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Using quantum Monte Carlo simulations and field-theory arguments, we study the fully frustrated transverse-
field Ising model on the square lattice for the purpose of quantitatively relating two different order parameters
to each other. We consider a “primary” spin order parameter and a “secondary” dimer order parameter, which
both lead to the same phase diagram but detect Z8 and Z4 symmetry breaking, respectively. While at T > 0
their scaling exponents are simply related to each other, as explained by a mapping to a height model, we show
that at T = 0 they correspond to different charge sectors of the O(2) model in 2 + 1 dimensions with nontrivial
exponents that are not simply related to each other. Our insights are transferrable to a broad class of Ising models
whose low-energy physics involves dimer degrees of freedom, and also serve as a guide to treating primary and
secondary order parameters more generally.
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Introduction. The concept of an order parameter is key to
quantitative descriptions of phase transitions. In some systems
it is natural to define more than one order parameter, either
in some trivial way or using emergent degrees of freedom
originating from some mapping to an effective low-energy
model. The relationships between different order parameters
may be nontrivial, e.g., unexplained behavior of a “parasitic”
ferromagnetic order parameter in a system with primarily
antiferromagnetic order was reported [1–3]. Here we consider
a quantum spin model that very clearly illustrates two dif-
ferent order parameters that not only exhibit different scaling
behaviors but the relationships between the critical exponents
of the order parameters are also different at temperature T = 0
and T > 0.

We study the two-dimensional (2D) square-lattice fully
frustrated transverse field (Villain) quantum Ising model
(FFTFIM), with Hamiltonian

H =
∑

〈i j〉
Ji jσ

z
i σ z

j − �
∑

j

σ x
j , (1)

where σ x
i and σ z

i are Pauli operators. The couplings Ji j are
equal in magnitude but the number of antiferromagnetic (AF)
couplings around any elementary plaquette is odd [4], here
with Ji j = +J (AF) on every second column and Ji j = −J
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on all other bonds as depicted in Fig. 1. The classical model
at � = 0 hosts a large ground state degeneracy that is lifted
by the transverse field via an “order-by-disorder” mechanism
[5–7].

The first studies of the FFTFIM considered the stacked ver-
sion of the classical model using a Landau-Ginsburg-Wilson
(LGW) approach [8] as well as Monte Carlo (MC) simula-
tions [9]. The LGW study predicted an eight-fold degenerate
ground state, which was more precisely characterized by
Ref. [9] as a Z4 symmetry breaking phase, corresponding
to 90◦ rotations of the lattice, paired with a global spin-flip
symmetry.

The model was later treated using quantum MC (QMC)
simulations [10], where spin and dimer order was found
at T = 0 for � < �c ∼ 1.578. In this phase the frustrated
bonds (mapped to dimers as in Fig. 1) align along alternating
columns or rows; the Z4 symmetry breaking phase identified
in the stacked model. The order parameters considered pre-
viously detected Z4 symmetry and spin-reflection symmetry
separately. The reconciliation of Z8 versus Z4 breaking was
touched on by Coletta et al. [11], but the relationship between
the respective order parameters was not explored.

Here we define a proper Z8 symmetric spin order parame-
ter and demonstrate that the Z4 dimer order parameter should
be considered as secondary. While both order parameters
lead to the same phase diagram (provided in Supplemental
Material, Sec. SI [12]), the Z4 order parameter exhibits faster
decaying critical correlations. Both order parameters, when
correctly defined, exhibit emergent U(1) symmetry in the criti-
cal phase as well as at the quantum phase transition, stemming
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FIG. 1. The degenerate ground states represented by elementary
plaquettes. Blue and red bonds show Ji j = −J and Ji j = +J , re-
spectively. The direction of the sublattice magnetizations ms, s =
1, . . . , 4, are indicated by the arrows, and dimers (green ovals) are
defined on the frustrated bonds. The values of the magnetization
and dimer order parameters shown correspond to the ground state
sublattice magnetizations of the stacked, classical (� = 0) model [8],
sin(π/8) for the sites sharing a frustrated bond and cos(π/8) for the
two others [see Eqs. (3) and (5)].

from the irrelevance of the discrete symmetry-breaking terms
at criticality [13]. However, the distinction between primary
and secondary order is made quantitative by considering the
critical scaling in these two regimes. This is only made pos-
sible by connecting these order parameters to operators in the
relevant field theories, at T = 0 and T > 0. Finite-size scaling
of QMC (stochastic series expansion [14]) results of the full
FFTFIM Hamiltonian, Eq. (1), support the predicted scaling,
emphasizing the utility of this novel approach to studying
quantum magnetism.

Secondary order parameters have previously been used to
describe higher harmonic contributions to spatial modulation
in density wave systems, e.g., liquid crystals [15–19]. A sec-
ondary order parameter can clearly be defined also in the
FFTFIM, but the different scaling forms of the spin and dimer
order parameter in the FFTFIM have not been addressed. This
Letter provides a framework for secondary order not just in the
FFTFIM, but in the entire class of frustrated Ising models with
effective dimer degrees of freedom, e.g., the antiferromagnet
on the triangular lattice [20–24].

Order Parameters. To construct a proper primary order
parameter, we follow standard procedures [8,11,22], using an
effective Hamiltonian for the amplitude m and phase θ of
critical modes:

Heff =
∑

�q
(r + q2)|m|2 + u4|m|4 + u6|m|6

+ (u8 + v8/32)|m|8 − (v8/32)|m|8 cos(8θ ). (2)

The eight-state clock anisotropy implies an eight-fold degen-
erate ground state, characterized by sublattice magnetizations
(m1, m2, m3, m4); see Fig. 1. Each state corresponds to one
frustrated bond in a plaquette, where the magnitude of the
sublattice magnetizations of the sites sharing this bond are
smaller than the other two, sin(π/8) and cos(π/8), respec-
tively [8]. An overall spin-flip transformation gives a total of
eight degenerate states.

Based on the low-energy behavior of the stacked model, as
well as the semiclassical analysis of Ref. [11], we define the
primary order parameter as the complex number

m = mx + imy

= 1
2

(
m1ei π

8 + m2ei 3π
8 + m3ei 5π

8 + m4ei 7π
8
)
, (3)

where

ms = 4

N

∑

j∈s

σ z
j . (4)

The eight ground state configurations of the stacked model
correspond to m = einπ/4, n = 1, 2, . . . , 8.

The problem can also be mapped onto that of dimer cover-
ings, where a dimer is assigned across each frustrated bond
[23], and we define a secondary order parameter � with
this mapping in mind. This order parameter is also complex
number, defined in terms of the dimer density modulation on
the dual lattice [10]:

� = �x + i�y = 2d̃x(0, π ) + 2id̃y(π, 0), (5)

where

d̃α (q) = 1

N

∑

i

eiq·ri di,α, (6)

is the Fourier transformed dimer density

di,α = 1 + Ji, jα

J
σ z

i σ z
jα
, (7)

and jα is the index of nearest neighbor to site i in the α

direction. Long-range ordering is associated with |�| taking
a finite value, while the specific (symmetry-broken) ordering
pattern is identified by the phase. Thus, � takes one out of
the values einπ/2, n = 1, 2, . . . , 4. The connection between the
columnar states and the sublattice magnetizations is illustrated
in Fig. 1.

Z8 versus Z4 Symmetry Breaking. We detect the order-
parameter symmetries by plotting the probability distributions
of m and � accumulated during QMC simulations. In the
ordered phase, we expect eight (four) δ functions at the eight
(four) values corresponding to the columnar spin (dimer)
states in Fig. 1. These δ-functions smear for finite systems,
appearing as highly peaked Gaussian distributions for large
systems.

In the critical phase, we observe the emergent U(1) symme-
try expected from the mapping to the height model [25–27].
We assign height differences to neighboring spins based
whether or not the bond they share is frustrated (i.e., cross-
ing a dimer) [26], as detailed in the Supplemental Material,
Sec. SII [12]. In the ordered phase, the height profile is
“flat,” with the height values bounded from above. In the
critical and disordered phases, the model is in its “rough”
phase, with a logarithmically diverging height profile. This
behavior can be described by an effective elastic free energy
with a periodic “locking” potential favoring the eight flat
height configurations, i.e., the columnar states in Fig. 1. This
effective free energy is precisely that of the 2D XY model,
where the locking potential corresponds to an q = 8 state
clock anisotropy term. This connection allows us to apply the
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FIG. 2. Distributions of (�x, �y ) in (a), (c) and (mx, my ) in
(b), (d), collected in several independent simulations (each initialized
in one of the four columnar states, to prevent trapping in states
with topological defects) and symmetrized using lattice rotations
and reflections. The system size is L = 96 and �/J = 0.43, with
T/J = 0.21 in (a), (b) (in the critical phase) and T/J = 0.014 in (c),
(d) (in the ordered phase).

renormalization group analysis of Ref. [13] to understand the
observed behavior.

Jose et al. [13] first showed that the classical 2D q-state
clock model is characterized by three temperature regimes if
q > 4. At temperatures below the lower critical temperature
Tc1, the clock term is relevant and the system orders into
the Zq clock phase. At T above Tc1 but below the upper
critical temperature Tc2, the clock term is irrelevant and the
free energy reduces to that of the XY model in the Kosterlitz–
Thouless (KT) phase. In this phase, the system can freely
fluctuate between the flat height configurations, thus resulting
in the U(1) symmetric distributions that we observe. Finally,
above Tc2 the critical phase melts into the disordered phase as
defects proliferate.

An example of the symmetry reduction in the ordered
phase is shown in Fig. 2, where (a) and (b) are collected from
simulations in the critical phase, while (c) and (d) are from
the ordered phase. While we detect emergent U(1) symmetry
in both order parameters, a U(1) phase would not be expected
for a primary Z4 dimer order parameter at T > 0, given the
q > 4 criterion in the clock model [13]. However, with the
spin order parameter corresponding to q = 8, the critical
phase is expected.

Scaling at T > 0. As a quantitative characterization of the
primary and secondary natures of the two order parameters,
we compare the scaling of their respective correlation func-
tions in the critical phase. Within the q-state clock-model
description, the spin-spin correlations should decay alge-
braically with a scaling exponent η that varies continuously
with the temperature [28]. The value of η at the upper and
lower critical temperatures are known, η = 1/4 and η = 4/q2,
respectively [13,27]. To extract η, we examine the magnitudes

(a)

(c)

(b)

FIG. 3. Log-log plots of the magnitude of the primary (a) and
secondary (b) order parameter versus the system size L for a range of
temperatures at �/J = 0.67. The dashed lines are power-law fits to
the largest eight system sizes, with T increasing with color brightness
(red to orange). (c) Anomalous dimensions ηm,d versus T for the
primary (red) and secondary (blue) order parameters, extracted from
fitting data to Eq. (8). The exponents align if ηd is rescaled by a factor
1/4. The gray box denotes Tc2 ± σ from Binder crossing results. The
dashed lines are at the predicted values at the phase boundaries.

of both order parameters, which in this phase should scale
with the lattice length L as

|m|2 ∝ L−ηm , |�|2 ∝ L−ηd , (8)

where we leave open the possibility that ηm 	= ηd . In Fig. 3(a)
and 3(b), the order parameters are plotted versus system size
for a range of temperatures between Tc1 and Tc2. As predicted,
they scale algebraically with L, and we extract ηm(T ) and
ηd (T ) by fitting data to Eq. (8). The results are shown versus
T in Fig. 3(c).

The primary order parameter scales with the expected
exponent ηm = 1/4 at the upper critical temperature Tc2

extracted from Binder crossing results (Supplemental Infor-
mation, Sec. SI [12]). Below this temperature, the exponent
linearly decreases. The statistical quality of the fits dete-
riorates below the temperature at which ηm = 1/16 (see
Supplemental Material, Sec. SIII [12]), which is the predicted
value at the lower transition point Tc1 [13], where the system
orders. While the linear decrease in η appears to continue
below Tc1, the deterioration of the power-law fit used to extract
the exponents below this temperature implies that this trend
should not be given any credence. Thus, our numerical results
are consistent with the theory, and we can use ηm = 1/4 and
ηm = 1/16 to set more precise upper and lower boundaries.

The same behavior is observed for the dimer order pa-
rameter, except that the value of the ηd is consistently
approximately four times larger than ηm. After rescaling ηd
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by a factor of four, the results match within statistical errors,
suggesting the relation ηd = 4ηm. This relationship between
ηm and ηd can be explained by the height model: the dimer
value d (�r) at �r, is related to the product of neighboring spin
operators, Eq. (7), which in the coarse-grained model can be
considered simply as the square of the spin operator at �r,
(σ z(�r))2. By representing the spin operators in terms of the
height variables, one can relate the spin-spin and dimer-dimer
correlation functions to the logarithmically diverging height
difference profile; the observed factor of four relating ηd and
ηm then emerges. For details, see the Supplemental Material,
Sec. SII [12].

Scaling at T = 0. At the quantum critical point, there must
be a different relationship between ηd and ηm. Given the irrele-
vance in 2 + 1 dimensions of Z4 or Z8 perturbations to a U(1)
order parameter, the primary order parameter should scale
with the conventional 3D XY critical exponent 1 + η3DXY

[29], as previously confirmed in simulations with a spin-based
order parameter [10]. However, to explain the critical scaling
of the dimer order parameter, we must reference other aspects
of the field theory. Here we analyze both order parameters
using simulations at T = 1/L.

We extract ηm from the asymptotic long distance (r = L/2)
critical spin-spin correlation function, which is expected to
scale as CM (L/2) ∼ L−(1+ηm ) = L−2
φ , where 
φ is the scal-
ing dimension of the operator of the order parameter φ in the
3D O(2) theory. This is often referred to as a charge-1 (or
spin-1) operator [17,30], indicating that it corresponds to a
perturbation, e.g., h cos(θ ), inducing order in a single direc-
tion in the O(2) space, so that the degeneracy is completely
lifted. A corresponding perturbation in FFTFIM would be
one that fully breaks the Z8 symmetry in the ordered state,
favoring one of the eight columnar spin configurations.

A perturbation that couples an external field to the
secondary order parameter would not fully break the Z8

symmetry of the ground state, but would favor the two spin
configurations of given columnar dimer state. Accordingly, in
the low-energy U(1) theory the perturbation should be charge-
2 (or spin-2 traceless symmetric) of the form h cos(2θ ), which
can also be accomplished with products of φ components,
e.g., hφ1φ2. This operator has scaling dimension often referred
to as 
t [17,30],

To test the scaling form L−(1+ηd ) = L−2
t , we analyze
the oscillating part CD(L/2) of the dimer-dimer correlation
function. Since the connection between the primary order
parameter and 
φ is well known, we first used its scaling
behavior to refine the value of �c reported in Ref. [10], as
detailed in the Supplemental Material, Sec. SV [12], obtaining
�c = 1.57680 ± 0.00009. We then calculated CM (L/2) and
CD(L/2) at the midpoint; their scaling behaviors are shown
in Fig. 4. The results match very well the scaling dimensions
obtained in recent numerical conformal bootstrap calculations
[30]: 
φ ≈ 0.519088 and 
t ≈ 1.23629.

The simplest effective model with the same microscopic
symmetries and exhibiting the same scaling behavior is a
classical 3D eight-state clock model, where a charge-l order
parameter is defined by the vector �ml = (mx, my), with mx =∑

i cos(lθi ), my = ∑
i sin(lθ ), θi being the angle of spin i.

Results for this model are presented in Supplemental Material,
Sec. SVI [12]). The excellent agreement with the expected

FIG. 4. Dimer-dimer (blue) and spin-spin (red) correlation func-
tions at the quantum critical point, �/J = 1.5768. The lines are fits
of the L � 44 data to the expected scaling form ∝ L−2
s,t (a + bL−ω ),
with 
φ = 0.519088, 
t = 1.23629 [30], and the correction expo-
nent ω = 0.789 [31] in the 3D O(2) universality class. The reduced
χ 2 values are ∼0.8 and ∼0.9 for the spin and dimer correlations,
respectively.

exponents in both the FFTFIM and clock model confirms
without doubt the emergent U(1) symmetry and the primary
and secondary nature of the order parameters in the FFTFIM.

Conclusion. We have clarified the nature of the two order
parameters, based on spins and dimers, in the square-lattice
FFTFIM. The spin-based order parameter is primary, as it
scales with the leading critical exponents and displays the full
eightfold degeneracy of the ordered phase, while the Z4 dimer
order parameter is secondary with faster decaying critical cor-
relations. Our QMC results at T = 0 and T > 0 confirm the
scaling exponents predicted from the respective low-energy
field theories.

Mapping to dimer models is a powerful tool in the study
of frustrated spin systems, and the problem of lattice cover-
ings by hard-core dimers is an interesting topic in itself. The
connection between the secondary dimer order parameter and
the primary spin order parameter then provides a crucial link
between the models that had not been previously drawn in
this context. Beyond the particular FFTFIM considered here,
the triangular and kagome lattice AF Ising models [23,32],
the fully-frustrated honeycomb lattice Ising model [23], and
the fully frustrated 4–8 lattice Ising models [33] are all well
studied systems where the secondary order parameter pre-
scription could also be applied.

Our insights also explain the critical scaling of a so-called
“parasitic” order parameter studied in the AF three-state Potts
model on the diamond lattice [1–3]. While this system pri-
marily orders antiferromagnetically in the ground state, it was
shown that the presence of this order induces a finite ferro-
magnetic moment, which is captured by a secondary order
parameter. The observed scaling of this order parameter had
previously eluded explanation, but it is now clear that this
“parasitic” order parameter also has scaling dimension 
t in
that system.
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The relevance of the secondary order parameter oper-
ator (
t < 3) in the FFTFIM implies that a perturbation
favoring one of the dimer states, accomplished by appro-
priately modulating the Ising couplings, will induce a Z2

symmetry breaking phase in the plane of � and the dimer
field (modulation) strength hd . The phase boundary be-
tween the paramagnetic and ordered phases should have
the asymptotic form hd,c ∼ |�c(hd,c) − �c(0)|ν/νd , where ν

is the 3D O(2) correlation-length exponent and νd = (3 −

t )−1, which we confirm in the Supplemental Material,
Sec. SVII [12].

The FFTFIM, with hd = 0 and hd > 0, can be imple-
mented on current D-Wave quantum annealing devices. While
the frustrated AF triangular AF Ising model had already been

studied in depth [34,35], only recently was the FFTFIM im-
plemented on such a device [36]. In this recent study, only
the spin order parameter was investigated, and it would be
interesting to study dimer order parameter as well, in the light
of our results.
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