = −1.0 here) regardless of the value of Ũ12, which
originates from the GMB screening associated with the Fermi
surface in band 1. Similar values T GMB

c /T BCS
c � 0.4–0.5 are

reported for kF|a| < 1.0 in a single-band study [51].
As m2/m1 is increased, we have a conspicuous peak of

T GMB
c /T BCS

c , after which T GMB
c starts to decrease because of

enhanced particle-hole fluctuations for larger m2/m1, and the
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FIG. 3. (a1) Superconducting critical temperatures Tc as a func-
tion of the effective mass ratio m2/m1 at μ/E0 = 0.6. (a2) shows
μ/E0 dependence of Tc at m2/m1 = 1.3. Ũ12 = 10−3 and �/k0 = 10.
For comparison, the dotted curves show the BCS results without the
GMB correction. The lower panels represent the ratio between the
superconducting critical temperatures with and without the GMB
corrections as functions of (b1) m2/m1 at μ/E0 = 0.6 and (b2)
μ/E0 at m2/m1 = 1.3. The horizontal dashed line indicates the ratio
(4e)−1/3 � 0.45 in the single-band counterpart at weak coupling. The
value at m2/m1 = 1 is marked with the horizontal thin chain-dotted
line in (b1).

ratio eventually drops below the single-band GMB result at
weak coupling given by (4e)−1/3 � 0.45. Nevertheless, the
GMB reduction for larger m2/m1 is not drastic, indicating that
the enhanced pairing effect is still remarkable at m2/m1 >∼10.
Thus, even in the presence of the GMB correction, Tc remains
large at m2/m1 >∼10 as compared to the case for m2/m1 � 1
in Fig 3(a1).

Now, let us analyze the peak in T GMB
c /T BCS

c against m2/m1

in Fig. 4(a) for various values of Ũ12 = 10−3, 5 × 10−3, and
10−2 at μ/E0 = 0.6. When m2/m1 increased from 1, a sharp
enhancement of T GMB

c /T BCS
c emerges, especially at Ũ12 =

10−3 in Fig. 4(a), which indicates that the GMB correction on
Tc is dramatically reduced there. The peak starts to be smeared
for larger Ũ12.

Another notable feature is that the peak has an asymmetric
shape in Fig. 4(a), which we can immediately recognize as
reminiscent of the Fano-Feshbach resonance. Indeed, physics
behind the dramatic reduction of the GMB correction on Tc for
μ/E0 < 1.0 and smaller Ũ12 revealed in Fig. 4(a) should be a
consequence of the chemical potential touching the incipient
heavy band, thereby causing a Fano-Feshbach resonance in
the following sense. The heavy band accommodates a bound
state (which turns into the resonance state for nonzero Ũ12) for
m2/m1 � 1 − π

2a11�
(�1.16 for the present choice of k0a11 =

−1.0 and �/k0 = 10) [55]. m2/m1 � 1.16 can be regarded
as the unitarity, [32,33] and the geometrical control of m2/m1,

FIG. 4. (a) Calculated T GMB
c /T BCS

c as a function of m2/m1 with
Ũ12 = 10−2, 5 × 10−3, and 10−3 at μ/E0 = 0.6. The inset shows
the schematics for single-particle energy level with the chemical
potential μ touching the Fano-Feshbach resonance associated with
the incipient heavy band. (b) Fano-Feshbach resonance line μ =
E0 − Eb,2/2 at the weak interband coupling limit (U12 → 0). The
vertical blue line indicates the unitarity at which the two-body bound
state appears in band 2. One can regard that the BCS (BEC) regime
is realized in band 2 when m2/m1 is small (large). Purple lines mark
the case of μ/E0 = 0.6 considered in (a).

e.g., by band engineering with quantum confinement or orbital
selection, leads to the BCS-BEC crossover as indicated in
Fig. 4(b). For small U12, the resonance energy ωres is given
by

ωres = −Eb,2 + 2E0 + O
(
U 4

12

)
, (8)

where Eb,2 is the two-body binding energy [inset of Fig. 4(a)]
in band 2 for U12 → 0. We can see that the peak of
T GMB

c /T BCS
c for Ũ12 = 10−3 and μ/E0 < 1.0 does indeed take

place at the mass ratio at which the Fano-Feshbach resonance
resides, whose position shifts as μ/E0 is varied. Namely, the
resonance arises at μ = ωres/2 � E0 − Eb,2/2 (with 1/2 for
putting the two-body energy into the one per particle).

We have actually plotted in Fig. 4(b) the trajectory μ =
E0 − Eb,2/2 against m2/m1 as the Fano-Feshbach resonance
line. We can see that the sharp reduction of the GMB cor-
rection occurs right at the resonance. Both the bound state
and the resonance start to exist above the unitarity mass ra-
tio m2/m1 = 1 − π

2a11�
[55] where the two-body bound state

appears in band 2. When Eb,2 arises, as depicted schematically
in Fig. 4(a) and marked with a double arrow in Fig. 4(b),
electrons primarily occupy the resonant state, while the sec-
ond band is basically empty for μ − E0 < 0 (except for
thermally excited quasiparticles). In such a case, the heavy
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band is in an extremely dilute (i.e., strong-coupling) regime
characterized by (μ − E0)/Eb,2 � −1/2, which is a coun-
terpart to the single-band expression, μ/Eb = −1/2, for the
chemical potential in the BEC limit (with Eb being the binding
energy in the single-band case). The realization of the strong-
coupling limit and the verge of appearance of the second-band
Fermi surface, taking place around the Fano-Feshbach reso-
nance at μ = E0 − Eb,2/2, thus lead to the suppression of the
GMB screening effect.

Summary. We have investigated the GMB screening effect
on the superconducting critical temperature in a two-band
superconductor consisting of a deep dispersive (light-mass)
band and a heavy-mass band with the chemical potential
adjusted to make the heavy band incipient. By developing
the diagrammatic GMB formalism for two-band systems, we
have calculated the superconducting critical temperature Tc

for various values of (i) the mass ratio of the two bands, (ii)
chemical potential, and (iii) the pair-exchange coupling. A
strong reduction of Tc, which we traced back to extremely
large particle-hole fluctuations when the second band has a
heavy mass, is found to be overcome, because the GMB re-
duction has to compete with the enhanced pairing interaction
arising from the incipient heavy band, resulting in a peaked
structure in Tc versus the mass ratio. We have then unraveled
that there indeed exists a Fano-Feshbach resonance that oc-
curs when the chemical potential traverses the energy of the
two-body bound state emerging below the heavy band (which
becomes a resonant state in the presence of the interband pair
exchange). The GMB diagram is strongly suppressed when
the Fermi surface of the incipient heavy band is collapsed
because of the bound state leading to the Fano-Feshbach
resonance. Thus we end up with a mechanism for evading
the screening effects of particle-hole (GMB) fluctuations,

leaving the critical temperature in a protectorate regime of
parameters.

The present results are expected to give a hint for fur-
ther understanding of many-body physics in multicomponent
condensations as well as material design toward high-Tc su-
perconductors with band or structure engineering such as
superlattices. As a future perspective, it would be interest-
ing to go beyond the present approach by incorporating the
full momentum and energy dependence of the particle-hole
diagrams and the Popov correction for interacting molecular
pairs, following the approach of Ref. [51]. The effects of
spin-orbit coupling may also be important in applying the
present approach to topological superconductors with Rashba
heterostructures [47]. We can mention in passing that, in
lattice systems where the particle-hole transformation can be
applied in certain conditions, it could be possible, through the
attraction-repulsion transformation, to clarify the relevance
of the present scheme to the repulsive multiband systems
where spin fluctuations are dominant [56–62]. Lattices also
make the introduction of cutoffs unnecessary, which will fa-
cilitate the diagrammatic analysis. It is also worth studying
the role of the low dimensionality such as the GMB effect
on the Berezinskii-Kosterlitz-Thouless transition [63–65] and
on the behavior of the suppression coefficient of the mean-
field pairing temperature for two-dimensional systems, which
are of considerable interest.
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