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Emission of fast-propagating spin waves by an antiferromagnetic domain wall driven by spin current
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Antiferromagnets (AFMs) have great benefits for spintronic applications such as high frequencies (up to THz),
high speeds (up to tens of km/s) of magnetic excitations, and field-free operation. Advanced devices will require
high-speed propagating spin waves (SWs) as signal carriers, i.e., SWs with high k vectors, the excitation of
which remains challenging. We show that a domain wall (DW) in anisotropic AFM driven by the spin current
can be a source of such propagating SWs with high frequencies and group velocities. In the proposed generator,
the spin current, with polarization directed along the easy anisotropy axis, excites the precession of the Néel
vector within the DW. The threshold current is defined by the value of the anisotropy in the hard plane, and the
frequency of the DW precession is tunable by the strength of the spin current. We show that the above precession
of spins inside the DW leads to robust emission of high-frequency propagating SWs into the AFM strip with
very short wavelengths comparable to the exchange length, which is hard to achieve by any other method.

DOI: 10.1103/PhysRevB.109.L140406

Introduction. Spin-transfer-torque and spin-Hall auto-
oscillators (AOs) based on ferromagnetic materials (FMs) are
well-established devices in modern spintronics and have a
great potential for advanced signal and data processing [1–4].
For example, owing to their highly nonlinear behavior, they
are promising in neuromorphic computing applications, such
as image or sound recognition [5–7]. Such complex tasks
require large arrays of strongly mutually coupled AOs that can
be achieved by direct exchange, magnetodipolar interactions,
or spin waves (SWs) propagating between individual AOs
[8–13]. The latter has special advantages since SWs can carry
signals on large distances and be additionally processed in
the inter-AO space [7,14,15]. Despite the above benefits, the
FM AOs have significant drawbacks, such as the necessity
of externally applied strong magnetic field, low operational
frequencies, which are usually limited by a few tens of GHz
[16], and low velocity of the emitted SWs, which are of the
order of 1 km/s.

Recently, it was proposed to use antiferromagnetic ma-
terials (AFM) instead of FM to eliminate the above issues
[17–25]. AFM AOs can operate in the THz frequency range
and do not require an external magnetic field due to the
well-known feature of the AFM spin dynamics, the utiliza-
tion of the internal exchange field or so-called exchange
amplification [26–28]. The velocities of the SWs in AFMs
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can reach dozens of km/s [29], which is promising for the
fast signal/data transduction between AOs. However, substan-
tially short wavelengths of the excited magnons are required
to achieve such high velocities. The dispersion relation for

the propagating SWs in AFM reads as � =
√

ω2
0 + c2k2

[where ω0 is the frequency of AFM resonance (AFMR), c is
the maximum group velocity of magnons, and k denotes a
wave vector]. Thus, the group SW velocity, vgr = ∂�/∂k,
tends to zero for a small k, and one is interested in the case
k � ω0/c, which corresponds to the wavelength of a few tens
of nanometers for the typical AFMs, such as orthoferrites [30]
(40 nm for ω0/2π = 500 GHz, c = 20 km/s). The excitation
of such short coherent waves is a fundamental problem of
modern magnonics since it requires an ultracompact source
of magnons [31], despite different finesses, such as the usage
of higher-order radial and azimuthal modes.

Here, we propose to employ a spin-current-driven domain
wall (DW) in an AFM as an ultracompact source of the prop-
agating coherent SWs. We demonstrate theoretically and by
micromagnetic simulations that the simple spin texture, such
as an AFM DW, driven by spin current [32,33], can be a source
of the propagating SWs with substantially high frequencies
and short wavelengths, comparable to the exchange length
of the AFM. We consider a device, schematically shown in
Fig. 1, which is based on a thin film of an AFM with easy-
axis anisotropy and n-fold rotational symmetry in the hard
plane. In the proposed generator, the spin current flowing
from the adjunct layer with the polarization along the prin-
cipal axis excites the precession of the Néel vector within
the DW. We assume the finite size of the spin-current source
with a width L located directly under a DW. The setup for
the spin-current source can vary depending on the dielectric
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FIG. 1. Schematic representation of the proposed ultrashort SW
generator. The spin-torque source (shown by a dark blue bar with
width L) is positioned at the device’s center beneath the AFM DW.
Charge current flow through a heavy metal leads to spin-current in-
jection at the interface (due to the spin-Hall effect) with polarization
p aligned with the easy axis. The spin-current application induces
precession of the Néel vector within the DW in the hard plane with
n-fold symmetry. This precession results in the emission of SWs, as
schematically shown in the lower-left-hand corner.

properties of an AFM. For insulating AFMs, a heavy metal
layer can be employed, where a flow of a charge current
generates a spin current at the interface via the spin-Hall
effect, as illustrated in Fig. 1. For metallic AFMs, an adjacent
layer of a ferromagnet can serve as a spin polarizer. In this
arrangement, charge and spin currents flow perpendicular to
the film, with the polarization of the spin current determined
by the direction of magnetization in the ferromagnetic layer.
The threshold current of the excitation is defined by the value
of the anisotropy in the hard plane, and the frequency of
the DW precession ω is tunable by the strength of the spin
current. We show that the above precession of the DW leads
to the excitation of two modes of magnons with the frequen-
cies � =(n ± 1)ω, where n is the order of the anisotropy. A
robust emission of the propagating SWs into the AFM strip
occurs when (n ± 1)ω > ω0, where ω0 defines the frequency
of AFM resonance. Consequently, the maximum achievable
frequency of SWs is (n + 1)ω0, which corresponds to very
short wavelengths of the SW, comparable with the exchange
length, especially for the hexagonal AFMs. The excitation of
the high wave vectors is possible due to the substantially small
width of the DW in AFM, which is hard to achieve by any
other method.

Model. The low-energy dynamics of a collinear AFM
can be described using the Lagrangian L = T − U for the
Néel vector l = (M1 − M2)/Ms, where |Mi| = Ms/2 is the
magnetization of the sublattice i = 1, 2 and Ms is the value
of saturated AFM magnetization. The “kinetic” energy T =
(Ms/2γωex)(∂t l)2 determines the inertial properties of the
AFM spin dynamics, where ωex = γ Hex is the frequency
defined by the exchange field Hex of the AFM, and γ is a gyro-
magnetic ratio. The “potential” term U = (A/2)(∇l)2 + wa(l)
is determined by nonuniform exchange (A) and anisotropy en-
ergy wa. Expressing the Néel vector in spherical coordinates
l = {sin θ cos φ, sin θ sin φ, cos θ}, the anisotropy energy

density reads

wa = K

2
sin2 θ + Kn

n
sinn θ sin2

(
nφ

2

)
, (1)

where the first term defines uniaxial anisotropy of the easy-
axis type (K > 0), and the second one defines an anisotropy
in the hard plane (Kn > 0), for an AFM with an n-fold axis
Cn. Here, the z axis is chosen along the easy axis of the AFM,
K > Kn, and the ground state corresponds to lz → ±1 (θ =
0, π ).

A purely uniaxial AFM model (Kn = 0) possesses formal
Lorentz invariance [28,34] with the characteristic velocity c =
γ
√

HexA/Ms and degeneracy of the antiferromagnetic reso-
nance (AFMR) frequency ω0 = γ

√
HexK/Ms. The solution

for a stationary DW with boundary conditions lz|±∞ → ±1
can be found from the minimum of the potential energy
U as cos θ0 = tanh x/x0 and ϕ = ϕs, where x0 = √

A/K is
the thickness of stationary DW and angle φs determines the
rotation of the l vector in the hard plane. The rotational
dynamics of interest thus can be described by the transforma-

tion ϕ = ωt + ϕs and x0 → 
(ω) = x0/

√
1 − ω2/ω2

0, where
ω denotes angular velocity of the Néel vector precession in
a DW [28,34]. To induce the rotational dynamics, a spin
current that is polarized along the easy axis of the AFM can
be utilized. The frequency ω dependence on the current j is
governed by the equilibrium between the total energy losses in
the DW and the energy gained within the constrained region
(with the width L, see Fig. 1) of the spin current’s contact
area [32],

αω = σ j tanh

⎛
⎝ L

2x0

√
1 − ω2

ω2
0

⎞
⎠, (2)

where α is an effective Gilbert damping, σ is a spin-torque
efficiency, and j is a density of electric current. In the case of a
large spin-torque source, L � x0 and ω � ω0, the frequency
of the rotation is linearly proportional to the applied current
ω = σ j/α.

Let us continue our analysis with the second term of
Eq. (1)—namely, anisotropy in the hard plane Kn, that leads
to the excitation of spin waves. In order to investigate the
spin-wave excitation, we consider small perturbations of the
initial DW solution as θ = θ0(x) + ϑ (x, t ) and ϕ = ϕs +
ωt + μ(x, t )/ sin θ0(x). It is convenient to combine polar and
azimuthal perturbations into a single complex variable ψ =
μ + iϑ . Assuming a small value of the symmetry-reducing
term Kn � K , one can obtain the linearized equation for ψ in
the form [35] (see Supplemental Material [36] for the details)

Ĥ0ψ + 1

ω2
0 − ω2

∂2
t ψ − 2iω cos θ0

ω2
0 − ω2

∂tψ

= B+
n (ξ )einωt + B−

n (ξ )e−inωt , (3)

where Ĥ0 is the Schrödinger operator with the reflectionless
Pöschl-Teller potential Ĥ0 = −∂2

ξ + 1 − 2 cosh2 ξ , ξ = x/
.
The left-hand side of Eq. (3) describes small-amplitude exci-
tations in an AFM containing a precessing DW. The included
type of potential created by a DW for linear SWs was already
discussed for the FM as well as AFM materials. Particularly,
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the emission of exchange SWs from a Bloch DW, excited by a
microwave magnetic field, was predicted for FMs in Ref. [37].
For uniaxial AFMs, the above approach was employed in
Ref. [38], where the propulsion of a DW by incoming SWs
was demonstrated. The right-hand side of Eq. (3) repre-
sents a periodic driving “force” with frequencies ±nωt and
corresponding amplitudes B±

n (ξ ) = −iBn sinn−1 θ0(cos θ0 ±
sin θ0)/2, where Bn = Kn/2K (1 − ω2/ω2

0 ) is proportional to
the value of the anisotropy in the hard plane. Please note that
superscripts indicate the sign of the corresponding frequency,
i.e., the direction of ψ rotation.

The free solution of Eq. (3) can be represented in the form
of a planar wave ψ = ei(k̃ξ+�̃t ), where k̃ = k
 is the rescaled
wave vector and �̃ = � ± ω is the wave frequency in the
rotating reference frame. At a large distance from the DW,
k̃ and �̃ are connected by the relation

k̃2
∣∣
ξ→±∞ = (ω ∓ �̃)2 − ω2

0

ω2
0 − ω2

, (4)

which is a transformed version of the known dispersion law
for spin waves �2 = ω2

0 + c2k2 in the observer’s coordinate
system.

As it follows from the right-hand side of the Eq. (3),
ψ (ξ, t ) should be expressed as a linear combination of terms
with both positive and negative frequencies ±nωt . However,
it is sufficient to consider one frequency sign since the part
with the opposite sign is symmetric with respect to ξ = 0.
Separating spatial and time variables as ψ = χ±(ξ )e±inωt the
equation (3) can be written as

−∂2
ξ χ± + U ±

ω (ξ )χ± = B±
n (ξ ), (5)

for the spatial part χ±(ξ ), where U ±
ω (ξ ) is a dimensionless

potential for SWs created by a DW rotation and is given by

U ±
ω (ξ ) = 1 − 2

cosh2 ξ
− n2ω2

ω2
0 − ω2

± 2nω2

ω2
0 − ω2

tanh ξ . (6)

The function B±
n (ξ ) in Eq. (5) defines the amplitude of a

spin wave, while the potential U ±
ω (ξ ) defines the condition

for its propagation. Particularly, for the propagating SW in
the form χ (ξ ) ∝ e±ik̃ξ the wave vector acquires the real value
k̃2 > 0 when

U ±
ω (±∞) < 0. (7)

Thus, Eq. (7) is a condition for a SW propagation with a wave
vector k̃2 given by the relation (4) with a substitution �̃ →
nω.

The potential U ±
ω depends on the frequency of DW rotation

ω (see Fig. 2), which in turn can be controlled by the applied
current in accordance with Eq. (2). Thus, by increasing the
current, the condition for the emission is fulfilled when certain
critical frequencies are exceeded:

ω > ωcr, ω2
cr = ω2

0/(n ± 1)2. (8)

In general, critical frequencies (8) distinguish three fre-
quency ranges of the DW precession. At low frequencies
ω < ω0/(n + 1) propagating SWs are not excited, since the
wave vector k is purely imaginary. At ω0/(n + 1) < ω <

ω0/(n − 1) only one branch of propagating SWs is emitted by
a DW with a frequency � = (n + 1)ω. At ω > ω0/(n − 1) the

FIG. 2. Potential U ±
ω created by a precessing DW for SWs, given

by Eq. (6), for a different frequency ω of a DW precession. Solid lines
correspond to the positive sign of a SW frequency, while dashed lines
correspond to the negative sign.

second branch of SWs appears with frequency � = (n − 1)ω.
The third region is, however, absent for twofold anisotropy
with n = 2, since corresponding frequencies lie below AFMR.

Micromagnetic simulations. To validate our analytical find-
ings, we carried out micro-magnetic simulations using the
MUMAX3 solver [39] for a system schematically shown in
Fig. 1. The AFM film has lateral sizes 0.14 × 1.56 µm2 with a
thickness of 5 nm. The selected parameters used for the AFM
correspond to the DyFeO3 and are given as [30] α = 10−3,
Ms = 8.4 × 105 A/m, A = 18.9 pJ/m, Hex = 670 T, and
the anisotropy constant along the easy axis K = 300 kJ/m3.
These parameters correspond to the characteristic speed c =
22 km/s, the frequency of the AFM resonance ω0/2π =
0.45 THz, and the width of a stationary DW x0 = 8 nm.
DyFeO3 was chosen due to the relatively simple tunability
of the second anisotropy K2 in this material, for example, by
temperature [40–42]. Particularly, at low temperatures, it is
possible to achieve a uniaxial state [40] with Kn = 0, where
two magnon modes are degenerated, and by varying tempera-
ture in the vicinity of this point, it is possible to tune K2 in a
wide range.

A spin-current source with a lateral size 0.14 × 0.1 µm2

(L = 100 nm) is positioned under a DW at the center of the
device, injecting a spin torque polarized along the easy axis
of the AFM. The selected polarization of a spin torque does
not induce translational DW movement. However, additional
methods, such as nanoconstriction-based pinning, can be uti-
lized to ensure DW placement beneath the current source
[32]. The DW tends to be positioned in the center of the
nanoconstriction, where it realizes the shortest length and,
consequently, the lowest energy. This layout has the additional
benefit of the highest current density at the center of the
nanoconstriction, i.e., the maximum overlap of the applied
spin current with a DW. Here, however, the rectangular ge-
ometry of the source is considered for a complete comparison
with the analytical model. The frequency of the DW rotation
is evaluated at the central location, where an initially relaxed
DW is present. The frequencies of the excited SWs are mea-
sured at a distance of 300 nm from the DW.
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FIG. 3. The results of simulations for twofold anisotropy in a
hard AFM plane, n = 2. (a) The frequency of the DW rotation (open
circles) and emitted SWs (solid circles) are shown as a function of
the applied current density for different values of K2 anisotropy.
Solid black lines are calculated analytically using Eq. (2). Angular
frequency labels are employed for simplicity and correspond to the
respective rotational frequencies f = ω/2π . (b) The profiles of emit-
ted SWs far from a DW with the extracted values of the wavelengths:
λ = 71 nm (red), 40 nm (green), 25 nm (blue). The applied current
density and frequencies of the displayed SWs are indicated by arrows
of matching colors in (a).

Figure 3 shows the results of simulations with twofold
anisotropy in the hard AFM plane, considering various val-
ues of K2. The presence of K2 anisotropy induces the
excitation threshold current σ jth = ω2

2/(2ωex), where ωn =
γ
√

HexKn/Ms. In particular, for K2/K = 0.02, the excita-
tion starts at jth = 0.53 × 1012 A/m2 with frequency ωth 

σ jth/α = ω2

n/(2αωex) ≈ 100 GHz. With an increase in cur-
rent, the frequency of DW rotation reaches the critical
frequency ωcr,1 = ω0/3 = 150 GHz, leading to the detection
of SWs at a large distance from the DW. The dependence of
the DW frequency on the applied current is in good agree-
ment with Eq. (2), despite being derived with the assumption
Kn/K � 1. As predicted above, the frequency of the propa-
gating SW is a multiple of the DW frequency with a factor of
n + 1 = 3 and hence follows the scaled dependence (2) on the
applied current.

Since increasing the anisotropy Kn leads to an increase in
the threshold current jth, the frequency of a DW precession at
the threshold exceeds ωcr,1 for high values of Kn. As a result,
only SWs with a substantial frequency gap above AFMR can
be excited in this case; see Kn/K = 0.04 and 0.06 in Fig. 3.
Another outcome of raising Kn is the increase of the SW
amplitude, since the driving term B±

n ∝ Kn in Eq. (5). The
SW radiation serves as an additional dissipation mechanism

FIG. 4. The results of simulations for fourfold anisotropy in a
hard AFM plane, n = 4. (a) The frequency of the DW rotation (open
circles) and emitted SWs (solid circles) are shown as a function of
the applied current density for K4/K = 2 × 10−2. Solid black lines
are calculated analytically using Eq. (2). (b) Group velocity and
(c) wavelength of the excited SWs as a function of the applied current
density.

and results in a reduction of the measured DW frequency (and
correspondingly the frequency of emitted SWs) as compared
to the dependency (2). This effect is visible in Fig. 3 for
Kn/K = 0.06.

The results for fourfold anisotropy with K4/K = 0.02 are
shown in Fig. 4. Here, all other parameters are left unchanged
for the possibility of a direct comparison with the n = 2 case.
The excitation threshold current for n = 4 is given by σ jth =
ω2

4/(3ωex), which corresponds to jth = 0.35 × 1012 A/m2

and a frequency of ωth/2π = 70 GHz. Upon reaching the first
critical frequency ωcr,1 = ω0/5 = 90 GHz, only SWs with
a fivefold frequency are observed. As the current is further
increased, the DW surpasses the subsequent critical frequency
ωcr,2 = ω0/3 = 150 GHz, leading to the emission of SWs
with a triple frequency as well.

Figures 4(b) and 4(c) show group velocity and a wave-
length of emitted SWs as a function of applied current. Our
simulation results suggest ultrahigh velocities, exceeding 10
km/s, even at low supercriticality, while at higher currents, the
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velocity of emitted SWs is closely approaching the maximum
value of 22 km/s. Such a result is extremely hard to achieve
by any other method of excitation due to the extremely small
wavelength 
10 nm [see Fig. 4(c)] of the magnon.

Discussion. One can note that Eq. (3) is derived for the con-
servative case, i.e., does not take dissipation and spin current
into account. Thus, the emission of the SWs can be created
by any mechanism, which leads to the corresponding spin
precession in the DW, and spin torque induced by a current
is one of them. Gilbert damping defines the frequency of the
DW precession in accordance to Eq. (2) and also leads to the
decay of the propagating SWs, as one can see in the inset of
Fig. 3.

It is worth mentioning that the anisotropy in the hard plane
is not the only mechanism that leads to the reduction of the
DW dynamic symmetry [35]. The corresponding effect of
the SW emission can occur in AFM with a specific form
of the Dzyaloshinskii-Moriya interaction (DMI) characterized
by a function D(θ, φ). The forms of the functions D(θ, φ) for
many AFMs are detailed in Ref. [43]. The incorporation of

DMI results leads to the term of a form D(θ ) sin nωt in the
right-hand side of Eq. (3), which acts as a periodic driving
“force,” similarly to the effect of anisotropy.

To summarize, it has been shown theoretically and con-
firmed by micromagnetic simulations that the AFM DW, in
which internal rotational dynamics is excited by a spin cur-
rent, can be utilized as a generator of SWs with remarkably
high frequencies and group velocities, which correspond to
short wavelengths of the order of the AFM exchange length.
The AFM DW, due to its small characteristic width, serves
as an efficient generator of SWs that are difficult to excite
by other methods. In addition, the application of such radia-
tion for the synchronization of AFM oscillators with multiple
DWs, where the dynamics is induced by the spin torque, is of
particular interest.
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