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Topological band structure due to modified Kramers degeneracy
for electrons in a helical magnetic field
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Two theorems on electron states in helimagnets are proved. They reveal a Kramers-like degeneracy in
a helical magnetic field. Since a commensurate helical magnetic system is transitionally invariant with two
multiple periods (ordinary translations and generalized ones with rotations), the band structure turns out to be
topologically nontrivial. Together with the degeneracy, this gives an unusual spin structure of electron bands. A
two-dimensional model of nearly free electrons is proposed to describe conductive hexagonal palladium layers
under an effective field of magnetically ordered CrO2 spacers in PdCrO2. The spin texture of the Fermi surface
leads to abnormal conductivity.
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Metallic delafossites PtCoO2, PdCoO2, and PdCrO2

are layered compounds with anomalous transport proper-
ties [1–4]. Their conductivity at room temperature approaches
that of the best elementary conductors such as silver, copper,
and aluminum [1]. CoO2 and CrO2 are proved to be dielectric
interlayers [5], and the conductivity in these substances is de-
termined entirely by hexagonal palladium or platinum layers.
This leads to extremely large values of the electron mean free
path, up to 20 µm at low temperatures [4]. When electron
momentum-relaxing scattering by impurities or phonons is
much weaker as compared to momentum-conserving scatter-
ing, a hydrodynamic regime of electron transport appears [6],
as it was observed in PdCoO2 [7]. The unusual behavior
of the delafossites suggests a novel mechanism of electron
transport [8].

A long-range magnetic order appears in PdCrO2 below
Tc = 37.5 K [9–11]. Chromium ions form a 120◦ magnetic
structure within a single layer. A complex interlayer ar-
rangement leads to the magnetic system consisting of 18
sublattices [10]. The appearance of the magnetic order is ac-
companied by a resistivity drop [12]. Thus, a main hypothesis,
which is going to be proved in the present Letter, is that
the helical magnetic order on certain conditions induces a
high-conductivity state. It also should be mentioned that an
unconventional anomalous Hall effect [13] and nonrecipro-
cal electronic transport [2] are observed in PdCrO2 in the
magnetically ordered state. Above Tc a short-range magnetic
order in chromium hexagonal layers persists up to about
500 K [11,12], and this is another surprising fact in view of
the extremely high conductivity.

The Fermi surface in the metallic delafossites was thor-
oughly investigated [1,4]. In the paramagnetic state, it is
quasi-two-dimensional with a single α orbit. The transition
to the ordered state in PdCrO2 leads to a reconstruction of
the Fermi surface within the magnetic Brillouin zone and the
appearance of additional γ orbits corresponding to pockets in
the vicinity of the K points [11,14].

The motion of a spin-1/2 particle in a helical magnetic field
has been studied for a long time [15–20]. In particular, an ex-
act solution is known [16] and there are various approximate
approaches [17,21]. The electron transport in noncollinear
magnetic structures is demonstrated to be nonreciprocal due
to the breaking of spatial inversion symmetry [2,19]. A spin
space group (SSG) theory is a useful instrument for the
investigation of helical magnetic systems [22–24]. A SSG
operator {α|β|t} comprises the spin rotation αs and space
transformation {β|t} combining the rotation β and translation
t. In the framework of the theory, generalized translations are
introduced ({α|0|t}), and a generalized Bloch theorem was
proved [22,23].

The topological aspects of the band structure of crystalline
solids were intensively studied during the last decades [25].
The main efforts of theoreticians and experimenters were con-
centrated on investigations of topological insulators and their
edge states [26,27]. Another problem that was thoroughly
studied was a Kramers-type degeneracy in various magnetic
and topological systems [28]. Recently, magnetic topological
insulators and semimetals including helimagnets turned out to
be the focus of attention [29,30]. In the present Letter, another
approach to the topology of metallic helimagnets is proposed.

Let us consider a particle of spin-1/2 in a nonuniform mag-
netic field, which is invariant under translation with period T,
i.e., h(r + T) = h(r). The Hamiltonian of the system has the
form

Ĥ = Ĥ0 + h(r)σ̂, (1)

where σ̂ are the Pauli matrices. One can prove two theorems
on the eigenvalues of the Hamiltonian.

Theorem 1. If Ĥ0 is invariant under the operation T̂1/2θ̂ ,
where T̂1/2 is the space translation along vector T/2, θ̂ is
the time-reversal operator, and h(r + T/2) = −h(r), then the
eigenvalues εk of Ĥ are at least twofold degenerate for all the
wave vectors k except those which satisfy exp (ikT) = −1,
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and the following condition is fulfilled for all the eigenvalues,

εk,〈σ〉 = ε−k,−〈σ〉, (2)

where 〈σ〉 ≡ 〈ψk|σ̂|ψk〉 and |ψk〉 is the eigenstate of Ĥ .
Proof. In the presence of a magnetic field a symmetry oper-

ation containing θ̂ should be a product of an operation, which
changes the sign of the magnetic field, and θ̂ [31]. Therefore,
T̂1/2θ̂ is a symmetry operation for Ĥ . Let us consider two
eigenstates: |ψk〉 and T̂1/2θ̂ |ψk〉. According to the rules for
antiunitary operators [32] we obtain

〈ψk|(T̂1/2θ̂ |ψk〉) = (〈ψk|θ̂†)(T̂1/2θ̂2|ψk〉)

= −〈ψk|T̂†(T̂1/2θ̂ |ψk〉). (3)

By means of Bloch’s theorem T̂|ψk〉 = exp(ikT)|ψk〉 it is
reduced to

〈ψk|(T̂1/2θ̂ |ψk〉) = − exp(ikT)〈ψk|(T̂1/2θ̂ |ψk〉). (4)

From here one can see that |ψk〉 and T̂1/2θ̂ |ψk〉 are orthogonal
and make up a pair of degenerate states for all k except those
which satisfy exp(ikT) = −1. In the last case, the state can be
either degenerate or nondegenerate. Since operators k̂ and σ̂

commute with T̂1/2 and change sign under the time reversal,
we obtain Eq. (2). �

The first term of Eq. (1) can contain a scalar potential and
kinetic energy contribution p̂2/(2m) where p̂ and m are the
momentum operator and particle mass. If the vector potential
corresponding to h(r) has the same translational symmetry
under a proper calibration [33], i.e., A(r + T/2) = −A(r),
the kinetic term can be extracted from Ĥ0 and the Hamiltonian

Ĥ = Ĥ0 + [p̂ + q0A(r)Î]2/(2m) + h(r)σ̂ (5)

also meets the theorem. Here, q0 is the charge of the particle
and Î is the unit matrix.

Helical systems with the SSG symmetry operator {α|0|t},
where α = 2π/n and n is an even natural number, satisfy the
hypothesis of the theorem if h(r) is perpendicular to the axis
of spin rotation. This can be illustrated by an example of a
tight-binding model for a four-sublattice helical structure [see
Supplemental Material (SM) [34]]. On the other hand, the
theorem cannot be applied if n is the odd number, in particular,
in the important case of 120◦ magnetic ordering (n = 3).

Let us introduce an operator r̂α of spin rotation by angle α

about the z axis. In the theorem and models discussed below,
there is no spin-orbit coupling. Therefore, the spin rotation
axis can be chosen to be arbitrary, i.e., it is independent of the
spatial z′ axis.

Theorem 2. If Ĥ0 in Eq. (1) is invariant under translation
t̂, time reversion θ̂ , and arbitrary rotations of the spin system
about the z axis, and if h(r)σ̂ is invariant under r̂α t̂, where
α = 2π/n, n is an odd number (n > 1), and h(r) is perpen-
dicular to the spin rotation axis, then the eigenvalues of Ĥ are
at least twofold degenerate for all the wave vectors k except
those which satisfy exp(2ikT) = 1, where T = nt, and all the
eigenvalues satisfy Eq. (2) with 〈σ̂x(y)〉k = 0.

Proof. Let us introduce the operators

Ŷ = t̂r̂α and X̂ = t̂r̂α−π θ̂ . (6)

Ŷ is a symmetry operator under the hypothesis of the theorem
and a generator of an Abelian group [23]. Its irreducible

representations coincide with those of the space translation
group exp(ikt), where k is the wave vector in the extended
Brillouin zone [23]. The magnetic field is perpendicular to
the spin rotation axis, then r̂−π h(r) = −h(r) and X̂ is also
a symmetry operator. We can consider the following quantity:

〈ψk|(X̂n|ψk〉) = 〈ψk|(X̂−n|ψk〉). (7)

Direct translations give

〈ψk|
(
t̂−nr̂−n

α−π θ̂−n|ψk〉
) = 〈ψk|t̂−2n

(
t̂nr̂−n

α−π θ̂−n|ψk〉
)

= −〈ψk|t̂−2nr̂−2n
α−π

(
t̂nr̂n

α−π θ̂n|ψk〉
)
.

(8)

Using r̂−2n
α−π = −Î and Bloch’s theorem T̂2|ψk〉 =

exp(2ikT)|ψk〉, we obtain

〈ψk|(X̂n|ψk〉) = exp(−2ikT)〈ψk|(X̂n|ψk〉). (9)

That is, |ψk〉 and X̂n|ψk〉 are orthogonal and the eigen-
states are twofold degenerate for all the wave vectors except
those which satisfy exp(2ikT) = 1. The operators k̂ and σ̂z

commute with t̂ and r̂, as well as change sign under the
time reversal. Therefore, we obtain εk,〈σz〉 = ε−k,−〈σz〉. The
relations for the transverse spin components are proved in
SM [34]. �

If the vector potential has the same translational symmetry
as h(r), i.e., r̂α t̂A(r) = A(r) [33], the Hamiltonian of the
form (5) also satisfies Theorem 2.

Let us consider a tight-binding model of an atomic chain
under an effective magnetic field corresponding to the 120◦
order as an example of a one-dimensional (1D) helical system
satisfying Theorem 2,

Ĥ3sl = −
∑
i,σ

(â†
i,1,σ âi,2,σ + â†

i,2,σ âi,3,σ

+ â†
i,3,σ âi+1,1,σ + H.c.) −

∑
i, j,σ,σ ′

(â†
i, j,σ ĥ j âi, j,σ ′ ), (10)

where â†
i, j,σ (âi, j,σ ) is the electron creation (annihilation) op-

erator in the jth sublattice ( j = 1, 2, 3) and ith cell with the
spin projection on the z axis σ = ±1/2. The on-site mag-
netic field for the sublattices is defined as follows: ĥ1 = h0σ̂x,
ĥ2 = h0(−σ̂x + √

3σ̂y)/2, ĥ3 = h0(−σ̂x − √
3σ̂y)/2.

This model is exactly solvable and the electron dispersion
is shown in Fig. 1. The magnetic Brillouin zone lies between
−π and π . According to Theorem 2, the obtained eigenvalues
obey Eq. (2). Special points, where the degeneracy is unde-
fined (k = 0 and k = ±π ), are shown by yellow and green
circles.

As was mentioned above, the helical system is subject to
both the generalized Bloch theorem due to invariance un-
der the generalized translation r̂α t̂ [22,23] and the ordinary
Bloch theorem [35] (translational invariance under T̂ = t̂n).
Therefore, the eigenstates and eigenvalues are periodic in the
reciprocal space with two periods which are multiples of one
another.

We define dispersion curves so that the corresponding
eigenstates |ψk,g〉 are continuous functions of k over the ex-
tended Brillouin zone defined by the generalized translations,
and g is the curve number. As an example, one of the curves is
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(a) (b)

FIG. 1. (a) The electron band structure of the 1D model Eq. (10) and (b) a schematic cylindrical representation of the bottom dispersion
curve, which is shown by the thick line in (a). The average spin along the curves is indicated by color: red and blue if |〈σ̂z〉| > 1/2, gray
otherwise. The yellow and green circles denote the degenerate and nondegenerate points, correspondingly.

shown in Fig. 1 by the thick line. According to the Bloch theo-
rem, the eigenvalues should obey the conditions εl,k+K = εl,k
where K is the primitive vector of the magnetic reciprocal lat-
tice and l is the eigenvalue number. One can see in Fig. 1 that
a dispersion curve is not necessarily periodic in the magnetic
Brillouin zone. However, the whole band structure has to be
periodic to fulfill the Bloch theorem.

For instance, let us denote the lowest dispersion curve in
the range from −π to 0 in Fig. 1 by |ψk,1〉. It corresponds to
l = 1 (eigenvalues indexed from the bottom to the top). How-
ever, while crossing k = 0 and, then, k = π , the eigenvalue
number of the curve is changed by l = 2 and l = 3. That is,
there is no a single-valued correspondence between g and l .

This leads to a nontrivial topology of dispersion curves.
The curve marked by the thick line in Fig. 1(a) is schemat-
ically shown in a cylinder representation in Fig. 1(b). Paths
on a cylinder can be classified by means of the fundamental
group of cylinders [36]. The winding number coincides with
n defined above and is a topological index. In the magnetic
Brillouin zone, the band is reduced to n branches (n = 3 in
Fig. 1). If the Fermi level falls into a gap between E2 and E1

(or between E4 and E3), an electron transport becomes un-
usual. A backward scattering without a spin flip is forbidden.
There also exists a persistent spin current.

An additional uniform magnetic field directed along the
spin z axis breaks the Kramers-like symmetry defined by The-
orem 2. On the other hand, the Hamiltonian remains invariant
under both translations. That is why the topological struc-
ture in Fig. 1(b) survives under the perturbation. A uniform
magnetic field perpendicular to the z axis breaks both the
Kramers-like symmetry and invariance under the generalized
translations. In this case, the topology becomes trivial due to
hybridization at the band crossing points.

The proved theorems and topological arguments can
be applied to multidimensional systems. The conductive

hexagonal palladium layers in PdCrO2 are described well
by a 2D nearly-free-electron model [37]. Magnetic spacers
CrO2 form an effective field corresponding to a 120◦ (three-
sublattice) magnetic structure [10]. Then, a solution for the
Bloch wave functions ψ can be obtained from the following
equation [35],

[
h̄2

2m
(k − K)2 − E

]
ĉk−K +

∑
K′

ÛK′−Kĉk−K′ = 0, (11)

where k is the wave vector within the magnetic Brillouin zone
(
√

3 × √
3), ÛK are the Fourier coefficients of effective field,

and ĉk and ÛK have a spinor form [21]. In the case of a 2D
system, the second term in Eq. (11) should contain at least two
terms to describe properly the band structure in the vicinity of
the K points (see Fig. 2).

Since the model Eq. (11) does not contain a spin-orbit cou-
pling, the spin rotation axis z can be chosen to be arbitrary, and
for the sake of simplicity, we direct it along the spatial z′ axis,
i.e., perpendicular to the plane. The Fourier coefficients have
a special form in the case of a helical 120◦ effective field [21],
ÛK1(2) = γ h0(σ̂x ± iσ̂y), where γ is a complex coefficient. It
should be mentioned that the spinor Fourier coefficients are
abnormal operators [21].

The dispersion of the 2D model and the Fermi surface for
two positions of the Fermi level are shown in Fig. 2. The
topology of the dispersion surface is nontrivial. The volume
of the extended Brillouin zone is three times larger than that
of the magnetic one, therefore the topological index is n = 3.
That is, if we close the periodic boundaries of the 2D magnetic
Brillouin zone in a torus representation, the dispersion surface
wrapping the torus contains three sheets. Intersections of the
sheets occur along the Brillouin zone boundaries and along
the 
-K lines.
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(a) (b) (c)

FIG. 2. (a) The dispersion of nearly-free-electron model Eq. (11) along the path shown in the inset, and the Fermi surface corresponding
to the Fermi level positions at (b) E1 and (c) E2. The average spin is indicated by color as in Fig. 1. The arrows in (b) schematically show
umklapp scattering vectors.

Since the model satisfies Theorem 2 we again obtain rela-
tion (2). In Figs. 2(b) and 2(c), one can see that the opposite
arcs of the Fermi surface are predominantly formed by oppo-
site spins. This is an important result because this spin texture
suppresses backward non-spin-flip scattering and umklapp
electron-phonon scattering [21]. The arrows in Fig. 2(b) show
transitions between initial and final electron states in the
umklapp processes which are suppressed by the spin texture
of the Fermi surface. Since at low temperatures an electron-
phonon part of the resistance in metals with a closed Fermi
surface is determined by umklapp scattering [38], the resis-
tance is strongly suppressed [21] and a high-conductivity state
appears.

In Fig. 2(c) one can see that pockets about the K points
appear. This structure of the Fermi surface is similar to that
which was observed experimentally in PdCrO2 in a magneti-
cally ordered state [14].

In conclusion, the two theorems proved above show that
a Kramers-like degeneracy exists in a helical magnetic field.
The topology of the band structure in helical magnetic sys-
tems is nontrivial. The traditional topological band theory
developed for topological insulators deals with a phase of the
wave function and its variation over the Brillouin zone. In
the present Letter, the nontrivial topology stems from the fact

that commensurate helical systems have to be simultaneously
periodic on the ordinary and generalized translations. This
leads to a multisheet dispersion of electrons. The specific
Kramers-like symmetry and topology lead to the spin texture
of the Fermi surface, which suppresses the backward non-
spin-flip scattering and umklapp electron-phonon scattering.
As a result, a high-conductivity state appears. This effect is
pronounced if a single band crosses the Fermi level (strong
topological metal) because otherwise it is masked by inter-
band scattering. This behavior is similar to that of topological
surface and edge states in topological insulators [25]. How-
ever, in the present Letter we dealt with bulk states. The
magnetic metallic delafossite PdCrO2 is a candidate for a
topological metal of this type. It should be mentioned that the
band structure in Fig. 2 can also reproduce the nonreciprocity
of electron transport under the magnetic field observed in this
substance [2]. The effect discussed in the present Letter can be
verified by noncollinear calculations within the density func-
tional theory and spin-resolved angle-resolved photoelectron
spectroscopy.
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