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The excellent magnetic entropy change (�ST ) in the temperature range of 20 ∼ 77 K due to the first-order
phase transition makes Pr2In an intriguing candidate for magnetocaloric hydrogen liquefaction. As an equally
important magnetocaloric parameter, the adiabatic temperature change (�Tad ) of Pr2In associated with the first-
order phase transition has not yet been reported. In this work, the �Tad of Pr2In is obtained from heat capacity
measurements: 2 K in fields of 2 T and 4.3 K in fields of 5 T. While demonstrating a �Tad that is not as
impressive as its remarkable �ST , Pr2In exhibits a low Debye temperature (TD) of around 110 K. Based on
these two observations, an approach that combines the mean-field and Debye models is developed to study
the correlation between �Tad , one of the most important magnetocaloric parameters, and TD, one important
property of a material. The role of TD in achieving large �Tad is revealed: materials with higher TD tend to
exhibit larger �Tad , particularly in the cryogenic temperature range. This discovery explains the absence of an
outstanding �Tad in Pr2In and can serve as a tool for designing or searching for materials with both a large �ST

and a �Tad .

DOI: 10.1103/PhysRevB.109.L140407

Introduction. Magnetocaloric materials with large isother-
mal magnetic and adiabatic temperature changes (�ST and
�Tad ) in the temperature range from 20 K (condensation point
of H2) to 77 K (condensation point of N2) are required for
the successful implementation of magnetocaloric hydrogen
liquefaction [1–5], an emerging cooling technology based
on the magnetocaloric effect with great potential to achieve
higher efficiency than the conventional liquefaction meth-
ods based on Joule-Thomson expansion [6–9]. In this sense,
rare-earth-based intermetallic compounds are promising can-
didates for magnetocaloric hydrogen liquefaction [1,2,10–13].
In particular, the heavy rare-earth-based (Gd, Tb, Dy, Ho,
Er, and Tm) ones such as HoB2 [14], ErAl2 [15], and
ErCo2 [16] have been intensively investigated due to their
large magnetocaloric effects within the temperature range
of 20 ∼ 77 K.

Although light rare-earth elements (La, Ce, Pr, Nd, and
Sm) typically have a much lower resource criticality than
heavy rare-earth elements, and therefore are more suitable
for large-scale applications of magnetocaloric hydrogen liq-
uefaction, light rare-earth-based intermetallic compounds are
often overlooked because they generally show a weaker mag-
netocaloric effect than their heavy rare-earth counterparts [1].
The larger magnetocaloric effects of heavy rare-earth-based
materials are attributed to the larger magnetic moments of
heavy rare-earth ions [1]. The light rare-earth ions, namely
Ce3+, Pr3+, Nd3+, and Sm3+, have a magnetic moment below
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4 μB, much smaller than the heavy rare-earth ions of Gd3+,
Tb3+, Dy3+, Ho3+, Er3+, and Tm3+, which show a magnetic
moment greater than 7 μB [17].

However, the report on Pr2In showing an excellent �ST of
about 20 J K−1 kg−1 in magnetic fields of 5 T at about 57 K
[18] opens a new pathway that breaks the aforementioned
stereotype. Although known for demonstrating the strongest
magnetocaloric effect among the heavy rare-earth R2In (R:
Gd, Tb, Dy, Ho, and Er) system [19], the second-order magne-
tocaloric material Er2In with a Curie temperature (TC) of 20 K
exhibits a �ST of 15.5 J K−1 kg−1, significantly smaller than
Pr2In. The giant �ST within the temperature range of 20 ∼
77 K makes Pr2In an attractive candidate for magnetocaloric
hydrogen liquefaction.

The giant �ST in Pr2In is ascribed to its first-order mag-
netic phase transition [18,20]. This alloy, as well as Nd2In and
Eu2In, was initially reported to show a first-order phase transi-
tion by Forker et al. in 2005, evidenced by the measurements
of magnetic and electric hyperfine interactions [21]. Subse-
quently, in 2018 Guillou et al. reported the giant first-order
magnetocaloric effect in Eu2In [22], triggering a series of
experimental and theoretical studies on this compound and its
relatives [23–26]. It is worth mentioning that Tapia-Mendive
et al. theoretically demonstrated that the first-order phase
transition in Eu2In is due to a topological change to the Fermi
surface [24].

Soon after the observation of the giant �ST in Eu2In, the
excellent �ST in Pr2In [20] and Nd2In [27,28] were reported.
It is worth mentioning that there is also a study reporting
that Pr2In exhibits a second-order phase transition without a
significantly large �ST [29]. The reason for this discrepancy
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is not yet clear and could be attributed to differences in sample
preparation and heat treatment.

Despite the fact that �Tad is as important as �ST for the
magnetocaloric effect [30], �Tad of Pr2In showing a first-
order magnetic phase transition remains unreported. The first
part of our work is about revisiting Pr2In to obtain its �Tad by
constructing the total entropy curves from heat capacity data.
The discoveries of the absence of an outstanding �Tad and
the low Debye temperature (TD) in Pr2In motivate us to study
the correlation between �Tad and TD to explain why Pr2In
shows no remarkable �Tad and explore ways to improve this
important magnetocaloric parameter.

Experiment. Pr2In was synthesized by arc-melting high-
purity raw materials Pr (99.5 wt.% pure) and In (99.99 wt.%
pure) five times. To ensure good homogeneity, the ingot was
flipped after each melting. As the surface of the Pr2In sample
reacts with air, the ground powder was sealed in a capillary
hermetically in an Ar-filled glovebox [p(O2) < 0.1 ppm] for
powder x-ray diffraction (XRD). The powder XRD measure-
ment was performed using a powder diffractometer (Stadi P,
Stoe & Cie GmbH) equipped with a Ge111-Monochromator
using MoKα1 radiation (λ = 0.70930 Å) in the DebyeScher-
rer geometry. Magnetization as a function of temperature
in magnetic fields up to 10 T were measured by a Phys-
ical Property Measurement System (PPMS) from Quantum
Design. Heat capacity in magnetic fields of 0, 1, 2, 5,
and 10 T was measured in the same PPMS with the 2τ

approach.
Results and discussion, Phase purity. The sufficient purity

of the Pr2In crystallizing in Ni2In-type hexagonal structure
(space group: P63/mmc) is confirmed by the XRD measure-
ment. The XRD patterns and the results of Rietveld refinement
are included in the Supplemental Material [31].

Magnetocaloric properties. This part focuses on the mag-
netocaloric properties of Pr2In. Figure 1(a) displays the
magnetization (M) vs temperature (T ) curves of Pr2In in
magnetic fields of 0.02, 1, 2, 5, and 10 T. Two transitions
are observed: one at 56 K and the other at about 35 K. The
transition at about 35 K was reported to be a possible spin re-
orientation transition [20]. The transition at 56 K was reported
to be a first-order magnetic phase transition with an excellent
�ST of 15 J K−1 kg−1 in magnetic fields of 2 T [20].

Figure 1(b) presents the �ST of Pr2In as a function of
temperature in magnetic fields of 0.5, 1, 1.5, and 2 T. �ST

is calculated from MT measurements [shown in the inset in
Fig. 1(a)] with a magnetic field step of 0.25 T. This cal-
culation is based on the Maxwell relation via the equation
�ST = ∫ H

0 μ0(∂M/∂T )H dH [32]. The �ST calculated from
MT measurements reaches 17.5 J K−1 kg−1 in magnetic fields
of 2 T at 56.5 K, which is slightly higher than the value
reported in Ref. [20]. To confirm that the nature of the phase
transition at about 56 K is first order, we calculated the ex-
ponent n from the power law �ST ∝ Hn [33] and plotted it
as a function of temperature in the inset in Fig. 1(b). The n
values in all fields overshoot two, confirming the nature of the
first-order phase transition.

�ST can also be obtained from the S(T,H) curves con-
structed from the heat capacity data by equation S(T, H ) =∫ T

0 μ0(Cp(T, H )/T ) dT [32]. After constructing the S(T,H)

curves, �ST is calculated by [34]

�ST (T, H ) = S(T, H ) − S(T, 0). (1)

The detailed procedure for calculating �ST from heat capacity
data is included in the Supplemental Material [31]. Figure 1(c)
plots the �ST obtained from heat capacity data in magnetic
fields of 1, 2, 5, and 10 T, and �ST from MT measurements
in magnetic fields of 1 and 2 T. The �ST from heat capacity
measurements matches well with the �ST from magnetization
measurements, confirming the accuracy of the heat capacity
measurements. In magnetic fields of 10 T, �ST reaches a value
of about 25 J K−1 kg−1, and a plateaulike step emerges on the
peak of the �ST (T ) curves, which is a character of first-order
phase transitions [35].

Figure 1(d) shows the �Tad indirectly obtained from heat
capacity measurements in magnetic fields of 1, 2, 5, and 10 T.
�Tad is obtained from the constructed S(T, H ) curves via [34]

�Tad (T = T (S, 0), H ) = T (S, H ) − T (S, 0), (2)

where T (S, H ) is the inverse function of S(T, H ). The detailed
process for calculating �Tad from the heat capacity data is
included in the Supplemental Material [31]. In magnetic fields
of 2 and 5 T, the �Tad of Pr2In reach 2 and 4.3 K, respectively.

However, these two values are not as impressive as the
remarkable �ST in Pr2In. Figures 1(e) and 1(f) compare �ST

and �Tad of Pr2In with other light and heavy rare-earth-based
magnetocaloric materials in magnetic fields of 5 T. The �ST

of Pr2In is not only significantly larger than that of Er2In, but
also larger than Pr0.75Ce0.25Al2, which shows the largest �ST

among the light rare-earth-based Laves phase RAl2 series,
and the heavy rare-earth-based Laves phase DyAl2, known
as a promising candidate for magnetocaloric hydrogen lique-
faction [39]. However, Pr2In has a much smaller �Tad than
DyAl2 despite that Pr2In shows a larger �ST . The �Tad of
DyAl2 is about 1.5 times as large as that of Pr2In.

Since �Tad is indirectly obtained from the heat capacity
measurement, a close look is given to the heat capacity data.
Figure 2(a) shows the total isobaric heat capacity Ctot of Pr2In
in magnetic fields of 0, 1, 2, 5, and 10 T. One observation is
that the peak of the heat capacity curves shifts with H , imply-
ing a first-order phase transition [36]. Another observation is
that Ctot of Pr2In is almost constant even near 80 K, indicating
a low Debye temperature TD. Due to the two magnetic phase
transitions at low temperature, it is difficult to obtain TD from
the linear relation Ctot/T ∝ αT 2 + γ (α is the slope in which
TD can be calculated, and γ is the Sommerfeld coefficient)
[40]. In the literature, it is common to use the Debye model to
fit heat capacity data to obtain TD [41–43]. This approach is
based on the following equation:

CV + Ce = 9NkB

(
T

TD

)3 ∫ TD/T

0

x4ex

(ex − 1)2
dx + γ T, (3)

where N is the number of atoms, CV is the volumetric lattice
heat capacity, Ce is the electronic heat capacity, kB is the Boltz-
mann constant, and x = hν/kB T with ν to be the frequency of
the phonon.

In the present work, we obtained a Debye temperature of
around 110 K for Pr2In using Eq. (3). This value is small,
being outside the range of 200 ∼ 400 K where TD of most
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FIG. 1. (a) Magnetization of Pr2In as a function of temperature. (b) �ST of Pr2In from magnetization measurements. The inset shows
the exponent n (|�ST | ∝ Hn) vs T . (c) �ST of Pr2In from MT measurements and heat capacity measurements. (d) �Tad from heat capacity
measurements. (e), (f) �ST and �Tad for light and heavy rare-earth-based R2In [18,19,22,28,36–38], RAl2 (Pr, Nd, Gd, Tb, Dy, Ho, Er)
[1,2,16] in magnetic fields of 5 T. The shadows mark the range of 77 ∼ 20 K.

alloys lie [40]. A similar small value of about 120 K was also
reported for Yb2In, an intermetallic compound that adopts the
same crystal structure as Pr2In [25]. Figure 2(b) plots the
the volumetric lattice heat capacity CV for different Debye

temperatures from 110 to 410 K with a step of 50 K using the
Debye model. A significant difference between CV at cryo-
genic temperatures and near room temperature is revealed:
CV for TD � 410 K at 300 K are close, but at cryogenic
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FIG. 2. (a) Heat capacity of Pr2In as a function of temperature in magnetic fields of 0, 1, 2, 5, and 10 T. (b) Volumetric lattice heat capacity
from Debye model with TD varying from 110 to 410 K with a step of 50 K.

temperatures such as 60 K, CV for TD < 210 K shows a signif-
icantly higher value. The difference between CV at cryogenic
temperatures and near room temperature for different TD has
led us to think about how �Tad correlates with TD.

Neglecting the electronic entropy as it is usually small
compared to the magnetic entropy Sm and the lattice entropy
Sl [45], the total entropy can be calculated by

S(T, H ) = Sm + Sl . (4)

The magnetic entropy is given by [32,44]

Sm = NMkB

[
ln

sinh
(

2J+1
2J y

)
sinh

(
1

2J y
) − yBJ (y)

]
, (5)

with NM the number of magnetic atoms, J the total angular
momentum, BJ (x) the Brillouin function, and

y = gJJμBμ0H + 3J
J+1 kBTCBJ (y)

kBT
, (6)

where gJ is the Landé g factor, TC the Curie temperature, and
μ0 the vacuum permeability.

The equation to calculate the lattice entropy Sl is given by
[45]

Sl = −3NkB

[
ln

(
1 − exp

(
−TD

T

))]

+ 12NkB

(
T

TD

)3 ∫ TD/T

0

x3

exp (x) − 1
dx. (7)

Equations (2), (4), (5), and (7) connect �Tad with TD. By
varying TD and TC , we can see how �Tad changes. However,
it should be emphasized that these equations only take J ,
gJ , T , TC , and TD as variables. In the present work, we only
consider these parameters, ignoring the rest of the factors such
as microstructures and stoichiometry that influence �Tad . In
the present work, the values of J and gJ are taken as 4 and
4/5, respectively, which corresponds to Pr3+.

The calculated �ST and �Tad using Eqs. (2), (4), (5), and
(7) with TD and TC varying are displayed in Figs. 3(a) and
3(b). Equation (5) implies that �ST does not depend on TD;

�ST should have the same value at the same TC regardless
of how TD is varying. This is the reason why there is only one
�S(TC, TD) curve in Fig. 3(a). However, this is not the case for
�Tad . In Fig. 3(b), different TD leads to a different �Tad (TC )
curve. It can be observed that TD influences the turning point
where the decreasing trend of the maximum �Tad with respect
to the decreasing TC turns to an increasing trend: for TD=
110 K, the increasing trend is not observed until 30 K, while
for TD= 410 K, an increasing trend starts at 120 K. It can be
concluded that material systems with higher TD tend to exhibit
larger �Tad , particularly in the cryogenic temperature range.
From the inset in Fig. 3(b), the �Tad of the material with a
TD= 360 K is more than twice as large as the material with a
TD = 110 K, although both have the same maximum �ST at
56.5 K.

It should be noted that there are no ideal material systems
that only vary in TC and TD while keeping the remaining
parameters constant. Furthermore, although the correlation
between �Tad and TD can be well described by the approach
that combines the mean-field theory and the Debye model,
further improvements are needed to include the factor of the
nature of the phase transition order for a more profound in-
terpretation. In particular, the nature and mechanism of the
first-order phase transition of Pr2In are not yet fully under-
stood. Further theoretical and experimental investigations are
required, such as the topological change of the Fermi surface
of Pr2In and its magnetic configurations. Moreover, �ST and
�Tad are influenced by many factors, including extrinsic fac-
tors such as grain size and texture, and intrinsic factors such
as crystalline electric field and stoichiometry [2,46–48]. It
should be also emphasized that the shifting of the transition
temperature with respect to magnetic fields also influences
�Tad for first-order phase transitions [49–51]. The relatively
small dTC/dH (about 1 K/T for Pr2In) also contributes to
the absence of an excellent �Tad in Pr2In. Nevertheless,
the mean-field approach presented in this work provides a
way of understanding the absence of an outstanding �Tad in
Pr2In.

For a more generic interpretation on how TD influences
�Tad , we consider the total entropy curve. Figure 3(c) shows
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FIG. 3. (a) �ST calculated from the mean-field approach. (b) �Tad calculated from the mean-field theory with TC and TD varying. The inset
compares the �Tad for TD = 110K and 360 K with both TC = 56.5K. (c) Lattice entropies for different TD. (d) Illustration of how the slope of
the entropy curve influences �Tad .

the lattice entropy Sl for different TD. As observed, in cryo-
genic temperature range, the Sl curve for smaller TD tends to
exhibit a larger slope. Supposing that Sm are all the same for
all the TD, it can be concluded that in the cryogenic tempera-
ture range, the slope of the total entropy S(T, H ) is larger for
smaller TD since

dS(T, H )

dT
= dSl (T )

dT
+ dSm(T, H )

dT
. (8)

As illustrated in Fig. 3(d), a steeper S(H, T ) results in a
smaller �Tad , although both of them have the same �ST .
In addition, based on the fact that it is a characteristic of
first-order phase transition that the peak of the heat capacity
shifts with magnetic fields, another explanation of how TD

influences �Tad for first-order phase transition is included in
the Supplemental Material [31].

Conclusions. In this study, the �Tad of Pr2In showing a
first-order magnetic phase transition with an excellent �ST

is obtained indirectly from heat capacity data: 2 and 4.3 K
in magnetic fields of 2 and 5 T, respectively. Motivated
by the observation that the �Tad of Pr2In is not as sig-
nificant as its �ST , research on Pr2In continues to explain

why an outstanding �Tad in Pr2In is absent. Inspired by the
finding that Pr2In shows a low TD of around 110 K, the
correlation between �Tad and TD is studied. Combining the
mean-field model with the Debye model, it is shown that TD

has a substantial impact on �Tad : materials with a higher
TD tend to show a larger �Tad , particularly at cryogenic
temperatures.

Our work makes a connection between TD, an impor-
tant physical quantity that correlates the elastic properties
with the thermodynamic properties (such as phonons, thermal
expansion, thermal conductivity, specific heat, and lattice en-
thalpy), and �Tad , one of the most important magnetocaloric
parameters [52]. The important role of TD in achieving large
�Tad at cryogenic temperatures is demonstrated, which could
guide the search or design of materials with both large �ST

and �Tad by considering materials with high TD. Furthermore,
more research is required on the mechanism of the magne-
tocaloric effect in Pr2In, since it is not yet fully understood.
We should also explore ways to replace Indium as it is also a
highly critical element.

The data that support the findings of this study are available
upon reasonable request from the authors.
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