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We address dissipative dynamics of the one-dimensional nearest-neighbour XX spin-1/2 chain governed
by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. In the absence of dissipation, the model
is integrable. We identify a broad class of dissipative terms that generically destroy integrability but leave
the operator space of the model fragmented into an extensive number of dynamically disjoint subspaces of
varying dimensions. In sufficiently small subspaces, the GKSL equation in the Heisenberg representation can
be easily solved, sometimes in a closed analytical form. We provide an example of such an exact solution for a
specific choice of dissipative terms. It is found that observables experience the Wannier-Stark localization in the
corresponding operator subspace. As a result, the expectation values of the observables are linear combinations
of essentially a few discrete decay modes, the long time dynamics being governed by the slowest mode. We
examine the complex Liouvillian eigenvalue corresponding to this latter mode as a function of the dissipation
strength. We find an exceptional point at a critical dissipation strength that separates oscillating and nonoscil-
lating decay. We also describe a different type of dissipation that leads to a single decay mode in the whole
operator subspace. Finally, we point out that our exact solutions of the GKSL equation entail exact solutions
of the Schrödinger equation describing the quench dynamics in closed spin ladders dual to the dissipative
spin chains.
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Introduction. Explicit solutions of a quantum many-body
problem are always welcome, since they enrich our under-
standing of the inherently complex many-body physics and
often expose interesting phenomena with clarity and accuracy
not accessible otherwise. Complementary to their conceptual
importance, explicit solutions may have direct laboratory ap-
plications, thanks to the unceasing progress of experimental
techniques and rapid rise of quantum technologies [1,2].

In the present Letter we address the dynamics of open one-
dimensional nearest-neighbour XX spin-1/2 chains whose
dynamics is described by the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation [3–6]. We work in the
Heisenberg representation, where the time evolution of an
observable is embodied in the corresponding time-dependent
Heisenberg operator. The latter obeys the Heisenberg version
of the GKSL equation.

In a generic many-body system, coupled GKSL equa-
tions include an exponentially large hierarchy of operators
and are expected to be too complex to be manageable with-
out approximations. However, the complexity of the problem
can be reduced if the space of operators is fragmented into
sectors invariant under the GKSL evolution. Such operator-
space fragmentation [7–9] is known to occur for open systems
with quadratic bosonic or fermionic Hamiltonians and with
Lindblad operators that are either linear [10–14], or quadratic
and Hermitian [12,15–21], or unitary with linear or quadratic
generators [22] (see also [21,23–25]), as well as for various
open systems with zero or classicallike Hamiltonians and

quantum dissipation [7,17,22,26–30], or even with interacting
Hamiltonians and fine-tuned dissipation [17].

Here we reveal a broad class of dissipative spin chains
beyond the aforementioned ones that feature operator-space
fragmentation. Further, we show that within this class the
dynamics of a set of physically relevant few-body observables
is confined to a small invariant operator subspace and can be
easily (and often analytically) tracked.

We work out in detail two particular instances of dissi-
pative XX models. The first one features σ z dephasing and
has been studied previously [18,20,31–36]. We highlight that
this type of dissipation leads to a universal decay on top of
the coherent dynamics, with a single decay exponent for all
observables within the subspace.

In the second example the effect of dissipation turns out to
be much more intricate. Heisenberg operators get localized in
the operator subspace due to an effect similar to the Wannier-
Stark localization of a particle in a constant electric field. As
a result, a discrete sequence of decay modes appears, with
only a few of them contributing to a particular observable. We
study in detail the behavior of the slowest decay mode that
governs the dynamics at long times. We discover a singularity
(an exceptional point [37], to be more precise) in the corre-
sponding Liouvillian eigenvalue as a function of dissipation
strength, and establish its physical role. Finally, we discuss
the duality between open spin chains and closed spin ladders,
and the implications of our findings to the quench dynamics
in spin ladders.
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GKSL equation. GKSL equation in the Heisenberg repre-
sentation reads [5, Sec. 3.2.3]

∂t Ot = i[H, Ot ] + D†Ot , (1)

D†Ot ≡ γ
∑

υ

(
L†

υOt Lυ − 1

2
{L†

υLυ, Ot }
)

, (2)

with the initial condition Ot=0 = O. Here Ot and O are op-
erators of the observable of interest in the Heisenberg and
Schrödinger representations, respectively, H is the Hamilto-
nian (in the Schrödinger representation).1 D† is the ajoint
dissipation superoperator (dissipator), Lυ are Lindblad op-
erators,2 and γ is a real positive constant. The expectation
value 〈O〉t of the observable O evolves in time according
to 〈O〉t = trρ0 Ot , where ρ0 is the initial state of the open
system. In the limit of vanishing dissipation, γ = 0, the GKSL
equation (1) reduces to the Heisenberg equation.

Onsager strings. Throughout the paper we consider one-
dimensional systems of spin 1/2. We start from defining a
special type of operators that we refer to as Onsager strings.3

An Onsager string [α α′] j+n
j of length n + 1 � 2 is a product

of n + 1 Pauli matrices on consecutive sites with two matrices
σ x,y at the ends and n − 1 matrices σ z in the middle:

[αα′] j+n
j ≡ σα

j σ z
j+1 . . . σ z

j+n−1σ
α′
j+n, α, α′ ∈ {x, y}. (3)

One additionally defines Onsager strings of length one that are
simply σ z

j .
Onsager strings have recurrently emerged in studies of the

XX and related models [38–41]. A standard way to deal with
these models is to map spins to fermions through the Jordan-
Wigner transformation [39]. In the fermionic representation,
Onsager strings are nothing else but quadratic operators. It
is useful to keep in mind this fact; however, we will not use
the fermionic representation, since it, in general, perplexes the
description of dynamics, as discussed in what follows.

The real linear subspace of operators spanned by Onsager
strings (Onsager space, for short) has the dimension ∼ 4N2,
where N is the number of spins, in contrast to the dimension
4N of the whole operator space.

Onsager space invariance. The key property of Onsager
strings is that the Onsager space is closed with respect to
commutation. This can be verified directly [41] or inferred
from the fermionic representation.

As a consequence, the Onsager space is invariant under
any Hamiltonian evolution generated by the Hamiltonian that
itself belongs to the Onsager space. This class of Hamiltonians
contains, in particular, paradigmatic XX, XY, and transverse-
field Ising models.

1Throughout the paper the presence (absence) of the subscript
t indicates that the operator is in the Heisenberg (Schrödinger)
representation.

2The subscript υ in Lυ is somewhat schematic; specific way of
enumeration of the Lindblad superoperators will be chosen on the
case-by-case basis.

3There seems to be no universally accepted term for these opera-
tors. The rationale for the term chosen here is that these operators are
building blocks for a representation of the Onsager algebra [38] (we
do not use the latter, though).

Turning to the dissipative evolution (1), we enquire when
the dissipator leaves the Onsager space invariant.

One can verify immediately that this is the case for self-
adjoint Lindblad operators that belong themselves to the
Onsager space (this can be most easily shown by using
the equality D†Ot = DOt = −(γ /2)

∑
υ[Lυ, [Lυ, Ot ]] valid

in the case of L†
υ = Lυ), as well as for unitary Lindblad op-

erators with generators from the Onsager space. These facts,
usually presented in the fermionic picture, are well known
[12,15–22].

It turns out that, remarkably, there are options other than
the above two cases. In fact, Lindblad operators need not
be built from Onsager strings to keep the Onsager space
invariant. Consider, for example, a Lindblad operator equal
to σ x

j . It does not belong to the Onsager space, yet it is easy
to verify that it leaves the Onsager space invariant, since the
corresponding term in the dissipator simply multiplies any
Onsager string containing σ z

j or σ
y
j by (−2) and annihilates

other Onsager strings.
More complex Lindblad operators can be built by combin-

ing Onsager strings and operators σ
x,y
j . We summarize proper

combinations in the following
Lemma. The evolution generated by the GKSL equation (1)

leaves the Onsager space invariant, provided that
(a) the Hamiltonian belongs to the Onsager space and
(b) each Lindblad operator

(i) belongs to the Onsager space, or
(ii) is a unitary operator with a generator from the On-

sager space, or
(iii) has the form

px σ x
j + py σ

y
j , px, py ∈ R, or (4)

(iv) is a product of any number of operators of the form
(ii) and (iii).
A remark on the merit of the fermionic representation is

in order here. It was already noted that, in the fermionic
picture, Lindblad operators of types (i) and (ii) correspond
to well-studied cases of Lindblad operators that are quadratic
[15] or unitary with quadratic generators [22], respectively.
Importantly, the size of support of these operators coincides in
both spin and fermionic representation. In contrast, operators
of type (iii) acquire an extensively large support (i.e., become
highly nonlocal) in the fermionic representation. Furthermore,
they are odd in fermion operators and thus do not conserve
the fermion number. For these reasons the fermionic picture
is hardly suitable for describing the dissipative dynamics of
type (iii).

Operator space fragmentation. Consider a subspace
spanned by symmetrized products of two Onsager strings.
Thanks to the identity [a, {b, c}] = {[a, b], c} + {b, [a, c]},
this subspace is left invariant by commutation with an On-
sager string or a linear combination thereof. It can be verified
directly that, more generally, this subspace remains invariant
with respect to the quantum-dissipative evolution (1) under
the conditions of the above Lemma. One can further consider
subspaces spanned by products of larger numbers of Onsager
strings. In fact, a half of the whole operator space gets frag-
mented in this way (while the other half contains operators
that cannot be represented as products of Onsager strings). In
the present Letter we focus on the dynamics within the lowest
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subspace in this tower (dubbed “Onsager space” here), leaving
higher subspaces for further work.

XX model: Hamiltonian dynamics. As a specific exam-
ple of a Hamiltonian from the Onsager space, we consider
the Hamiltonian of the translation-invariant one-dimensional
nearest-neighbour XX spin-1/2 model,

H = 1

2

N∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)
, (5)

where subscripts j and j + N refer to the same site [39].
To set the stage for the analysis of the dissipative dynamics,

we first address the Hamiltonian dynamics, i.e., dynamics
without dissipation. To this end we solve coupled Heisenberg
equations in the Onsager space (cf. [18,41–43]).

For simplicity, we focus on the translation-invariant sector
of the Onsager space. It is spanned by the following operators:

An =
N∑

j=1

[xx] j+n
j , A−n =

N∑
j=1

[yy] j+n
j ,

Bn =
N∑

j=1

[xy] j+n
j , B−n = −

N∑
j=1

[yx] j+n
j , (6)

where n � 1 and A0 = −∑N
j=1 σ z

j .
It is easy to verify that operators Hn = (1/2)(An + A−n)

and Qn = (1/2)(Bn + B−n) are Hamiltonian integrals of mo-
tion (HIoM), i.e., commute with the Hamiltonian, [H, Hn] =
[H, Qn] = 0 [38,40,41].

It turns to be convenient to introduce non-Hermitian
operators

R±n = (1/2)(An − A−n) ± (i/2)(Bn − B−n), n � 1. (7)

Coupled Heisenberg equations for Rn
t acquire a particularly

simple form [44]:

∂t R
n
t = − 2i

(
Rn−1

t + Rn+1
t

)
, n � 1, (8)

where R0
t is identically zero.

Solving a linear system of differential equations essentially
reduces to diagonalizing its matrix (if the latter is diagonaliz-
able). The matrix of Eq. (8) is very simple—its eigenvectors
are plane waves. Standard calculations analogous to those in
[43] (see the Supplemental Material [44] for details) lead to

Rn
t |γ=0 =

∞∑
m=1

in−m(Jm−n(4t ) − (−1)nJm+n(4t )) Rm, (9)

where Jn±m(4t ) are Bessel functions. For further purposes, we
explicitly indicate in the above formula that the dissipation is
absent. The Heisenberg operators An

t , Bn
t can be obtained from

Eq. (9), see [44].
To illustrate real-time quench dynamics, we consider a

translation-invariant out-of-equilibrium initial state

|in〉 = |xxx . . . x〉, (10)

where all spins are polarized along the x direction, and a
simple observable σ x

j σ
x
j+1. Equation (9) entails [44]

〈
σ x

j σ
x
j+1

〉
t

∣∣
γ=0 = (1/2)(1 + J0(4t ) + J2(4t )). (11)

XX model: σ z dissipation. As a first example of a dis-
sipative model, we consider the XX model with Lindblad
operators given by

Lj = σ z
j , j = 1, 2, . . . , N. (12)

These Lindblad operators satisfy conditions (i) and (ii) of
the Lemma. This dissipative model and closely related ones
have been extensively studied previously [18,20,31–36]. The
model can be mapped to a fermionic model with a quadratic
Hamiltonian, and quadratic and Hermitian Lindblad operators
[31]. A nonequilibrium steady state has been found in the case
of a non-translation-invariant chain with biased boundaries
[31,32]. The GKSL equation in the Heisenberg representation
has been solved in [18,20,35]. The model has been mapped to
the non-Hermitian Hubbard model in [33] (see also [18,34]).

We reconsider this model within our framework. A re-
markable feature of this model is that all operators (6) are
eigenoperators of the dissipator with the same eigenvalue:

DF±n = −4γ F±n, n � 1, (13)

where F stands for A, B, H , Q, or R. The only exception
from this rule is A0 = H0 which satisfies DH0 = 0 and thus
remains a conserved quantity, in contrast to other HIoMs.
Equation (13) implies that the matrix of the correspond-
ing coupled GKSL equations acquires a dissipative term
of the form −4γ · 1, where 1 is the identity matrix. As a
consequence, all Heisenberg operators within the translation-
invariant sector of the Onsager space (apart from A0) acquire
a universal damping exponent e−4γ t on top of the coherent
dynamics,4

F±n
t = e−4γ t

(
F±n

t

∣∣
γ=0

)
, n � 1. (14)

Since the Hamiltonian dynamics, F n
t |γ=0, has been already

found, we immediately obtain the dynamics in the presence
of σ z dissipation (see [44] for an illustration).

XX model: σ x,y dissipation. Now we turn to a different type
of dissipator:5

L2 j−1 = (1/
√

2) σ x
j , L2 j = (1/

√
2) σ

y
j , j = 1, 2, . . . , N.

(15)
It satisfies condition (iii) of the Lemma.

In contrast to the previous case, the eigenvalue of the dis-
sipator grows with the support of the eigenoperator:

DA0 = −2 γ A0, DF±n = −2 γ n F±n, n � 1. (16)

This expression immediately implies the support-dependent
damping of HIoMs (see also [47]),

Hn
t = e−2γ nt Hn, Qn

t = e−2nγ t Qn, n � 1, (17)

and H0
t = e−2γ t H0.

4We remark that a similar exponential damping on top of a coherent
dynamics has been found theoretically [45,46] and experimentally
[46] in finite XXZ spin chains with dissipation.

5In the present case the choice of Lindblad operators is not unique:
an equivalent choice that leads to the same dissipator reads L2 j−1 =
σ−

j , L2 j = σ+
j (see e.g. [[6], Chapt. 2]).
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FIG. 1. Dynamics of dissipative XX models. (a) Expectation
value of 〈σ x

j σ
x
j+1〉t after a quench from the initial state (10) for the

σ x,y dissipation (15) (solid) and its approximations by 1, 2, 3, and
4 discrete modes (dashed, from bottom to top). Approximation by
five modes is already indistinguishable from the exact result. Left
inset: Wannier-Stark localization of an eigenvector of the matrix
of Eq. (18). Shown are real (blue circles) and imaginary (magenta
squares) parts of the first eigenvector Un

1 . Right inset: Liouvillian
spectrum within the Onsager subspace. When varying the dissipa-
tion strength γ , eigenvalues closely follow a common trajectory
in the complex plane shown by the dashed line (arrows indicate
the spectral flow direction when increasing γ , see the animation
in the Supplemental Material [44]). (b) Real and imaginary parts
of the eigenvalue λ1 as a function of the dissipation strength γ in
the case of σ x,y dissipation. This eigenvalue determines the leading
dissipation mode at large times. The dashed orange line marks the
critical value γc 
 π/2. For γ < γc the spectrum features at least
one pair of complex roots leading to oscillating decay modes. For
γ > γc all Lindbladian eigenvalues are real, leading to pure decay
without oscillations.

The dynamics of observables other than HIoMs is more
complex. To see this, we again focus on Rn

t . The correspond-
ing GKSL equations read

∂t R
n
t = − 2i

(
Rn−1

t + Rn+1
t

) − 2 γ n Rn
t , n � 1. (18)

If γ were imaginary, these equations would describe a quan-
tum particle hopping on a half-line in a constant electric field;
it is well known that such a particle experiences Wannier-
Stark localization [48]. Remarkably, it turns out that the
localization phenomenon remains when the value of the “elec-
tric field” is imaginary. This can be seen by examining the
eigenvectors of the matrix of Eq. (18). The lth eigenvector Un

l
and eigenvalue λl read [44,49]

Un
l = clJνl +n

(
−2i

γ

)
, λl = 2 γ νl , l, n = 1, 2, . . . , (19)

where cl are normalization factors given in the Supplemental
Material [44], and νl are solutions of the equation

Jνl (−2i/γ ) = 0, (20)

ordered by the descending real part. It should be stressed that
the localization emerges for any nonzero dissipation strength.

Thus obtained spectrum is shown in Fig. 1(a), its evolu-
tion with γ is shown in the supplementary animation [44].
The spectrum has the following features (see [44,49–53] for
details). There is a phase transition at a critical dissipation
strength γc 
 π/2. If γ � γc, all eigenvalues are real, other-
wise there is np conjugate pairs of complex eigenvalues. np is
well approximated by the integer part of the ratio γc/γ . For

l � 2np + 2, the eigenvalues are real and well approximated
by λl 
 −2 γ l .

If one varies γ , eigenvalues move on the complex plain
closely following a common trajectory. There is a discrete
sequence of exceptional points γ1 = γc, γn 
 π/(2n), where
pairs of complex conjugate eigenvalues coalesce and the Lind-
bladian becomes nondiagonalizable. Exceptional points in
open systems are known to have rich phenomenology and
applications [37,54–56], but we leave their detailed analysis
for further work.

The eigenvectors (19) are exponentially localized in the
vicinity of n 
 l , see Fig. 1(a). Following a standard proce-
dure [44], we obtain

Rn
t =

∞∑
l,m=1

eλl t Un
l Um

l Rm. (21)

The localization implies that, in fact, a finite (and independent
on the system size) number of terms in the above sum is
sufficient to approximate Rn

t . As a result, an observable is well
approximated by a few discrete decay modes, as illustrated in
Fig. 1(a). This is the major consequence of localization.

Since the spectrum (19) is discrete, a single mode Re eλ1t

dominates the dynamics in the large time limit. The oscilla-
tory part of this mode vanishes above the critical dissipation
strength, as shown in Fig. 1(b).

Localization in the Krylov space of operators explored by
an observable in the Heisenberg representation has been re-
cently discussed in the context of the recursion method and the
growth of Krylov complexity in generic open systems [57,58].
It is therefore plausible that the localization reported here is an
exactly solvable example of a fairly generic phenomenon.6

Duality between open and closed systems.
(Non)integrability. An open system can be mapped to a
formally closed system with doubled degrees of freedom
and a non-Hermitian Hamiltonian (see, e.g., [59]). If the
latter Hamiltonian is integrable (e.g., by Bethe ansatz), the
corresponding open system can also be regarded as integrable
[18,33,34,60–62].7 Dissipative spin chains studied here map
to closed spin ladders [18,33,34,44]. Importantly, models
satisfying conditions (iii) or (iv) are generically nonintegrable
in the above sense, the model (15) being no exception
[70–73]. Instead, the corresponding closed spin ladders
feature Hilbert space fragmentation [70,74–76]—a closed
system analog of operator space fragmentation.

If Lindblad operators are Hermitian, the Hamiltonian of
the corresponding closed system can be made Hermitian by
replacing γ → iγ [44]. Solutions of the GKSL equation then
map to solutions of the Schrödinger equation for the dual
closed system. This way we obtain exact solutions for the
quench dynamics in the spin-ladder models dual to dissipative
XX models [44].

6We also note that a simpler version of the operator localization has
been found earlier in a spin systems with a classical Hamiltonian and
diagonal-preserving dissipator [26].

7We accept this as a working definition of integrable open systems.
For other approaches see [63–67]. Note that a rigorous definition of
quantum integrability is a matter of an ongoing debate [68,69].
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Outlook. Much effort is being invested in the stud-
ies of nonequilibrium steady states (NESS) in systems
with biased boundary dissipation [15,16,31,32,77–82]. It
would be interesting to apply our approach in such a
setting. This will necessitate considering dissipators that
describe gain and loss. It also seems promising to ex-
tend our approach to dissipative versions of models where
coupled Heisenberg equations have been explicitly solved,
such as chiral Potts models [43,83] and Kitaev honeycomb
models [84,85].
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[71] M. Žnidarič, Magnetization transport in spin ladders and next-
nearest-neighbor chains, Phys. Rev. B 88, 205135 (2013).
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