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Over the past decade, dynamical quantum phase transitions (DQPTs) have emerged as a paradigm shift in
understanding nonequilibrium quantum many-body systems. However, the challenge lies in identifying order
parameters that effectively characterize the associated dynamic phases. In this study we investigate the behavior
of vortex singularities in the phase of the Green’s function for a broad class of fermion lattice models in
three dimensions after an instantaneous quench in both interacting and noninteracting systems. We find that
the full set of vortices form one-dimensional dynamical objects, which we call vortex loops. We propose that
the number of such vortex loops can be interpreted as a quantized order parameter that distinguishes between
different nonequilibrium phases. Our results establish an explicit link between variations in the order parameter
and DQPTs in the noninteracting scenario. Moreover, we show that the vortex loops are robust in the weakly
interacting case, even though there is no direct relation between the Loschmidt amplitude and the Green’s
function. Finally, we observe that vortex loops can form complex dynamical patterns in momentum space. Our
findings provide valuable insights for developing definitions of dynamical order parameters in nonequilibrium
systems.
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Introduction. Due to advancements in experimental tech-
nologies and a deeper theoretical understanding, the field of
nonequilibrium quantum many-body dynamics has rapidly
progressed in the last ten years [1]. This has led to the ex-
ploration of exciting, ergodicity-broken states and phases of
quantum matter [2,3], such as many-body scars [4] and time
crystals [5,6], which are of inherent nonequilibrium nature
and go beyond standard thermodynamics and the theory of
quantum phase transitions [7,8]. It has also been discovered
that a nonequilibrium unitary evolution of quantum states
can give rise to temporal nonanalyticities in the rate of the
Loschmidt amplitude, which is analogous to the singulari-
ties observed in thermodynamic functions during equilibrium
phase transitions. This phenomenon, termed a dynamical
quantum phase transition (DQPT) [9–12], has recently at-
tracted a lot of attention from both the theoretical [13–33]
and experimental [34–38] communities (for related nonequi-
librium transitions characterized by order parameters, see
Refs. [39–42]). While it has been demonstrated in different
cases that DQPTs are directly linked to the equilibrium phase
transition of the system being studied, this connection cannot
be considered a one-to-one correspondence in general [43].
Therefore, DQPT is expected to be a genuine nonequilibrium
phenomenon without an equilibrium counterpart, requiring
the identification of order parameters that precisely charac-
terize the dynamic phases in question. Remarkably, DQPTs
for a noninteracting system in two dimensions (2D) can be
closely related to the emergence of measurable, dynamic vor-
texlike singularities in the phase of the Green’s function in

momentum space [44–47] (for experiments see [34,48]). It has
been shown so far that the vortices appear as stable objects
in 2D two-band models, but higher-dimensional systems have
remained unexplored so far.

In the following we demonstrate that in a broad class of
three-dimensional (3D) lattice models, with both interacting
and noninteracting fermions, the vortices of the Green’s func-
tion are not isolated; instead, they form one-dimensional (1D)
dynamical vortex loops. We argue that the number of these
vortex loops can be interpreted as a quantized order parameter
that distinguishes between different nonequilibrium phases.
Although focusing on a simple Weyl semimetal model with
two bands [49–54], we provide arguments and examples that
our results are applicable to a wide class of fermionic, transla-
tionally symmetric lattice models in 3D [55]. Importantly, we
show that the vortex loops are robust and survive in weakly
interacting systems, even though there is no direct relation
between the Loschmidt amplitude and the Green’s function.
Additionally, due to the existence of band-touching Weyl
nodes, we find that in a long time limit the loops can form
complex dynamical patterns in momentum space.

General setup and observables. Before we turn to a specific
microscopic model, we start this section with a very general
picture. We consider a particle-hole symmetric model of non-
interacting spin-1/2 fermions with translational invariance on
a 3D lattice. The Hamiltonian of such a system can be written
in the form

Ĥ =
∑

k∈BZ
ψ̂

†
kHkψ̂k, Hk = �hk · �σ , (1)
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with the summation going over independent quasimomenta k
of a Brillouin zone (BZ). Here ψ̂k denotes a fermionic spinor
operator, �σ is a vector of Pauli matrices, and �hk is a vector
defined by microscopic details of a particular model. Here,
without a loss of generality, we consider ψ̂

†
k = [ĉ†

k,↑, ĉ†
k,↓]

with ĉ†
k,σ=↑,↓ being standard creation operators [56], but we

note that the precise form of ψ̂k might also be different de-
pending on the choice of a two-band model. Throughout this
work we adopt a unit lattice spacing and set h̄ = 1.

Furthermore, we assume that the system is prepared in
a fermionic ground state at a half filling, namely, |ψ0〉 =
�k∈BZ|k(i)

− 〉, where |k(i)
− 〉 = ĉ(i)†

k |0〉 is the lower state of some
initial Hamiltonian H (i)

k = �h(i)
k · �σ , see [57]. At a time t = 0

we perform an instantaneous quench of at least one of the
model’s parameters, which results in a sudden change of the
Hamiltonian �h(i)

k → �h(f)
k . After the quench, the initial state

|ψ0〉 evolves under the new Hamiltonian H (f)
k = �h(f)

k · �σ , i.e.,
|ψ (t )〉 = �k∈BZ|k(t )〉, with

|k(t )〉 =
∑
α=±

�α
k e−iεk,αt |k(f)

α 〉, �α
k = 〈k(f)

α |k(i)
− 〉, (2)

where |k(f)
α 〉 = ĉ(f)†

k,α
|0〉 is an eigenvector of H (f)

k with the cor-
responding eigenenergy εk,α=± = ±εk. We assume that the
quench preserves translational invariance so that a quasimo-
mentum k remains a good quantum number.

To investigate the dynamics of the nonequilibrium system,
we focus on the time-ordered Green’s function [58],

gk(t ) =
∑
r,σ

eik·r〈ĉr,σ (t )†ĉr=0,σ 〉 =
∑
q,σ

〈ĉ†
k,σ (t )ĉq,σ 〉, (3)

where in the above we denote 〈. . .〉 = 〈ψ0| . . . |ψ0〉 and ĉr,σ =
1/

√
N

∑
k e−ik·rĉk,σ . Alternatively, one could also study the

Loschmidt amplitude G(t ) = 〈ψ0|ψ (t )〉 = 〈ψ0|e−iĤ (f)t |ψ0〉,
which quantifies how far the time evolution drives the system
away from the initial condition. The Loschmidt amplitude can
be conveniently written as G(t ) = �kG (1)

k (t ), with

G (1)
k (t ) = 〈0|ĉ(i)†

k (t )ĉ(i)
k |0〉 = 〈k(i)

− |k(t )〉. (4)

Since the Loschmidt amplitude G for a many-body system
is a fast-decaying function with the increasing number of
particles N , it is convenient to define the rate function, λ =
− limN→∞ ln |G|2/N . The latter bears formal resemblance to
the free-energy density (with temperature replaced by time
t) and, therefore, λ might be viewed as a nonequilibrium
free-energy analog. This analogy implies that the rate function
λ can show signatures of a phase transition having non-
analytic points that appear dynamically in time giving rise
to a dynamical quantum phase transition (DQPT) [9–12].
For the considered setup the rate function can be expressed
analytically, i.e.,

λ(t ) = −
∫

dk
(2π )3

ln
[
1 + [(

ĥ(i)
k · ĥ( f )

k

)2 − 1
]

sin2(εkt )
]
,

(5)

with the normalized vectors ĥk = �hk/(�hk · �hk )1/2.
To ensure clarity, throughout this Letter we have chosen

to focus on a single model while still drawing general con-
clusions [55]. Specifically, we consider a two-band 3D Weyl

semimetal Hamiltonian [59], given by

�hk = [sin kx, sin ky, mz − cos kz], (6)

and we assume a quench of the free parameter mz between two
distinct topological phases: a normal insulator (|mz| > 1) and
a Weyl semimetal (|mz| < 1) characterized by pairs of Weyl
points and linear Dirac-like dispersion around them. As we
will demonstrate, this quench induces a DQPT and leads to
the appearance of 1D dynamical singularities in the phase of
the Green’s function.

Relating DQPTs with phase singularities. For a noninter-
acting system, it can be shown that G (1)

k = gk, i.e., the Green’s
function is a complex conjugate of the first-order correlation
function [60], which implies that a DQPT can be observed
on a Green’s-function level. Indeed, the nonanalytic points of
the rate function λ(t ) can only occur if and only if gk(t ) =
|gk(t )| exp[iφk(t )] vanishes for some k∗ and t∗, implying a
phase singularity of the Green’s function φk(t ) [11]. While
in 1D systems the phase singularities can be only observed
in a k − t plane [13,61], in 2D models these singularities
appear as isolated dynamical point vortices with clockwise
or anticlockwise phase winding [44–47] (for experiments see
Refs. [34,48]). On the other hand, in the following sections we
argue that for a wide class of 3D models these vortices group
together, forming dynamical 1D objects, i.e., vortex loops,
which can be either contractible or incontractible. The num-
ber of these objects can be associated with dynamical order
parameters which identify different nonequilibrium phases. In
turn, a change of a dynamical order parameter is accompanied
by a DQPT, i.e., a temporal singularity of the rate function λ.
Later in this Letter we show that the vortex loops also appear
in interacting systems, although there is no strict relation
between the Green’s function gk and the Loschmidt amplitude
G anymore.

Dynamics of vortex loops. For a generic, noninteract-
ing two-band model, a complex valued condition gk(t ) =∑

α |�α
k |2eiεk,αt = 0 implies

(i) M : |�±
k |2 = 1

2
, (ii) Mn(t ) : tn = (2n + 1)π

2εk
, (7)

with n ∈ N, εk,α=± = ±εk and �α
k defined as in Eq. (2). In 3D,

the conditions in Eq. (7) define two 2D surfaces in the mo-
mentum space. The first condition defines a static manifold,
M, illustrated as the orange surface in Fig. 1. The second
condition defines a dynamical, equienergy surface, Mn(t ),
that can intersect with M during some time intervals. Here
we assume that M and Mn(t ) are smooth 2D surfaces within
the 3D Brillouin zone [62]. The 3D Brillouin zone, being a
3-torus, is a compact manifold with no boundary, i.e., it is
a closed manifold. Consequently, also M, Mn(t ) and their
nonempty intersection are also closed and smooth, consisting
of closed curves (i.e., the vortex loops) and/or isolated points
when the vortex loops are being created or annihilated [63].

The vortex loops in different stages of evolution are illus-
trated in Fig. 1 by the blue and red curves. For our analysis,
we have selected a 3D Weyl Hamiltonian [59], determined by
Eq. (6), with m(i)

z = 2.5 and m( f )
z = 0. In this case, M is a

connected surface with a nonzero genus [64] and, therefore,
any closed curve on this surface can be classified as either
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FIG. 1. Exemplary dynamics of vortex loops on a static manifold
M (orange surface) in a 3D BZ. The red and blue colors represent the
chirality of the loops. (a) Incontractible loop with opposing chirali-
ties are created in pairs and move in opposite directions; light colors
correspond to t = 1.05 and dark colors to t = 1.1. (b) Loops of the
same chirality can merge if their tangent vectors (black arrows) are
antiparallel at the loops’ touching points; t = 1.405 (c) Through loop
merging, the loops can change their topological character from in-
contractible to contractible loops; t = 2 (light colors), t = 3.5 (dark
colors).

a contractible or incontractible loop. Further examples of M
can be found in the Supplemental Material [55].

In addition, the loops can also be characterized based on
their chirality, indicated by ±, see Fig. 2(a). Specifically,
any closed curve circulating a vortex loop undergoes a phase
jump of �φ = ±2π , where the sign of the jump represents
the chirality of the loop. Loop chiralities are important in
terms of their dynamics, e.g., loop merging or loop creation
as explained in the following.

In a typical scenario, the vortex loops are created at cer-
tain times, t (c)

n = (2n + 1)π/(2εmax), and annihilated at t (a)
n =

(2n + 1)π/(2εmin), n ∈ N, where εmax (εmin) is the maximal
(minimal) value of the upper band dispersion relation over
quasimomenta k belonging to M, i.e., εmax = maxk∈M εk
(εmin = mink∈M εk). As we show in Fig. 1(a), the loops can
be created (or annihilated) in pairs with opposing chiralities,
represented by red and blue colors. Alternatively, contractible
loops can be also created from a single point of the BZ

FIG. 2. (a) Chirality (±) of a vortex loop is determined by �φ =
±2π phase jump while encircling a loop around a tangent vector
û. (b) The number of contractible nc(t ) and incontractible nic(t )
loops can be considered as quantized dynamical order parameters
(black dashed and red solid lines, respectively). (c), (d) The first and
second derivative of the rate function λ(t ) with nonanalytic DQPT
points (marked by vertical lines) exactly match the changes of nc(t )
and nic(t ).

and annihilated in the inverse process. In the course of time
evolution, the vortex loops of the same chirality can merge
together, as long as their tangent vectors at the touching
point are antiparallel, for example, see Fig. 1(b). Through the
loop merging, it is even possible that the loops change their
topological character from incontractible to contractible [see
Fig. 1(c)], or vice versa.

The dynamics of vortex loops is rather complex but can
be captured qualitatively and quantitatively by monitoring the
number of loops over time, denoted as nc(t ) and nic(t ) for
contractible and incontractible loops, respectively [Fig. 2(b)].
These numbers of vortices can be interpreted as quantized
dynamical order parameters that distinguish between different
nonequilibrium phases. To support this interpretation, we plot
the first and second derivative of the rate function λ(t ), given
by Eq. (5), in Figs. 2(c) and 2(d). In this work we study a
parameter quench from a normal insulator phase to a Weyl
semimetal phase [59], which passes through a critical point of
an equilibrium quantum phase transition, resulting in a change
in the topological properties of the underlying Hamiltonian.
Our analysis reveals a sequence of nonanalytic points in time,
which corresponds to a series of DQPT events, as per the
definition [11]. Within our model, we observe two types of
nonanalytic points: those corresponding to a discontinuity in
the second derivative of λ(t ) and those corresponding to a
divergence of λ̈(t ). By comparing the critical times with the
number of vortex loops of each kind, we observe that the
appearance of each nonanalytic point is necessarily associated
with a change in nc(t ) or nic(t ).

Effects of interactions. So far we have focused on a
noninteracting fermionic model. In this section we aim to
demonstrate that our findings are more general and robust by
showing that the vortex loops persist even in the presence of
weak interactions. Consequently, let us consider H = H0 +
ηV , with η being a small interaction strength and V being a
generic two-body interaction term. To calculate the Green’s

L140303-3



ARKADIUSZ KOSIOR AND MARKUS HEYL PHYSICAL REVIEW B 109, L140303 (2024)

FIG. 3. (a) The phase of the Green’s function gk(t ) in the inter-
acting regime is shown for interaction strength η = 0.1 and time
t = 1.05 with a fixed value of kx = π/2. The black circle marks
the position of the vortex in the noninteracting case. (b) The first
derivatives of the rate function λ(t ) (red dashed line) and λG(t ) (black
solid), the latter being defined in Eq. (10). Although the two curves
almost overlap, their nonanalytic points do not coincide and their
mismatch grows in time. Nonanalytic points of λ(t ) and λG(t ) are
contained within the two shaded areas, as depicted in panels (c) and
(d), respectively. (c) Zoom-in of λ̇(t ) and λ̇G(t ) in a vicinity of the
first temporal nonanalytic points at t∗

1 , t∗
2 , and t∗

G. (d) Zoom-in of
λ̈(t ) and λ̈G(t ) showing the second type of nonanalytic points at t (2)∗

and t (2)∗
G .

function gk(t ) in the interacting regime, the only difficulty
lies in obtaining the time evolution operator in the interaction
picture U (t ). However, up to linear order in η, we can utilize
the Magnus expansion [65,66] and truncate V to its leading
terms [67] in order to approximate U (t ) ≈ e−iH f

0 t exp(−)
with

(t ) ≈ −iηt
∑

k

∑
α,β

�
α,β

k,k′ n̂(f)
k,α n̂(f)

k′,β , (8)

where the coefficients �
α,β

k,k′ depend on the specific interac-

tion type. Here, we choose BCS interactions and get �
α,β

k,k′ =
δk′,-k|γ α

k,↑|2|γ β

k′,↓|2 with γ α
k,σ = 〈k(f)

α |kσ 〉, see [68]. Inserting
Eq. (8) into the formula for the Green’s function, Eq. (3), one
readily gets

gk(t ) ≈
∑
α,β

|�k,α�-k,β |2eitεk,α e−it(�α,β

k,-k+�
β,α

-k,k ), (9)

with �α
k = 〈k(f)

α |k(i)
− 〉. Following these steps, in Fig. 3(a) we

plot the phase of gk(t ), choosing the interaction strength η =
0.1 and a time t = 1.05. For clarity of the presentation we fix
kx = π/2 and illustrate a 2D cut through momentum space,
which shows a clear phase singularity close to the center of the
panel. Although the interacting part of the Hamiltonian adds a
correction to the Green’s function, we find that within the nu-
merical precision the position of the vortex in the momentum
space matches the position of the vortex in the noninteracting
case, marked by a black circle in Fig. 3(a).

As discussed, in the noninteracting system the vortex loop
dynamics is inherently imprinted in the rate function λ(t ).
In the following we explore whether this relation still holds
for the interacting case. In Fig. 3(b) we illustrate the first

FIG. 4. The complex pattern formed by loop vortices at times
t = 15 [panel (a)] and t = 30 [panel (b)] after the quench to the
Weyl semimetal phase, where the number of loops around the Weyl
nodes increases linearly in time. Due to the dispersion relation εk

vanishing for some points belonging to the manifold M, the loops
never annihilate and instead, their dynamics slows down, leading
to their accumulation around the band touching points kW . The
resulting dynamical pattern cannot be destroyed due to the system’s
dynamics.

derivative of the rate function λ(t ) (the red dashed line) in
the vicinity of the first nonanalytic point in time, which for
η = 0.1 is close to t∗ ≈ 0.985. In order to quantitatively de-
termine the point in time associated with the loops’ creation
and directly compare the behavior of the Loschmidt amplitude
and the Green’s function, we define

λG(t ) = − lim
N→∞

ln |�kgk(t )|2/N (10)

and plot its first derivative in Fig. 3(b) (the black solid line).
Although at first glance the first derivatives of λ(t ) and λG(t )
exhibit strikingly close overlap, it is noteworthy that their non-
analytic points do not coincide [Figs. 3(c) and 3(d)]. On the
contrary, we find that the discrepancy between the nonanalytic
points grows in time.

Dynamical pattern formation. Although the loop dynamics
is rather complex, the loop creation and annihilation time
can be determined easily from Eq. (7). In particular, the an-
nihilation time is given by t (a)

n = (2n + 1)π/(2εmin), n ∈ N,
where εmin = mink∈M εk. However, in our analysis presented
in Fig. 2(b), the total number of loops never decreases in
time due to the choice of the model and the quench to the
Weyl semimetal phase, which hosts pairs of the band-touching
Weyl nodes denoted by kW [59]. As the dispersion relation
εk vanishes for some points belonging to the manifold M,
the loops are never annihilated. Instead, the loops’ dynamics
slow down, and eventually, they accumulate around the band
touching points kW . In Fig. 4 we show a complex pattern
formed by the loop vortices at times t = 15 and t = 30 after
the quench. Although the number of loops around the Weyl
nodes increases linearly in time, the resulting dynamical pat-
tern cannot be destroyed due to dynamics.

Summary and perspectives. The Green’s function plays a
crucial role in quantum many-body theory. Our main finding
is that the Green’s function in 3D fermion matter after a
parameter quench involves the dynamical creation and annihi-
lation of topological defects in momentum space in the form
of vortex loops. We have demonstrated that these loops are
triggered by an underlying dynamic quantum phase transi-
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tion. As a consequence, these vortex loops act as a dynamic
topological order parameter. Moreover, we have shown that
the vortex loops survive in weakly interacting systems and
that they can form complex dynamical patterns in momentum
space due to the existence of band touch points.

Our findings reveal that nonequilibrium dynamics in 3D
systems exhibit a significantly greater level of complexity
compared to lower dimensions. As a result, it appears that
to obtain a deeper understanding of the intricate out-of-
equilibrium quantum phases of matter, there is a need to
undertake further investigations on DQPTs specifically in 3D
systems. We emphasize the importance of exploring further
the connection between DQPT and vortex loops in interact-
ing systems, especially beyond perturbative regimes. Such

exploration could potentially prompt a reevaluation of DQPT,
shifting the focus from the Loschmidt amplitude to the in-
volvement of the Green’s function.

The data presented in this article is available from [69].
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