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Strong local disorder in interacting quantum spin chains can turn delocalized eigenmodes into localized
eigenstates, giving rise to many-body localized phases. This is accompanied by distinct spectral statistics: chaotic
for the delocalized phase and integrable for the localized phase. In isolated systems, localization and chaos
are defined through a web of relations among eigenvalues, eigenvectors, and real-time dynamics. These may
change as the system is made open. We ask whether random dissipation (without random disorder) can induce
chaotic or localized behavior in an otherwise integrable system. The dissipation is described using non-Hermitian
Hamiltonians, which can effectively be obtained from Markovian dynamics conditioned on null measurement.
In this non-Hermitian setting, we argue in favor of the use of the singular value decomposition. We complement
the singular value statistics with different diagnostic tools, namely, the singular form factor and the inverse
participation ratio and entanglement entropy of singular vectors. We thus identify a crossover of the singular
values from chaotic to integrable spectral features and of the singular vectors from delocalization to localization.
Our method is illustrated in an XXZ Hamiltonian with random local dissipation.
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Since the early days of quantum mechanics, understanding
the dynamics of many-body quantum systems continues to be
a hard challenge. One of the chief questions on the behav-
ior of interacting quantum systems concerns the presence of
quantum chaos [1–4]. Additionally, the extension of quantum
localization [5] to interacting systems [6,7] has led to postu-
lating the existence of a robust, nonergodic phase of matter
known as many-body localization (MBL). The competition
between localized and chaotic quantum dynamics has been
studied extensively in spin Hamiltonians [8–12], with relevant
implications for applications, including quantum annealing
[13,14], as well as fundamental questions, such as the lack
of thermalization [15–21]. As a result, localization has be-
come central for understanding complex quantum dynamics,
with connections to quantum simulation experiments [22–24],
topological phases of matter [25–27], and Floquet time crys-
tals [28].

The peculiarities in the dynamics of many-body quantum
systems are not limited to the ideal situation where the system
is isolated from the environment and the dynamics is unitary
[29–33]. In the last few years, the conventional understanding
of renormalization group approaches—by which the coupling
to a thermal bath would render quantum fluctuations irrelevant
[34]—has been shown to be incomplete. Indeed, evidence
is being accumulated that open quantum systems may host
unusual phases that would exist neither in a quantum unitary
setting nor at equilibrium [35–38].

One of the many intriguing features of open quantum
system dynamics is the phenomenon of dissipative localiza-
tion [39–42] and dissipative quantum chaos [43–46]. For the
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unitary counterpart, both localization and chaos are defined
through a web of relations among eigenvalues, eigenvectors,
and real-time dynamics [4,18,20,21,47]. As the constraints set
by unitarity are lifted, it is natural to expect that such relations
may change in nature. In particular, open dynamics condi-
tioned to no jumps, described by effective non-Hermitian
(NH) Hamiltonians, are being thoroughly investigated. While
NH localization is fairly well understood in the single-particle
case, which admits exact solutions [48] and a clear renormal-
ization group treatment in one dimension [41], its many-body
version has been the object of several numerical studies, sug-
gesting the presence of a stable, localized phase [49–54].
These studies mostly relied on the eigendecomposition of
large NH matrices. However, because of non-Hermiticity, the
indicators of Hermitian localization had to be generalized,
causing some ambiguity given the complex nature of eigen-
values [55,56] and the nonorthonormality of right and left
eigenvectors [57]. Recent works put forward the idea that
using the singular value decomposition, one can circumvent
certain problems set by the eigendecomposition of NH Hamil-
tonians [58–61] since the left and right singular vectors are
always orthonormal and the singular values are always real.
This approach was benchmarked against standard random
matrix ensembles [62] and has not yet been used to study the
localization transition of many-body open quantum systems
in finite dimensions.

In this work, we fill the gap by studying NH many-body
localization via the singular value decomposition. Our ob-
jective is twofold. First, we show that the singular value
decomposition clearly distinguishes between the chaotic and
localized regimes in NH models, providing cleaner and more
robust numerical indicators than those obtained from the spec-
trum. Second, we show that random local dissipation in an
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otherwise integrable XXZ Hamiltonian induces quantum
chaos for small dissipation strength, followed by localization
for large dissipation. These crossovers are similar to the ones
caused by a purely Hermitian disorder, so our results provide
one more point of contact between Hermitian and NH MBL.

Model. The tools we introduce to diagnose NH quan-
tum chaos and MBL are illustrated in a model made of
an integrable interacting Hermitian term and a disordered
non-Hermitian contribution describing random site-dependent
losses, namely,

Ĥ = ĤXXZ − i�̂/2, (1)

with

ĤXXZ = J
N∑

i=1

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + �Ŝz

i Ŝz
i+1

)
, (2a)

�̂ =
N∑

i=1

γi
(
Ŝz

i + 1/2
)
. (2b)

Above, Ŝx,y,z
i = 1⊗(i−1)

2 ⊗ 1
2 σ̂ x,y,z ⊗ 1⊗(N−i)

2 are spin-1/2
operators acting on site i (σ̂ x,y,z are the Pauli matrices). The
coefficient J is set to unity, fixing the energy scale, and we
take � = 1. The rates γi are independently sampled from
a uniform distribution over the interval [0, γ ]. We assume
periodic boundary conditions; this does not influence the sys-
tem’s behavior since the hoppings are symmetric (contrary
to the Hatano-Nelson model [49], which we also analyze in
the Supplemental Material [63]). As the magnetization is con-
served, we choose to work in the zero-magnetization sector of
dimension D = ( N

N/2

)
.

The XXZ Hamiltonian (2a) is an integrable many-body
system that has been extensively studied when complemented
with random local magnetic fields

∑
i hiŜ

z
i , where hi are ran-

dom variables, e.g., uniformly distributed over [−h, h] [9,64].
As such, it has been used to probe a transition between
chaos and integrability, occurring as a function of the disorder
strength [65,66]. The XXZ chain with weak disorder exhibits
chaotic spectral properties, described by the Gaussian orthog-
onal ensemble (GOE), and delocalized eigenstates, while in
the presence of strong disorder, it shows integrable spectral
properties and localized eigenstates, at least for the system
sizes accessible by numerics. By contrast, the existence of
a finite-disorder MBL phase with local integrals of motion
[15–17] in the thermodynamic limit is still debated [67–73].

The NH Hamiltonian Ĥ we consider here can be obtained
from the full Lindblad master equation with coherent dynam-
ics driven by ĤXXZ and dissipative dynamics dictated by the
quantum jump operators

√
γiŜ

−
i , where Ŝ±

i = Ŝx
i ± iŜy

i . The
Lindblad equation can be regarded as the unconditional evo-
lution of the system, that is, averaged over a large number of
trajectories [74–77]. Focusingonly on the no-jump trajectories
(null-measurement condition), the open system dynamics is
described through the effective NH Hamiltonian Ĥ [63]. In
turn, this physical origin of Ĥ leads to non-negative jump rates
γi � 0 [78].

Our investigation uses the Hamiltonian (1) as a toy model,
but our methods are not model dependent. Similar results
were found for another commonly considered NH model, the
interacting Hatano-Nelson model [49], as detailed in [63].

Eigenvalue vs singular value decomposition. Hermi-
tian Hamiltonians have real eigenvalues and orthonormal
eigenstates, whose physical meanings are the possible en-
ergy measurement outcomes and the corresponding quantum
states, respectively. For this reason, the eigendecomposition
(ED) of a Hermitian Hamiltonian, Ĥ = ∑

n En|wn〉〈wn|, has a
fundamental role in quantum mechanics. Importantly, the ED
is realized with a single unitary operator [63].

In turn, NH Hamiltonians have generally complex eigen-
values and nonorthogonal eigenvectors. For a diagonalizable
NH Hamiltonian Ĥ , the ED can be generalized with the tools
of biorthogonal quantum mechanics [58,79]. This approach
has been used to (attempt to) generalize many known results
from the Hermitian setting [80]: using the eigenvectors of Ĥ†,
which are orthogonal to those of Ĥ , it is possible to resolve the
identity and diagonalize the Hamiltonian using two different
nonunitary operators, namely, Ĥ = ∑

n En|Rn〉〈Ln|.
Regardless, a complex spectrum and the use of both

right and left eigenvectors (those of Ĥ and Ĥ†, respectively)
pose a challenge to the generalization of certain quantities
that are well defined in the Hermitian case, as they rely on
a real spectrum and orthonormal states. For instance, we
show that complex spectral gap ratios [56] provide a less
clear distinction between chaotic or integrable dissipative
models [63]. Also, the ambiguity in the definition of the
density matrix corresponding to a pure state |Rn〉 (|Rn〉〈Rn|
or |Rn〉〈Ln|) is reflected in the different choices made in the
definitions of topological invariants, for which both right and
left eigenvectors are typically used [81]; in the definition of
the entanglement entropy, commonly used in NH MBL works
[49] and based on only the right (or left) eigenvectors; and
even in the definition of the inverse participation ratio, for
which all combinations have been considered [48] without
reaching a consensus [63].

Recently, the attention on the singular value decomposition
(SVD) [82], which can be regarded as a generalized version
of the ED, has been growing. Note that, for a (non-)Hermitian
Hamiltonian Ĥ , its ED and the SVD are (not) related [63].

The SVD, namely, Ĥ = ∑
n σn|un〉〈vn|, has the advantage,

compared to the ED, of providing real (non-negative) singu-
lar values {σn} and two sets of (independently) orthonormal
singular vectors, {|un〉} and {|vn〉} [63]. Although the biorthog-
onal left and right eigenvectors of a NH Hamiltonian can
be made biorthonormal, 〈Ln|Rm〉 = δnm, it is not possible
to normalize both simultaneously. In contrast, the left and
right singular vectors are automatically normalized, there-
fore corresponding to physical states. This represents strong
motivation to use the SVD for NH Hamiltonians to general-
ize and study well-established Hermitian phenomena. Indeed,
the SVD has been shown to be instrumental in describing
the bulk-boundary correspondence in NH topological models
[59–61,83,84] and in studying the statistics of NH random
matrices as a measure of dissipative quantum chaos [62].

For these reasons, we use the SVD to study the model
(1). Its Hermitian version exhibits MBL and chaotic behavior
for strong and weak disorder, respectively. Here, we in-
vestigate whether random non-Hermiticity, which physically
corresponds to random losses [see Eq. (2b)], can induce a
chaotic to integrable crossover. We do so by using singular
value statistics [62] and the singular form factor, a measure of
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correlations we define below. Furthermore, we study the lo-
calization transition of the singular vectors. Our results further
motivate the use of the SVD as a sensitive tool to generalize
Hermitian phenomena, such as MBL, to the NH setting.

Dissipative quantum chaos: The singular form factor. One
of the defining features of quantum chaos is the level spac-
ing distribution, which is well known in random Hermitian
Hamiltonians taken from Gaussian ensembles (orthogonal,
unitary, and symplectic) and Hamiltonians whose eigenvalues
are not correlated (the Poisson ensemble) [4,85]. Indeed, the
spectrum of a chaotic Hamiltonian is conjectured to have a
level spacing distribution that follows random matrix behav-
ior [1], while the spectrum of an integrable Hamiltonian is
uncorrelated, and its level spacing is expected to follow an ex-
ponential (but usually referred to as Poisson) distribution [86].
However, to be able to make such statements for a specific
system, the spectrum must be unfolded before one computes
the level spacing distribution to remove the global energy
dependence of the eigenvalue density [4]. Two alternative
measures to extract information about the onset of chaos while
circumventing the unfolding procedure are the spectral form
factor (SFF) [87–95] and the spectral ratio statistics [8,96].

For a standard Hermitian Hamiltonian Ĥ with eigendecom-
position (Ĥ − En)|wn〉 = 0, we recall that the spectral form
factor is defined as SFF(t ) = |∑n e−iEnt/D|2, where D is the
Hilbert space dimension. One may also express it as SFF(t ) =
|〈ψ |e−iĤt |ψ〉|2, that is, as the return probability of the infinite-
temperature coherent Gibbs state, |ψ〉 = ∑

n |wn〉/
√

D. This
form is particularly handy and has been used to generalize the
SFF to dissipative and non-Hermitian dynamics [45,97]. The
SFF is a time-dependent quantity with distinct features at dif-
ferent timescales. In both integrable and chaotic systems, the
ensemble-averaged SFF decays at early times and saturates to
a plateau of value 1/D at very late times [98]. Its behavior in
between differentiates integrable systems, which go directly
from decay to plateau, from chaotic systems, in which the SFF
exhibits a correlation hole followed by a linear growth before
the plateau. This additional “ramp” stems from correlations
between eigenvalues; it is visible whether or not the spectrum
is unfolded [91,99].

We generalize this return probability to a NH Hamiltonian
Ĥ by introducing the singular form factor (σFF):

σFF(t ) =
∣∣∣∣∣

1

D

∑

n

e−iσnt

∣∣∣∣∣

2

= |〈ψR|e−i
√

Ĥ†Ĥt |ψR〉|2. (3)

This extends the SFF to the NH case via the SVD: σn are
the singular values of Ĥ , and |ψR〉 = ∑

n |vn〉/
√

D is the right
infinite-temperature coherent Gibbs state, built from its right
singular vectors |vn〉 [63]. Note that Eq. (3) can also be written
in terms of the left singular vectors |un〉, replacing |ψR〉 with
|ψL〉=∑

n |un〉/
√

D and Ĥ with Ĥ†.
We argue that the σFF is a good indicator of quantum

chaos in a NH setting, being able to detect the presence of
correlations among singular values. Figure 1(a) shows the
σFF for various disorder strengths in the considered model,
Eq. (1). The σFF exhibits a correlation hole before the plateau
for small disorder. This correlation hole closes as the disorder
strength gets larger, indicating the loss of correlations between
the singular values.
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FIG. 1. Dissipative quantum chaos through the SVD. (a) Sin-
gular form factor σFF, Eq. (3), for the XXZ model with random
losses (1). For small dissipation strength a ramp is present, signaling
repulsion between singular values, while for stronger dissipation,
the correlation hole disappears, leaving only a plateau, as in the
integrable case (black). (b) Ratio statistics for the singular values,
computed using a portion of the smallest singular values. As the
dissipation is made stronger, the average of the ratio distribution
signals a crossover from chaos (GOE value) to integrability (Poisson
value). Error bars are smaller than symbols. (c) The crossover is
also apparent in the full probability distribution of the ratios (shown
for N = 16). All the data are averaged over at least 7000 disorder
realizations.

In parallel to the form factor, the distribution of the spectral
ratios rn = min(sn+1, sn)/ max(sn+1, sn), where sn = En+1 −
En are the level spacings between ordered eigenvalues, is also
used as a spectral probe of chaos vs integrability [8,96]. Be-
cause it involves ratios of level spacings, the density of states
cancels out, removing the need for unfolding to compare
systems with different global densities. Distributions of rn are
known for the Gaussian and Poisson ensembles [96]. In our
case, the relevant ensembles are the GOE for low disorder and
the Poissonian ensemble for high disorder. The probability
density distributions p(rn) and their average values r can be
found in Ref. [96].

The statistics of the singular values can also be studied via
the spectral ratios defined above, replacing En with σn in the
definition of the level spacing sn [62]. This idea was recently
used to classify the singular value statistics of NH random ma-
trices [62], and we extend it to study the chaotic to integrable
crossover. In this respect, Figs. 1(b) and 1(c) clearly display
a crossover from GOE to Poisson statistics as the dissipation
strength γ is ramped up. In particular, Fig. 1(b) suggests the
presence of a finite-size crossover around γc/J � 9. In [63],
we further show that, in the NH case, the results for the
generalizations of the ratio statistics to complex eigenvalues
[56] are rather vague compared with the results for the singu-
lar values. The σFF we introduce, together with the singular
value spacing statistics, show how the SVD is an appropriate
tool to detect a chaotic to integrable crossover in NH quantum
systems. Furthermore, our results point to the occurrence of a
localized regime, as detailed below.

Dissipative localization of singular vectors. The singular
value indicators presented in Fig. 1 support the presence of a
localized regime in the XXZ model with random dissipation,
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Eq. (1). The localization induced by disorder, however, is
better understood from a real-space perspective, as the name
itself suggests. It is thus interesting to see whether the sin-
gular vectors of NH models display the same signatures of
localization as their Hermitian counterparts (or even as NH
eigenvectors).

For a single particle, the eigenstates of a Hermitian
and localized Hamiltonian have a well-understood real-space
structure. Each eigenstate |wn〉 is concentrated around its
localization center xn, and its decaying profile is character-
ized by a localization length ξ , namely, 〈x|wn〉 ∼ e−|x−xn|/ξ .
A similar situation takes place in single-particle, NH, local-
ized Hamiltonians, in which the disorder-induced localization
competes with the localization yielded by the non-Hermitian
skin effect [39].

In the many-body case, the situation is more complicated.
Even in the Hermitian setup, there seems to be no simple
localization in Hilbert space [100]. Rather, the eigenstates of
MBL Hamiltonians are believed to be eigenstates of local
integrals of motion [15–18] as well and to obey the area law
of entanglement [21].

Previous works studied some aspects of NH, localized,
many-body eigenvectors, e.g., identifying a crossover from
volume to area law for the entanglement entropy [49]. Here,
we perform a fundamentally different analysis, studying the
localization of singular vectors of NH models. These vectors,
having all the properties of physical states, do not suffer from
the ambiguities of right and left eigenvectors [63]. We use the
SVD to study localization and show it can discern between the
localized and ergodic regimes. As such, it extends the use of
SVD beyond diagnosing dissipative chaos [62].

For simplicity, we use two commonly considered indica-
tors: the inverse participation ratio (IPR) and the entangle-
ment entropy across a bipartition. Our analysis is based on
the right singular vectors; using the left ones yields similar
results.

The IPR of singular vectors is defined as the ensemble av-
erage of

∑D
k=1 |〈ek|vn〉|4/D, where {|ek〉} is the computational

basis and |vn〉 are the (right) singular vectors. It is expected
that IPR = O(1/D) for delocalized states (as obtained for
|vn〉 uniformly spread over the computational basis), while
IPR = O(1) if |vn〉 is localized on a single Fock state. Fig-
ure 2(a) presents the logarithm of the IPR of singular vectors,
scaled with system size: our data show the presence of a finite-
size crossover from delocalized to localized singular vectors
around a value γc/J ≈ 9, consistent with the picture extracted
from the average gap ratio (r-parameter) statistics.

We further present our results for the entanglement entropy
across a bipartition in Fig. 2(b). Recall that, for a generic state
|φ〉, the entanglement entropy is defined as SE = −trρAlnρA,
where ρA = TrB(|φ〉〈φ|) and A ∪ B form a bipartition of the
chain in two intervals.

As for the IPR, the entanglement entropy supports the
presence of a localized regime: it crosses over from a volume
law at small dissipation to an area law at large dissipation,
again consistently indicating a critical value γc/J ≈ 9 for the
system sizes considered. Remarkably, the same analysis of the
IPR and entanglement entropy with the eigenvectors does not
display such a clear crossover [63], thus strongly motivating
the use of the SVD. While a weak, inhomogeneous dissipation

FIG. 2. Dissipative localization of singular vectors. (a) The in-
verse participation ratio (IPR) quantifies how much a state is
localized in the many-body Fock space, passing from IPR = O(1/D)
(value illustrated with the dashed lines; delocalized regime) for weak
dissipation to IPR = O(1) (localized) for strong dissipation. Our
data show a crossover between the two regimes as the disorder in
the dissipator is ramped up. (b) Entanglement entropy SE across a
bipartition of the chain in two halves. For small dissipation γ , SE

increases at least with the system size N (volume law, delocalized
states), while at larger γ the entanglement entropy decreases with
system size when divided by N , thus suggesting an area law of
entanglement (localized states). The data are averaged over at least
7000 disorder realizations, and error bars are smaller than symbols.

breaks the integrability of the XXZ chain, making it (dissipa-
tively) chaotic, more disordered losses localize it again and
restore integrability.

Conclusions. We investigated the role of a disordered dis-
sipative term on an otherwise integrable, interacting quantum
system. Adding such a term makes the system evolve under an
effective non-Hermitian Hamiltonian, physically representing
the average evolution of quantum trajectories conditioned to
no quantum jumps. The eigendecomposition of NH Hamilto-
nians yields complex eigenvalues and nonorthogonal (left and
right) eigenvectors. We argued in favor of using the singular
value decomposition and showed that, indeed, the singular
values can be used to detect a crossover from chaotic to
integrable spectral features and the singular vectors can be
used to probe a crossover from delocalization to localization.
We introduced the singular form factor; it features a corre-
lation hole when the dissipative disorder is weak, eventually
closing for large dissipative disorder. In this setting, random
dissipation-induced localization points to a quantum dynam-
ics that is highly sensitive to the effect of inhomogeneities.
This contrasts with a homogeneous dissipation which, in our
case, does not induce localization.

A crucial point in the Hermitian setting is how the
chaotic/localized crossover scales with system size. This
point has been highly debated in the last few years, and
consensus has yet to be reached [67–73]. For the dissipa-
tive case, this is not as relevant because the NH evolution
describes an exponentially small (in system size and time)
fraction of trajectories. In turn, our findings are meaning-
ful, especially for systems with small sizes: only in these
cases can the chaotic/localized behaviors actually be ob-
served in experiments. Our results are thus relevant for noisy
intermediate-scale quantum devices [101] since we show that
the Hamiltonian properties are significantly altered by disor-
dered dissipation.
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discussions and O. A. Prośniak and P. Martínez-Azcona
for careful reading of the manuscript. F.B. thanks C.
Vanoni for illuminating discussions on localization
indicators. This research was funded in part by the
Luxembourg National Research Fund (FNR, Attract
Grant No. 15382998), the John Templeton Foundation
(Grant No. 62171), and the QuantERA II Programme,

which received funding from the European Union’s Horizon
2020 research and innovation program (Grant No. 16434093).
The numerical simulations presented in this work were partly
carried out using the HPC facilities of the University of
Luxembourg.

The opinions expressed in this paper are those of the au-
thors and do not necessarily reflect the views of the John
Templeton Foundation.

[1] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.
52, 1 (1984).

[2] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[3] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[4] F. Haake, Quantum Signatures of Chaos (Springer, Berlin,

2010).
[5] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[6] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev.

Lett. 95, 206603 (2005).
[7] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys.

(NY) 321, 1126 (2006).
[8] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
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