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Spin Chern insulator in a phononic fractal lattice
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The spin Chern topological phases are more natural in solid-state systems and are thought to exist in
two or three dimensions. To date, there is no evidence for the existence of spin Chern topological phase in
non-integer dimension. Fractal offers a platform for exploring novel topological phases and phenomena in
noninteger dimension. Here, based on a phononic fractal lattice, we experimentally demonstrate the presence
of the spin Chern phase in noninteger dimension. We find that the spin Chern phase is compressed in the fractal
lattice compared to the crystal lattice. We also highlight the robustness and unidirectionality of spin-polarized
topologically protected edge states even the momentum space is ill defined. Interestingly, sound travels faster at
the boundaries of the fractal lattice than in crystal lattice. Abundant spin-polarized edge states and increased
velocities not only may inspire further study in other noninteger dimensional systems, but also provide an
opportunity for the design of multichannel on-chip communication devices.
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Introduction. A fractal, a shape that exhibits self-similarity
and fractional dimension, is made of parts that are similar
to the whole in some way [1]. Fractals are not only preva-
lent in nature such as the spatial distribution of the ulexite
in a salt flat [2], organ arrangement in cauliflower [3], or
the growth of electrodeposits [4], but also inspired various
promising applications such as fractal antennas [5,6] and
fractal capacitors [7]. In physics, fractal plays a key role in
investigating the novel physical properties and phenomena in
noninteger dimensions, which greatly enriches the physical
connotation. Classical transport in the fractional dimension
has been extensively studied, and then the researches extend to
quantum transport [8,9]. While the mean square displacement
of quantum transport in regular lattices scales linearly, the
experimental observation in the fractional dimension reveals
an anomalous transport where the mean square displacement
is exponentially related to the fractal dimension [10]. Re-
cently, the quantum transport of topological edge states in
fractals has attracted a lot of interest. Fractal systems do
not contain any conventional bulk and thus fail to follow
the bulk-edge correspondence that is the heart of topologi-
cal theory. However, recent research has demonstrated that
a photonic Floquet topological insulator can support a Chern
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topological phase and chiral topological states in fractal lattice
without well-defined bulk bands [11]. Even more interest-
ing was found in the experimental observation, that is the
increased velocity of the chiral edge state in the photonic
fractal system [12]. Compared with the integer dimensions,
the regions of the topological phase are compressed in the
fractal lattice [13–17]. To date, research on the novel quan-
tum transport phenomena in fractal systems has been limited
to Chern, higher-order, and anomalous Floquet topological
phases [18–22]. Further research and observations are needed
to reveal the mechanism and the influence of fractal on various
topological phases and states.

The quantum spin Hall effect is a well-known topological
phase characterized by Z2 topological invariant or spin Chern
number [23–25]. It features pairs of spin-dependent edge
states in the band gap [26–29]. Even when the spin conser-
vation and time-reversal symmetry are broken by spin-mixing
term, the quantum transport in periodic systems remains ro-
bust [30,31] and spin Chern numbers are still well defined
[32,33]. This gives rise to the concept of spin Chern insulators
[30,34–36]. However, most studies on spin Chern insulators
have focused on integer dimensions. A recent observation of
Sierpinski bismuth films suggests that fractal structure will
close the quantum spin Hall effect due to the lack of a well-
defined bulk [17]. Up to now, there is no evidence supporting
the existence of a spin Chern phase in the fractal lattice.

In this letter, we report the observation of a spin Chern
insulator in a phononic fractal lattice of the Sierpinski carpet.
By capturing the topology with the real-space topological
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FIG. 1. Fractal spin Chern insulator and spin-polarized edge states. (a) Top view of G(2) fractal lattice. The green, blue, and red cavities
denote A, B, and C sites. (b) The structure details of the fractal lattice. (c) Compared with the spin Chern number Cs in Lieb lattice, the
topological phase in the fractal lattice, which is characterized by the spin Bott index Bs is compressed. (d) (Left) Numerically calculated
energy spectrum of the fractal lattice. The mid-gap presents a hierarchy of edge states including external, middle, and internal edge states.
(Inset) Spatial distribution of the bulk (grey), external edge (red), middle edge (blue), and internal edge (green). (Right) Calculated localized
density of states. (e) Calculated spin spectrum of the edge states in the gap.

invariant, the spin Bott index, we observe the topological
nontrivial phase in the compressed topological phase range.
Furthermore, we observed the propagation of pseudospin-
polarized edge states in the fractal lattice, which is not only
more abundant but also has a similar behavior to the “spin-
momentum locking” in crystalline structures. Although the
boundary is easy to be truncated by defects in the fractal
lattice, which seems to undermine the robustness of topo-
logical edge states, our experimental observation shows that
the sound would go smoothly around the defect through the
internal edge. By extracting the transmission velocity of sound
waves at the boundaries, we further confirm that sound travels
faster at the boundaries of the fractal lattice compared to the
crystal lattice.

Model and methods. The Sierpinski carpet is one of the
most famous deterministic fractals with the Hausdorff di-
mension d = log8

log3
∼= 1.89. Taking the bilayer Lieb lattice into

account, the Sierpinski carpet can be generated through an
iterative process that starts by dividing a square Lieb lattice
into nine equal parts, removing the central part, and using
the remaining eight smaller parts for further iteration. The
second generation [G(2)] of the Sierpinski carpet is depicted
in Fig. 1(a), where the phononic crystal has three different
sites, labeled A (green), B (blue), and C (red), in each layer.

The structural details of the Sierpinski carpet are shown in
Fig. 1(b), which has in-plane length L = 29.7 mm and height
h = 13.75 mm. The heights of A, B, and C cavities are hA =
5.5 mm and hB = hC = h1 = 5.5 mm. The lengths of three
cavities are LA = 7.7 mm and LB = Lc = L1 = 8.8 mm, re-
spectively. The height and width of the tubes for the intralayer
couplings are h2 = 3.96 mm and dt = 3.52 mm. The diameter
of the tubes for the interlayer couplings is d = 3.52 mm.

In the phononic crystal, the eigenoscillation mimics
the wave function, and cavities play the role of the
lattice sites. The tubes connecting different cavities
introduce the hopping parameters. As bilayer Lieb
lattices provide a layer degree of freedom, in the basis of
(A1↑, B1↑,C1↑, . . . , AN↑, BN↑,CN↑, A1↓, B1↓,C1↓, . . . , AN↓,

BN↓,CN↓), where N represents the N th site and ↑ / ↓ stands
for the upper/lower layer, the real-space Hamiltonian can be
expressed in the form

H =
(

Hintra Hinter

H†
inter Hintra

)
. (1)

Here Hintra is a N × N matrix, containing on-site energy of
N sites and intralayer couplings in each layer. Hinter is also a
N × N matrix, which describes the interlayer couplings. By
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performing a unitary transformation U = 1√
2
(1 −i
1 i ) ⊗ IN ,

where IN is the N × N identity matrix, the basis can be
transformed to (A1↑ − iA1↓, B1↑ − iB1↓,C1↑ − iC1↓, . . . ,

AN↑ − iAN↓, BN↑−iBN↓,CN↑−iCN↓, A1↑+iA1↓, B1↑ + iB1↓,

C1↑ + iC1↓, . . . , AN↑ + iAN↓, BN↑ + iBN↓,CN↑ + iCN↓).
(An↑−iAn↓, Bn↑−iBn↓,Cn↑−iCn↓) and (An↑+iAn↓, Bn↑+
iBn↓,Cn↑+iCn↓), where n = 1, . . . , N represent the basis of
pseudospin-up and pseudospin-down subspace, respectively.
Under the unitary transformation, Hamiltonian H can be
transformed into Hu = UHU †. The resulting Hamiltonian is

Hu = 1

2

(
2Hintra + Hsoc Hmix

H†
mix 2Hintra − Hsoc

)
. (2)

Hsoc = i(Hinter − H†
inter ) has the form of spin-orbital coupling

that open topological gaps, and the off-diagonal term Hmix =
−i(Hinter + H†

inter ) represents the spin-mixing term that breaks
spin conservation. The spin operator of the original Hamilto-
nian H can be expressed as Sy = U †(σz

⊗
IN )U = σy

⊗
IN ,

where Sz = σz
⊗

IN is the spin operator of Hu.
Although the spin operator Sy does not commute with the

Hamiltonian H due to the broken of spin conservation, it
is still possible to decompose the projection operator of the
occupied states P into two parts P+ and P−, which satisfy
P = P+ ⊕ P−. The projection operator P can be defined as

P =
α∑
i

|�i〉〈�i|. (3)

When the spin-mixing term is not strong, the spin spectrum
calculated by the eigenvalues of PSyP contains two isolated
parts, which are close to +1 and −1 and represent spin-up and
spin-down sectors, respectively. As long as the spin mixing is
not strong enough to close the spin spectrum gap, P+ and P−
corresponding to the positive and negative sections can still be
constructed as

P± =
α/2∑

i

|±�i〉〈±�i|, (4)

where | ± �i〉 are the eigenstates of PSyP with positive and
negative eigenvalues.

As the translational symmetry is broken in the fractal lat-
tice, the momentum-space spin Chern number Cs cannot be
applied to characterize the topological phase in the fractal
lattice. Here we employ the real-space spin Bott index Bs to
characterize the topological phase of fractal lattice [37–39].
Based on the spin-dependent projection P±, we can calculate
the Bott index B± for each spin sector. The spin Bott index
can be calculated as Bs = 1

2 (B+ − B−), which is robust until
one of the two gaps closes: the energy gap of the Hamiltonian
or the spin spectrum gap. More details about the calculation
of spin Bott index are discussed in the Note I within the
Supplemental Material (SM) [40]. The calculated spin Chern
number and spin Bott index for the Lieb lattice [34] and
G(2) Sierpinski carpet, respectively, are plotted as a function
of the height of A sites hA in Fig. 1(c). Besides the on-site
term, the variation of height of A sites hA also inevitably
leads to slight changes in intralayer and interlayer couplings,
but this does not prevent us from analyzing the topological
phase transition. The spin Bott index is equivalent to the spin

Chern number in an infinite system. However, the difference
between the spin Chern number and spin Bott index is within
a correction of the order O(1/L) in a finite system, where L
is the system size [38,39]. As the gap decreases to zero near
the phase transition point and the correlation length increases
sharply, a larger sample size is required to achieve a higher
Bott index calculation accuracy. Although the finite size of
G(2) Sierpinski carpet induces a small deviation of spin Bott
index at the phase transition point, this does not prevent us
from distinguishing topological trivial and nontrivial phases.
In the Lieb lattice, the lowest band gap closes at hA = 15 mm,
which is accompanied by the topological phase transition of
the lowest two bands (see Note II within the SM [40] for the
topological phase of Lieb lattice). For the fractal lattice, the
topological phase transition is characterized by the spin Bott
index. Removing the bulk sites will destroy the topology at the
boundary of topological region, resulting in the compression
of topological region. Similar phenomenon has been reported
in Chern [16] and high-order [21] topological fractal systems.

Experiment realization in a phononic crystal. Here, we
take hA = 5.5 mm, with nontrivial spin Bott index denoted
by the red star in Fig. 1(c). The energy spectrum of the G(2)
Sierpinski carpet is shown in the left panel of Fig. 1(d). The
bulk states (represented by grey dots) exhibit a large central
gap with external, middle, and internal edge states within
it, while only external edge states are present in the crystal
lattice. The spatial distribution of the bulk (grey), external
edge (red), middle edge (blue), and internal edge (green) is
shown in the inset. The calculated local density of states
(LDOS) is shown in the right panel of Fig. 1(d). The salient
green peak at around 6060 Hz is caused by a group of internal
edge states. The spin spectrum of edge states is depicted in
Fig. 1(e), which slightly deviates from ±1 due to the broken
spin conservation. The spin spectrum of edge states consists
of two isolated groups with opposite signs, allowing the edge
states to be equally divided into two spin sectors. Higher-order
generation of Sierpinski carpet shows a similar result that the
edge states are self-similarly distributed. As the emergence of
more edges in the iterative process, more edge states appear
in the gap (see Note III within the SM [40] for details).

We now observe the abundant edge states in the fractal
lattice and experimentally demonstrate their robustness. Fig-
ure 2(a) shows the phononic crystal sample fabricated by
3D printing technology with a defect that truncates the outer
perimeter. Figures 2(c)–2(e) show the measured field profiles
of middle, external, and internal edge states of G(2) Sierpinski
carpet at 5868 Hz, 6150 Hz, and 6050 Hz, respectively. The
sound source is placed at the pink star in the upper layer,
and a sound probe (B&K Type 4961) is used to detect the
sound pressure in the upper layer. It can be seen that the sound
pressure is well confined at the edges of Sierpinski carpet,
which corresponds well with the simulation result in Note
III within the SM [40]. The sound intensity attenuates during
its propagation due to the inevitable loss in the air. As there
is no well-defined bulk in the fractal lattice, its edge is easy
to be truncated when defects are considered. In Fig. 2(f), we
introduce a defect that truncates the outer perimeter and then
excites the external edge state to verify the robustness of edge
state. The experimental result shows that the sound propagates
smoothly through the internal edge to make a detour around
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FIG. 2. Robustness of topological edge states against defect. (a) Photograph of Sierpinski carpet sample with defect at the outer perimeter.
(b) Measured transmission spectra for the sample with and without a defect. (c)–(e) Measured field intensity profiles for the (c) middle,
(d) external, and (e) internal edge state at 5868 Hz, 6150 Hz, and 6050 Hz, respectively. (f) Measured field intensity profiles for the external
edge state with a defect at 6150 Hz.

the defect. Moreover, we measure the transmission spectra
from P1 point to P2 point, as plotted in Fig. 2(b). For compari-
son, the distance between the P1 point and P2 point in Fig. 2(f)
is kept the same as that in Fig. 2(d). The transmission spectra
of two samples agree well with each other in the gap, which
indicates the robustness of edge states.

To further verify the transmission characteristics of the
pseudospin-polarized edge states, we selectively excite edge
states with different pseudospins and investigate their tem-
poral dynamics. The spin-polarized edge states can be
characterized by the spin operator Sy. The two eigenvectors
of σy with eigenvalue ∓1 are 1/

√
2[±i, 1]T . According to

these eigenvectors, we launch a Gaussian wave packet at the
cyan star in Fig. 3(a), which can be expressed as [A↑, A↓]T =
A(t )[±i, 1]T with A(t ) = e−( t−t0

2σ
)2

sin(2π fct ). Here, A↑ (A↓)
represents the amplitude of the source in the upper (lower)
layer. The time delay is set to t0 = 10 ms, and the packet
width is σ = 0.5 ms. To extract sound velocities with different
pseudospins from the same boundary, we place the sound
source at two end points of external Edge 1 and measure the
movement of the wave packet with different pseudospins on it,
respectively. To avoid exciting their neighboring edge states,
we place the sound source at the corner and the middle of the
boundary for the middle and internal edge states, respectively.
The central frequencies fc are 6150 Hz, 5868 Hz, and 6050 Hz
for the external [Figs. 3(d) and 3(g)], middle [Figs. 3(e)
and 3(h)], and internal [Figs. 3(f) and 3(i)] edge states,
respectively.

The evolution of spin-down-polarized wave packets, which
are measured along the counterclockwise direction, are shown
in Figs. 3(d)–3(f), respectively. In the external edge [Fig. 3(d)]
the spin-down wave packet propagates clockwise, while in the

inner edge [including middle edge Fig. 3(e) and internal edge
Fig. 3(f)] wave packet propagates counterclockwise (see Note
V within the SM [40]). The spin-up-polarized wave packets in
Figs. 3(g)–3(i) flow in the opposite direction from their spin-
down counterparts. In the Sierpinski carpet, the propagating
direction of edge states is locking with the spin, which is
similar to “spin-momentum locking” in the spin Chern insu-
lator. Since the sound signals are measured along the entire
middle and internal edges, the noise modes, such as the sound
source mode, are captured near the source, resulting in small
bifurcations propagating in the opposite directions. The noisy
modes, which are not protected by the topology, attenuate
quickly around the 90

◦
corner, leading to a better unidirec-

tional behavior in Figs. 3(f) and 3(i) than Figs. 3(e) and 3(h).
To study the robustness of topological edge modes against a
90◦ sharp corner, we extract the signal wave packet at points
A, B, C, and D at the middle edge. As depicted in Fig. 3(b), it
is confirmed that there is one-way transport of the signal with
little backscattering from the sharp corner, and the attenuation
of the amplitude is mainly attributed to the loss in air.

The transmission velocity of sound waves at the bound-
aries is calculated as the linear regression slope of the
position and the arrival time (see Note IV within the SM
[40] for more details). To extract the center of Gaussian
type envelope, we applied a Gaussian fit to the envelope of
the wave packet. The central frequency of source is set at
the center of the gap, i.e., fc = 6000 Hz, to minimize the
excitation of bulk states. A Lieb lattice sample with the same
size as the G(2) Sierpinski carpet sample was fabricated
and measured for comparison (see SM [40]). As shown in
Fig. 3(c), both the spin-up and -down Gaussian wave packet
in fractal lattice exhibit higher transmission velocities, ap-
proximately 12%, than that in the Lieb lattice, which are
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FIG. 3. Experimental observation of spin-dependent edge transport with Gaussian pulse excitation. (a) The sample photo of phononic
fractal lattice. Cyan stars and white arrows represent the acoustic sources and the propagating directions for different pseudospin states,
respectively. (b) Measured wave packets at points A, B, C, and D in (a). (c) Comparison of edge state velocities in the fractal lattice with
that in crystalline counterpart. The fitted velocities of spin-down/up-polarized edge states in the fractal and crystal lattice are 143.2 m/s,
146.9 m/s, 127.7 m/s, and 131.6 m/s, respectively. (d)–(i) Envelops of propagating pulses in the space-time domain which is measured
along the counterclockwise direction, where (d)–(f) and (g)–(i) show the edge states excited by spin down and up source, respectively. The
external, middle, and internal edge states are excited by the Gaussian pulses at center frequencies of 6150 Hz, 5868 Hz, and 6050 Hz,
respectively.

similar to previous results in photonic Floquet systems [12].
The external edges are close to the middle and internal edges
in the fractal lattice, introducing the finite size effect of the
edge state, which leads to the increase of velocity in boundary
[29] (details can be found in Note VI within the SM [40]).
The difference in velocities between two spin-polarized wave
packets in the fractal lattice is relatively small (less than 3%)
and within the margin of experimental error.

Conclusions. In summary, we reported on the observation
of the spin Chern insulator in a fractal lattice. Compared to the
crystal lattice, the topological phase of fractal lattice, charac-
terized by the real-space spin Bott index, is compressed. We
have experimentally observed abundant spin-polarized edge
states in the fractal lattice and demonstrated the robustness of
topological edge states against defects. Although momentum
space is ill defined, the propagating direction of edge states is
still locked with the spin. Intriguingly, the lack of bulk sites
not only does not hinder the existence of topological edge
states but also increases the velocity of the sound transport
in the fractal lattice.

Beyond the Sierpinski carpet, the spin Chern topologi-
cal phase may also be observed in other fractal geometries,

e.g., Sierpinski gasket. In phononics, based on a spin Chern
topological phase achieved in the kagome lattice [35], it is a
feasible scheme to construct a nontrivial spin Chern topolog-
ical phase in Sierpinski gasket. Recently, the Lieb lattice [43]
and the Sierpinski gasket [44] have been experimentally fabri-
cated in the electronic system by positioning carbon monoxide
molecules on a Cu (111) surface. We predict that our design
may also be experimentally verified in an electronic system.
In photonic systems, the experimental observation of spin
Chern insulator in the fractal lattice may also be possible in
an array of coupled resonator optical waveguides [45]. Be-
yond the phononic systems, our study of the wave dynamics
of the spin-polarized edge states in the fractal lattice may pave
the way for designing multichannel on-chip communication
devices [46,47].

Acknowledgments. This work was supported by the Na-
tional Key Research and Development Program of China
(Grants No. 2022YFA1404501 and No. 2021YFA1400601),
the National Natural Science Fund for Distinguished Young
Scholars (Grant No. 11925403), and the National Natural
Science Foundation of China (Grants No. 12122406, No.
12192253, and No. 12304486).

L140104-5



PENGTAO LAI et al. PHYSICAL REVIEW B 109, L140104 (2024)

[1] B. Mandelbrot, How long is the coast of Britain? Statisti-
cal self-similarity and fractional dimension, Science 156, 636
(1967).

[2] A. N. D. Posadas, R. Quiroz, P. E. Zorogastúa, and C. León-
Velarde, Multifractal characterization of the spatial distribution
of ulexite in a Bolivian salt flat, Int. J. Remote Sens. 26, 615
(2005).

[3] E. Azpeitia, G. Tichtinsky, M. L. Masson, A. Serrano-
Mislata, J. Lucas, V. Gregis, C. Gimenez, N. Prunet, E.
Farcot, M. M. Kater et al., Cauliflower fractal forms arise
from perturbations of floral gene networks, Science 373, 192
(2021).

[4] R. M. Brady and R. C. Ball, Fractal growth of copper electrode-
posits, Nature (London) 309, 225 (1984).

[5] D. H. Werner and S. Ganguly, An overview of fractal antenna
engineering research, IEEE Antennas Propag. Mag. 45, 38
(2003).

[6] D. H. Werner, R. L. Haupt, and P. L. Werner, Fractal antenna
engineering: The theory and design of fractal antenna arrays,
IEEE Antennas Propag. Mag. 41, 37 (1999).

[7] H. Samavati, A. Hajimiri, A. R. Shahani, G. N. Nasserbakht,
and T. H. Lee, Fractal capacitors, IEEE J. Solid-State Circuits
33, 2035 (1998).

[8] S. Alexander and R. Orbach, Density of states on fractals: �
fractons 
, J. Phys. Lett. 43, 625 (1982).

[9] R. Orbach, Dynamics of fractal networks, Science 231, 814
(1986).

[10] X. Y. Xu, X. W. Wang, D. Y. Chen, C. M. Smith, and X. M. Jin,
Quantum transport in fractal networks, Nat. Photonics 15, 703
(2021).

[11] Z. Yang, E. Lustig, Y. Lumer, and M. Segev, Photonic Floquet
topological insulators in a fractal lattice, Light Sci. Appl. 9, 128
(2020).

[12] T. Biesenthal, L. J. Maczewsky, Z. Yang, M. Kremer, M. Segev,
A. Szameit, and M. Heinrich, Fractal photonic topological insu-
lators, Science 376, 1114 (2022).

[13] M. Fremling, M. Van Hooft, C. M. Smith, and L. Fritz, Exis-
tence of robust edge currents in Sierpiński fractals, Phys. Rev.
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