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We report an implementation of the recursion method that addresses quantum many-body dynamics in the
nonperturbative regime. The method essentially amounts to constructing a Lanczos basis in the space of operators
and solving coupled Heisenberg equations in this basis. The reported implementation has two key ingredients:
a computer-algebraic routine for the symbolic calculation of nested commutators and a procedure to extrapolate
the sequence of Lanczos coefficients according to the universal operator growth hypothesis. We apply the method
to calculate infinite-temperature correlation functions for spin-1/2 systems on one- and two-dimensional lattices.
In two dimensions the accessible timescale is large enough to essentially embrace the relaxation to equilibrium.
The method allows one to accurately calculate transport coefficients. As an illustration, we compute the diffusion
constant for the transverse-field Ising model on a square lattice.
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Introduction. Quantum dynamics is one of the central top-
ics in condensed matter physics. While for one-dimensional
(1D) systems various numerical approaches typically deliver
highly satisfactory results, addressing higher dimensions turns
out to be much more challenging. Diverse techniques are
being developed to tackle quantum dynamics in two and three
dimensions, including determinant quantum Monte Carlo [1],
matrix product state computations on infinite cylinders [2–5],
methods based on projected entangled pair states [6,7],
functional renormalization group [8,9], classical approxi-
mations [10], hybrid quantum-classical methods [11,12],
unfolding of two-dimensional (2D) to nonlocally coupled 1D
systems [13], and so on.

Here we report an implementation of the recursion method
capable of addressing high-temperature dynamics of 1D
and 2D lattice systems. The recursion method has a long
history [14,15], however, instances of its application to many-
body systems are relatively scarce [16–29]. The basic object
of the recursion method is a sequence of Lanczos coefficients
bn, n = 0, 1, 2, . . . , that are to be obtained from the nested
commutators of the system Hamiltonian with the observable
in question. This sequence becomes infinite in the thermody-
namic limit. At the same time, the complexity of calculating
the Lanczos coefficients grows factorially with n. This has
been hindering the application of the method for decades.

We alleviate the above difficulty by two complemen-
tary remedies. First, we develop a computer algebra routine
to calculate a record number of nested commutators. The
computation is performed directly in the thermodynamic
limit and keeps the Hamiltonian parameters symbolic. Sec-
ond, we extrapolate the remaining part of the Lanczos
sequence according to the universal operator growth hypoth-
esis (UOGH) [25] and other recent insights in the asymptotic
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behavior of this sequence [27,28,30,31]. Remarkably, the
extrapolation works better the further the system is from
integrable points. This makes our approach inherently non-
perturbative.

The paper is organized as follows. We start from in-
troducing basic concepts and definitions, in particular, the
autocorrelation function. Then we discuss the truncated Tay-
lor expansion of the autocorrelation function. After that we
outline the recursion method, the UOGH, and a procedure
to obtain transport coefficients from the Lanczos sequence.
Next we describe our implementation of the recursion method.
Then the method is applied to one 1D model and two 2D
models. A discussion and outlook conclude the paper.

Autocorrelation function. We consider a quantum system
with a Hamiltonian H and focus on some observable given
by a self-ajoint Shrödinger operator A. The same observable
in the Heisenberg representation reads A(t ) = eitH A e−itH . It
is convenient to introduce the commutation superoperator
L ≡ [H, •]. Then the Heisenberg equation of motion reads
∂t A(t ) = iLA(t ), and its formal solutionis is given by A(t ) =
ei t LA.

Throughout the paper we focus on the normalized infinite-
temperature autocorrelation function

C(t ) ≡ tr(A(t )A)/trA2. (1)

It has the properties C(0) = 1 and C(−t ) = C(t ). We remark
that strong long-lived quantum correlations can well exist at
infinite temperature [32].

It is convenient to introduce a scalar product in the space
of operators according to

(A|B) ≡ tr(A†B)/d, (2)

where d is the Hilbert space dimension (which is assumed to
be finite). The scalar product entails the norm ‖A‖ = √

(A|A).
In these notations, the autocorrelation function can be written
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FIG. 1. Upper row: Lanczos coefficients for three models considered in the text. Dashed lines indicate extrapolating functions (8) and (9).
Insets highlight the subleading contribution �bn, where �bn = bn − (α n/ log n + γ ) in one dimension and �bn = bn − (α n + γ ) in two
dimensions. Lower row: correlation functions for the same models (solid lines) plotted up to t = tmax. Dashed lines: upper and lower polynomial
bounds (5). Horizontal dash-dotted lines: long-time averages C. The result for the 1D Ising model is benchmarked by the exact diagonalization
(dots).

as C(t ) = (A(t )|A)/‖A‖2. The superoperator L is self-adjoint
with respect to this scalar product.

Truncated Taylor expansion. Expanding A(t ) in powers
of t , one obtains the Taylor expansion of the autocorrelation
function

C(t ) ≡
∞∑

m=0

(−1)m μ2m

(2m)!
t2m, (3)

with even moments given by

μ2m ≡ (L2mA|A)/‖A‖2 = (LmA|LmA)/‖A‖2 (4)

and odd moments being zero, ensuring that the autocorrelation
function is even. Note that μ0 = 1 by definition.

The Taylor expansion (3) is known to have an infinite
convergence radius for 1D systems with short-range in-
teractions [33] and a finite convergence radius in higher
dimensions [25].

Truncating the Taylor expansion (3) at the order 2n, one
obtains a polynomial P2n(t ). Remarkably, these polynomials
constitute rigorous upper and lower bounds on the autocorre-
lation function [34–37],

P4l+2(t ) � C(t ) � P4l (t ), l = 1, 2, . . . . (5)

These two-sided bounds are extremely tight up to a certain
time, allowing one to precisely benchmark more sophisticated
approximations to C(t ), see Fig. 1.

Recursion method. We employ the Heisenberg-picture ver-
sion of the recursion method [14]. It is essentially about
solving coupled Heisenberg equations in the orthogonal

Lanczos basis {An}, n = 0, 1, 2, . . . , defined iteratively as
follows: |A0) = ‖A‖−1 |A), |A1) = L|A0),

bn = ‖An‖, n = 0, 1, 2, . . . ,

|An) = b−1
n−1 L|An−1) − bn−1 b−1

n−2|An−2) n = 2, 3, . . . . (6)

The superoperator L acquires a tridiagonal form in this basis,
with the zero main diagonal and the sequence of Lanczos
coefficients bn in the sub/supradiagonals. As a result, the
autocorrelation function (1) enters a set of coupled equations

∂tϕn(t ) = −bn+1 ϕn+1(t ) + bn ϕn−1(t ), n = 0, 1, 2, . . . ,

C(t ) = ϕ0(t ), (7)

where ϕ−1(t ) ≡ 0 and ϕn(0) = δ0n.
This way the autocorrelation function becomes implicitly

determined by the sequence of Lanczos coefficients bn. These
coefficients can be obtained recurrently according to (6), or
alternatively, from the moments (4) [38].

UOGH and extrapolation of Lanczos coefficients. In prac-
tice, only a finite number of bn can be computed. Other
coefficients are to be extrapolated. The UOGH put forward
in [25] states that, for generic systems the leading asymptotics
of bn is linear, with a logarithmic correction in one dimen-
sion (see also an earlier paper [39] for a similar result for
classical systems). It has been further revealed that certain
subleading terms of the asymptotics can be equally important
for the dynamics [20,25,27,28,30,31,40,41]. Guided by these
insights, we employ the following extrapolation formulas for
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FIG. 2. (a) Diffusion constant for the 2D Ising model (18) as
a function of the transverse field hz. The width of the line indi-
cates the estimated uncertainty. (b) Convergence of the diffusion
constant with the approximation order r. Shown are data for fields
hz = 0.5, 1, 1.5, 2, 2.5, 3 (from bottom to top).

n � 1:

bn � αn/ log n + γ + (−1)nγ∗ for 1D, (8)

bn � αn + γ + (−1)nγ∗ for 2D. (9)

Here α, γ and γ∗ are the fitting parameters. In particular,
γ∗ parameterizes odd-even alterations in the Lanczos se-
quence that emerge whenever C ≡ limt→∞ C(t ) is nonzero
(cf. [20,27,28]).

Transport coefficients. Whenever A = J is the current of
some conserved quantity, the autocorrelation function of J
determines the corresponding transport coefficient [42]. In
particular, when the conserved quantity in question is energy,
one can calculate the energy diffusion constant D as [42–44]

D = ‖J‖2

‖H‖2
Ç, Ç ≡

∫ ∞

0
dt C(t ), (10)

where trH = 0 is assumed.
It has been shown recently that, employing the UOGH, one

can obtain a precise approximation Çr to Ç from a moderate
number r of known Lanczos coefficients [45]. The approxi-
mation reads [45] (see also [46,47])

Çr = 1

br

[r/2]∏
m=1

b2
2m

b2
2m−1

×
{

1/pr for even r,

pr for odd r,
(11)

where [r/2] is the integer value of (r/2) and

pr = �
( r

2
+ γ

2α

)
�

( r

2
+ γ

2α
+ 1

)
/

[
�

(
r

2
+ γ

2α
+ 1

2

)]2

.

(12)

Çr usually converges to Ç rapidly upon increasing r [45],
which is confirmed by our calculations, see Fig. 2(b). We note
that one can also substitute a truncated Taylor expansion in
Eq. (10), however, the transport coefficients obtained this way
are less accurate [9,48–50].

Symbolic implementation. We consider one-dimensional
chains and two-dimensional square lattices of spins 1/2 with
nearest-neighbor interactions. Both the Hamiltonian H and
the observable A are considered to be translation-invariant.

The core routine of our method is a symbolic computation
of nested commutators LnA. Importantly, the Hamiltonian pa-
rameters are also kept symbolic. As compared to computation

with numerical parameters, this requires essentially no over-
head in terms of computational time and a moderate overhead
in terms of memory. The major advantage of a fully symbolic
calculation is that it covers the whole parameter space in a
single run.

The computation is performed in the thermodynamic limit
from the outset. The support of LnA grows linearly with n,
while the number of terms grows factorially. Since L is lin-
ear, the computation is straightforwardly parallelizable [51].
Computation of LnA is the most resource-consuming routine
of our code.

At the next step the moments (4) are computed. They have
the form of polynomials with respect to Hamiltonian param-
eters. For each model considered below, we list several first
moments in the text. The complete list of computed moments
is available in the Supplemental Material [52].

Next we use the relation between Lanczos coefficients and
moments [38] to compute bn. At this step numerical val-
ues of the Hamiltonian parameters are plugged in. To avoid
numerical instabilities, the rational arithmetics is used. As
a result, a sequence of numerical Lanczos coefficients bn,
n = 0, 1, . . . , nmax is obtained.

Finally, the Lanczos coefficients bn are extrapolated
beyond nmax according to Eqs. (8) and (9), and the au-
tocorrelation function is calculated by numerically solving
equations (7). The later system of equations is truncated at
some large k � nmax chosen such that the result is insensitive
to the precise value of k. In practice, we find it appropriate to
choose k = 500.

To estimate the maximal time tmax until which our results
are reliable, we reiterate this final step with the extrapolation
based on (nmax − 1) Lanczos coefficients, and require that the
discrepancy between the two approximations to C(t ) remains
below some small ε (ε = 10−3 for plots in Fig. 1).

1D Ising model. The Hamiltonian of the model reads

H =
∑

j
σ x

j σ
x
j+1 + hz

∑
j
σ z

j + hx

∑
j
σ x

j , (13)

where σ
x,y,z
j are Pauli matrices at the jth site and hx, hz are

two parameters of the Hamiltonian. This model is integrable
when hx = 0 or hz = 0, and nonintegrable otherwise. The
observable we consider is the magnetization in the z-direction,

A =
∑

j
σ z

j . (14)

We are able to calculate nmax = 45 nested commutators and
corresponding moments symbolically (the previous record re-
sult was nmax = 38 moments calculated numerically [53]). For
example,

μ2 = 8 + 4h2
x ,

μ4 = 128 + 192 h2
x + 128 h2

z + 16 h4
x + 16 h2

xh2
z . (15)

The corresponding Lanczos coefficients for hx = hy = 1
are shown in Fig. 1(a). They are consistent with the UOGH
and feature pronounced odd-even alterations on top of the
leading asymptote. The corresponding autocorrelation func-
tion is presented in Fig. 1(d). We benchmark our result
by a numerically exact computation for a finite spin chain
large enough to neglect finite-size effects on the considered
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timescale. The long-time average C is nonzero, consistent
with odd-even alterations of the Lanczos coefficients.

Note that, as evident from Fig. 1(d), the relaxation is far
from being complete up to the maximal time available. This
can be attributed to an unusually long relaxation timescale of
the model (13) [54] (see also [45,55] for related observations).

2D XX-YY model. This is a spin-1/2 model on a square
lattice with the Hamiltonian

H =
∑
〈ij〉−

σ x
i σ x

j + v
∑
〈ij〉|

σ
y
i σ

y
j . (16)

Here i and j enumerate sites of the lattice, and the first (the
second) sum runs over nearest neighbor sites connected by
horizontal (vertical) bonds, each bond being counted once.
We choose the first term of the above Hamiltonian as the
observable A.

We manage to calculate nmax = 17 moments, with the first
few given by

μ2 = 16 v2, μ4 = 640 v2(1 + v2),

μ6 = 2048 v2(17 + 39v2 + 17v4). (17)

In Figs. 1(b) and 1(e) we plot the Lanczos coefficients and
the autocorrelation function for v = 1. At this specific value
of v the long-time average of the autocorrelation function is
fixed by symmetry to be C = 1/2. One can see that, in contrast
to the previous case, C(t ) relaxes close to this value within
the timescale accessible by our method. C(t ) is additionally
benchmarked by the polynomial bounds (5).

2D Ising model. The Hamiltonian is defined on a square
lattice and reads

H =
∑
〈ij〉

σ x
i σ x

j + hz

∑
j

σ z
j , (18)

where the first sum runs over pairs of neighboring sites.
With an eye on computing the diffusion constant, we

choose the energy current along the horizontal direction as the
observable:

A = J = hz

∑
,〈ij〉−
i≺ j

(
σ x

i σ
y
j − σ x

j σ
y
i

)
. (19)

Here the sum runs over horizontal bonds, the site i being
always to the left of the site j.

We are able to calculate nmax = 21 nested commutators and
corresponding moments symbolically (previously 13 [56] and
16 [57] moments were calculated for a different observable).
The first three moments read

μ2 = 8, μ4 = 64
(
2 + h2

z

)
, μ6 = 1024

(
2 + 5h2

z + h4
z

)
.

(20)

The Lanczos coefficients and the autocorrelation function
are shown in Fig. 1(c). In contrast to previous cases, the
irregularities of the Lanczos coefficients do not follow the

odd-even alteration pattern. This is consistent with the fact
that the autocorrelation function of the current relaxes to
zero. We therefore do not include the alteration term in the
extrapolation. One can see that again the autocorrelation func-
tion essentially relaxes to equilibrium within the accessible
timescale.

We further compute the diffusion constant for a range of
magnetic fields hz, see Fig. 2. The convergence of the approxi-
mation (11) appears to be quite good away from the integrable
points hz = 0 and hz → ∞, as illustrated in Fig. 2(b). We
conservatively estimate the uncertainty of our calculation as
a maximal discrepancy between ten approximations obtained
for r from (nmax − 9) to nmax. This uncertainty is indicated in
Fig. 2(a). It is below 1% for fields hz ∼ 1 but grows rapidly
when hz or h−1

z approach zero.
Discussion and outlook. In summary, we advanced the

recursion method to the point it can handle the dynamics
of two-dimensional lattice systems over the whole relaxation
timescale. We illustrated the power of the method by com-
puting infinite-temperature autocorrelation functions and the
diffusion constant for spins 1/2 on a square lattice.

The most resource-consuming part of our computations
is performed symbolically, which means that the whole pa-
rameter space of the Hamiltonian is covered in a single
run. The accuracy of the method, however, varies across the
parameter space. Remarkably, the method works best deep
in the nonperturbative regime, where the sequence of the
Lanczos coefficients converges to its asymptotic form most
rapidly [25].

An important ingredient of the method is the extrapolation
of Lanczos coefficients beyond those explicitly computed.
The extrapolation is based on the conjectured leading [25]
and subleading [20,25,27,28,30,31,40,41] asymptotics of the
coefficients. We note that the method will benefit from better
theoretical understanding of the subleading terms.

The generalization of the method to different lattice
geometries, higher spins, lattice fermions, or bosons is con-
ceptually straightforward. Finite but high temperatures can
be handled by using the recursion method in conjunction
with the high-temperature expansion [58]. Addressing lower
temperatures can be more challenging, most likely necessitat-
ing a considerable amendment of the method. In particular,
employing more complex scalar products [25,59,60] beyond
the simplest one (2) may be required.

Finally, we note that recent approaches [55,61–64] to ef-
fectively constraint the Heisenberg evolution within smaller
subspaces of the operator space can potentially greatly reduce
the computational cost of the method. Another very recent
promising move in the same direction is a stochastic sampling
of operator growth [57].
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