
PHYSICAL REVIEW B 109, L140404 (2024)
Letter

Deconfined quantum phase transition on the kagome lattice:
Distinct velocities of spinon and string excitations

Dong-Xu Liu,1 Zijian Xiong,1,2,3,* Yining Xu,3 and Xue-Feng Zhang (���) 1,†

1Department of Physics, Chongqing University, Chongqing 401331, China
2Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

3College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China

(Received 3 April 2023; accepted 20 March 2024; published 11 April 2024)

A deconfined quantum phase transition (DQPT) provides an extraordinary possibility of the quantum phase
transition beyond the Ginzburg-Landau paradigm, which is interwoven with numerous exotic phenomena of
the strongly correlated quantum many-body system, e.g., fractional excitation, emergent symmetries, and gauge
field. However, various candidates of DQPT have been demonstrated to be weakly first order, and the conformal
field theory has to be altered into a nonunitary one. Here we numerically found two linear dispersions with
different velocities in one of the few survivors of DQPT—the extended hard-core Bose-Hubbard model on the
kagome lattice. Such counterintuitive results directly lead to the negation of possible emergent Lorentz symmetry
and the breakdown of conventional theory of DQPT. Furthermore, the snapshots of boson configuration hint
that these two velocities may correspond to the dynamics of the fractional excitations and quantum strings,
respectively. Our work will inspire researchers to revisit the theory of DQPT and benefit the field of quantum
materials and quantum simulations.
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Introduction. The quantum phases breaking different sym-
metries usually undergo a discontinuous transition between
them, but a deconfined quantum phase transition (DQPT) pro-
vides a prototypical counterexample, e.g., the superfluid (SF)
phase can undergo a continuous transition to the valence bond
solid (VBS) [1–8]. The low-energy physics of DQPT can be
interpreted with two flavor spinons coupled to the U(1) gauge
field [1,2]. The duality web indicates that the deconfined
quantum critical point (DQCP) is either conformal invariant or
flowing into the nonunitary conformal field theory (CFT) [5].
Recent research showed that most DQCP candidates belong to
the nonunitary CFT [9–12]. Importantly, the proximate SU(2)
DQPT was recently found in the real material SrCu2(BO3)2

[13].
The DQPT on the kagome lattice belongs to the easy-plane

type [8,14–17]. According to the field theory [5] and renor-
malization group (RG) analysis [17], the effective low-energy
model is self-dual and supports continuous transition, so the
conformal invariant is expected. Numerically, the DQPT on
the kagome lattice also supports the CFT, such as the critical
exponents ηVBS and ηSF being very close, and the scaling
dimension of spinons is two. It is straightforward to believe
that the dynamics of the system also support the conformal
invariant.

In this Letter, we study the dynamics of the DQPT between
the VBS and SF phases on the kagome lattice with the large-
scale quantum Monte Carlo (QMC) method. As shown in
Fig. 1(a), two types of linear dispersions are observed at the �
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and K points, respectively. The large deviation between their
speeds is verified after careful finite-size scaling analysis, in-
dicating the nonexistence of Lorentz symmetry at the DQCP,
which conflicts with the prediction of CFT.

Model. We consider the extended hard-core Bose-Hubbard
Hamiltonian [8,14–16], written as

H = −t
∑
〈i, j〉

(b†
i b j + H.c.) + V

∑
〈i, j〉

nin j, (1)

where t � 0 and V � 0 denote the hopping and repulsive
interaction between nearest-neighbor sites, and b†

i (bi) is
the creation (annihilation) operator of the hard-core boson
which could be used for describing the Rydberg-dressed atom
in the optical lattice [18]. After implementing the mapping
b†

i → S+
i , bi → S−

i , and ni → Sz
i + 1/2, the Hamiltonian is

equivalent to the spin-half XXZ model, which is related to
the quantum magnetism [19]. Because the DQPT happens at
an average density equal to 1/3, the numerical simulation is
performed in the canonical ensemble [8]. Here, we choose V
as the energy unit.

Minimization of the ground-state energy imposes a strong
local constraint—each triangle of the kagome lattice can be
occupied by only one particle (e.g., or , named triangle
rule). Similar to the spin ice [20], the ground state is dis-
ordered with macroscopic degeneracy [21]. However, in the
strong-coupling region t/V � 1, a third-order perturbative
interaction Hring = − 12t3

V 2

∑
(| 〉〈 | + H.c.) can exchange

the configuration without breaking the triangle rule [inset of
Fig. 1(a)] and lift the degeneracy so that the system enters the
VBS phase. Although some spinons (e.g., or �) can still be
excited due to quantum fluctuations, the large energy gap V
makes them confined.

2469-9950/2024/109(14)/L140404(6) L140404-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3729-6808
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L140404&domain=pdf&date_stamp=2024-04-11
https://doi.org/10.1103/PhysRevB.109.L140404


LIU, XIONG, XU, AND ZHANG PHYSICAL REVIEW B 109, L140404 (2024)

Γ K

M

/

DQCP

VBS SF

(a)

(b) (c)

−12

FIG. 1. The dynamic spectra of (a) DQCP at t/V = 0.1302,
(b) VBS phase at t/V = 0.08, and (c) SF phase at t/V = 0.20
calculated with QMC simulation (L = 36). The inset of (a) presents
ring exchange, the red solid lines show the fitting speeds at the �

and K points (red dashed line for comparison), and the white dashed
lines highlight the parameter regions in Fig. 2. The scanning path
�-K-M-� is depicted in the inset of (b). The solid white lines in
(c) are energy dispersion calculated by LSWT. The inset of (c) is
DSF calculated by LSWT with constant energy cut close to the flat
band.

In the weak-coupling region t � V , the large hopping pro-
cess makes the bosons break the U(1) symmetry so that the
system enters the SF phase. As shown in Fig. 1(c), with the
help of linear spin wave theory (LSWT), along the selected
path �-K-M-�, the lowest gapless branch at the � point with
the linear dispersion corresponds to the Goldstone mode, and
the flat-band branch results from the lattice geometry [22].

At the critical point, the interplay between the spinons and
the emergent dynamical U(1) gauge field leads to the decon-
fined criticality. Several exotic phenomena can be found, such
as the drift of the superfluid density, large anomalous critical
exponent, emergent symmetries, and so on [8]. It is a common
belief that this DQPT can be described by the easy-plane
NCCP1 theory [1,2].

Spectra of phases. The adopted numerical method is the
stochastic cluster series expansion with parallel tempering
[23], which can greatly overcome the nonergodic problem.
We choose the periodic boundary condition (PBC) with
the largest system size reaching N = 36 × 36 × 3 = 3888
sites. Meanwhile, in order to suppress the influence of the
thermal fluctuation, the temperature is set to be T = 1/β =

6V
100L , which is even lower than our previous work [8].
Here, we focus on the dynamical structure factor (DSF)
Szz(k, ω) = 1

2πL2

∑
i j

∫ +∞
−∞ dt eik·(ri−r j )−iωt 〈Sz

i (0)Sz
j (t )〉, which

can be extracted from the imaginary-time correlation function
Szz(r, τ ) = 〈Sz(0, 0)Sz(r, τ )〉 by implementing the stochastic
analytic continuation (SAC) method [24–28]. The QMC sam-
ples are more than five million, so high-quality spectra can be
obtained.

In the VBS phase, two branches can be observed in
Fig. 1(b). The lower branch stays on a very low-energy scale

and is nearly flat with a tiny gap (see the Supplemental Mate-
rial (SM) [29]). The flat band is usually related to the lattice
geometry and it reflects the localization of the particles caused
by the effective ring exchange interaction [22]. Similar to the
checkerboard lattice [28], it corresponds to the excitation from
the triplet ground state 1√

2
(| 〉 + | 〉) to the singlet state

1√
2
(| 〉 − | 〉), so its energy scale is ∼ 12t3

V 2 . Meanwhile, one
can see the disappearance of the flat band along the high-
symmetry line �-M. Such fragmentation implies the existence
of a “selection rule” [28,30]. On the other hand, the higher
branch has a large energy gap, ∼V , and it is relevant to the
spinon separation due to the local quantum fluctuation.

In the SF phase, the numerical spectrum in Fig. 1(c) also
shows two branches. The energy scale of the flat-band branch
increases a lot, while the fragmentation remains. From the
LSWT calculation of DSF at the flat band [inset of Fig. 1(c)],
we find no intensity along the path M-�, which is consistent
with the numerical results. We think this fragmentation should
also result from some selection rule due to the lattice sym-
metries [28,30]. On the other hand, the higher branch is the
gapless Goldstone mode.

Spectra of DQCP. The VBS and SF phases break different
symmetries, but can still undergo a continuous phase transi-
tion at DQCP between them. As shown in Fig. 1(a), at DQCP,
the higher branch (named the � branch) is gapless at the �

point and has a similar shape as the SF phase, but with lower
intensity. Deformed from the Goldstone mode in the SF phase,
the � branch becomes more continuous in a high-energy scale,
and it indicates the emergence of the fractional charges at
DQCP. Notice that here we do not choose the logarithmic
scale in the ω axis, so the continuum of DSF may appear less
obvious.

The lower branch (named the K branch) is largely changed
and no longer flat, but the selection rule still holds. Another
gapless linear mode appears at the K points, where the or-
der parameter of the VBS phase stays. Most strikingly, it
has a different speed from the � branch and can be clearly
distinguished even with the naked eye. The dispersion of
the � branch is faster than the K branch. This implies that
the low-energy effective theory cannot be invariant under
Lorentz transformations with one velocity. To obtain more
details at the DQCP, we calculate the DSF over the en-
tire first Brillouin zone. Then, the tomographic slices with
fixed ω can be obtained and used for scanning the dynamics
at DQCP.

The K branch has a higher intensity at low ω in compar-
ison with the � branch. In Fig. 2(a), it is nearly isotropic
around the K point. However, when the energy scale increases,
it becomes anisotropic [Fig. 2(b)] and the U(1) symmetry
is broken down to Z3. Actually, in previous work [8,31],
the histogram of the order parameter at DQCP did not ex-
hibit the perfect emergent U(1) symmetry expected in theory.
According to the NCCP1 theory, the anisotropy may result
from the threefold monopoles which are highly close to
marginal [31,32]. From the dynamic spectra, we think that the
possible emergent U(1) symmetry of the VBS order parameter
stays at a very low-energy scale, ∼0.09V , so the elimination
of the anisotropy requires an extremely low temperature and
large system size. At high ω, in Figs. 2(c) and 2(d), the DSF
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FIG. 2. The tomographic slices of DSF at DQCP calculated by
QMC-SAC. The ω are fixed to (a)–(d) 0.08, 0.10, 0.20, and 0.40,
respectively. The system size is L = 36 with inverse temperature β =
600. Because the DSF only can have a nonzero value at the reciprocal
lattice site in PBC, the color in each tiny hexagon marks the value of
DSF at k of the center of the hexagon.

around the K point becomes messy or weaker, and no infor-
mation of the K branch can be further extracted. In general, as
ω increases, the � branch becomes clearer, while the K branch
is weakened. The � branch is more isotropic.

Two velocities. The velocities of different modes can be
extracted from the peak position of DSF ωp(k) at different
momentum k. Here, to avoid introducing an additional error of
unnecessary fitting, we take ωp(k) at which the DSF reaches
its local maximum at fixed k. Figure 3(a) plots the relation
between ωp(k) and the magnitude of k for the � branch. We
can find that the ωp(k) depends little on the angle of k, which
firmly demonstrates the isotropy of the � branch. Meanwhile,
the numerical data of ωp(k) are in good agreement with the
linear fitting result, where we obtain the constant speed of the
linear dispersion at the � point, V� = 0.317(8) (L = 36).

The dispersion of the K branch is more complicated. In
Fig. 3(b), the DSF around the K point presents a clear feature
of anisotropy. The fastest velocity is along the M-K direction
(blue arrow), and the slowest one is along the �-K direction
(red arrow). However, both directions have only a few data
points, e.g., five for L = 36. In contrast, there are more data
points along the angular bisector direction (black arrow), e.g.,
10 at L = 36. In order to obtain the speed of the K branch VK

with high accuracy, we fit the data along the angular bisector
direction. Different from the � branch, the higher-energy part
of the K branch exhibits a large deviation from the linearity.
Actually, as shown in Fig. 3(c), we find that the sine function
ωp(�k) = a sin b|�k| [�k = k − (4π/3, 0)] exhibits a bet-
ter fit than the linear fit. Then, the speed of the K branch can be
calculated by VK = |ab|. Furthermore, we want to emphasize
that the anisotropy does not bring serious deviation. For exam-
ple, the speeds in fast, slow, and angular bisector directions at
L = 36 are 0.114(15), 0.103(21), and 0.107(8), respectively.

The large difference between the two speeds of the �

branch and the K branch suggests that they originate from

(a) (b)

(c) (d)

K

FIG. 3. The position of the peak ωp(k) of (a) the � branch,
(b) the K branch, and (c) along the angular bisector direction [black
arrow in (b)]. The speed of the K branch is obtained by fitting the
data along the angular bisector direction between the �-K direction
(blue arrow) and M-K direction (red arrow). The system size is
L = 36 with inverse temperature β = 600. (d) The finite-size scaling
analysis of two speeds is performed with linear fitting the data at
L = 21, 24, 27, 30, 33, 36 and β = 100L

6V . The error bars on the v axis
show the fitted values for the two velocities in the thermodynamic
limit.

different physical mechanisms. First, however, we have to
perform a finite-size scaling analysis to exclude possible
renormalized prefactors. In Fig. 3(d), V� and VK at different
system size are shown. We can find that the finite-size effects
are very weak, and the numerical data match well with the
linear fitting results. Finally, in the thermodynamic limit, the
speed of the � branch is 0.319(8), and of the K branch is
0.101(9). As mentioned before, it means that there are two
types of gapless quasiparticle excitations with completely
different speeds, and therefore the Lorentz symmetry cannot
emerge.

Phenomenological analysis. At DQCP, it is worth
introducing the lattice gauge field mapping to understand
the physical mechanism of topological excitations, especially
the spinon (gauge charge) and the string (field line) [8,16]. As
demonstrated in the left panel of Fig. 4, the hard-core boson
can be mapped into the “electric field” defined at the bisector
of the corner-shared triangle via the relation Ell ′ = ni − 1/3,
where l is located at the center of the triangle and labels the
site of the dual honeycomb lattice. The gauge charges sit on
the sites of the dual lattice and can be calculated by summing
over all field lines around one triangle via the “Gauss law.”
Meanwhile, the configurations satisfying the triangle rule are
the pure gauge field, and its dynamics are mainly controlled
by the ring exchange term which acts as the “magnetic field”
[8,20,28]. At the DQCP, the triangle rule is broken and the
spinons emerge. To better illustrate them, we set the stripe
state (Fig. 4, middle panel) as the reference vacuum state
(uniform electric field). Then, after subtracting the vacuum
from the snapshot of the QMC configuration (Fig. 4, left
panel), the spinons connected with the quantum string can be
clearly observed (Fig. 4, right panel).
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FIG. 4. Left panel: A snapshot of a typical configuration during
a Monte Carlo run. Middle panel: The reference vacuum state. The
red (green) arrows mark the “electric field” with a value of −1/3
(2/3). Right panel: After subtracting the vacuum state, the open
string (“electric field line”) linked with the spinon (“electric charge”)
is shown. The red (green) triangle labels the spinon taking negative
(positive) charge one. The red arrows in the right panel show the
possible directions of the spinon motion. The blue arrows mark
the electric field with value one. The red cycles label the hexagon
where the ring exchange term can deform the string.

In the language of lattice gauge field, the nearest-neighbor
hopping of bosons on the kagome lattice can be transformed
into the next-nearest-neighbor hopping of the spinons in the
dual honeycomb lattice (red arrows in Fig. 4, right panel).
Because the honeycomb lattice is bipartite, the up-triangle
and down-triangle reside in different sublattices and they cor-
respond to different types of spinons. Thus, the low-energy
physics can be approximately understood as the dynamic U(1)
gauge field coupled to four types of spinons:

Type � , , , , ∇
Charge +1 −1 +1 −1
Field p1 h1 p2 h2

As demonstrated in the right panel of Fig. 4, the possi-
ble hopping directions of the spinon are not fixed, but we
can set an average hopping amplitude t ′ = 7t/12 for all the
next-nearest-neighbor directions. Then, with assumption of
free spinons, the energy dispersion can be obtained, E (k) =
−2t ′[2 cos(

√
3kx
2 ) cos( ky

2 ) + cos(ky)] ≈ −t ( 7
2 − 7

8 k2). Similar
to the Mott-SF phase transition [33], we can define the pair
operator 	α = (pα + h†

α )/
√

2 and �α = (pα − h†
α )/

√
2. Be-

cause the DQPT happens at exact 1/3 filling, the densities
of spinons pα and hα are the same. Then, after integrat-
ing out �α , the effective Lagrangian becomes “relativistic”

and the velocity of the � branch can be estimated, Vk ∼√
7
8 tc = 0.3375, which is close to the numerical result. There-

fore, we conclude that the gapless mode of the � branch may
be caused by the deconfinement of two types of “spinon pair”
(the spectra of the off-diagonal structure factor and spinon
density correlation also support that [29]).

On the other hand, the K branch is the deformation of the
flat band, so it should be relevant to the effective ring exchange
interaction. In previous work [16], the quantum string was
well described by the spin-half XY chain at half filling. The
ring exchange term is equivalent to the XY spin exchange in-
teraction with the same strength, te = − 12t3

V 2 . It is well known
that the excitations of the spin-half XY chain are kink-antikink
or the free Jordan-Wigner fermions. Then, near the Fermi
point, the velocity of dispersion is 2te. Because the primitive
vector of the string is

√
3/2 times the lattice vector, the cor-

responding velocity should be rescaled to 4te/
√

3 = 0.0612,
which is apparently small. Unlike Ref. [16], the quantum
strings at DQCP are open strings with spinons attached to
the ends, so the velocity should be strongly affected by the
complex interplay between spinons and quantum strings.

Conclusion and discussion. From the dynamic spectra of
DQPT on the kagome lattice, two linear dispersions are ob-
served. The dispersion of spinons is fast and contributes to
the linear dispersion of the � branch, and the slow linear
mode at the K point may result from the internal excitation
of the open quantum strings. Due to the large difference be-
tween the two speeds, the Lorentz symmetry cannot emerge at
DQCP.

The DQPT on the kagome lattice is continuous, so it is
not likely to be the nonunitary CFT which usually results in
the weakly first order. One possibility of the CFT is that the
marginal terms may make the velocities of the two modes be
different. Alternatively, similar to the two velocities caused by
the spin-charge separation in the one-dimensional fermionic
model [34], the decoupled CFT method may also be suitable
for analyzing the DQPT. Recently, there has been a different
understanding of DQPT via the generalized higher-form sym-
metries [35], which may provide more novel understanding of
these issues.
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