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Observation of scale-free localized states induced by non-Hermitian defects
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Wave localization is a fundamental phenomenon that appears universally in both natural materials and artificial
structures and plays a crucial role in understanding the various physical properties of a system. Usually, a
localized state has an exponential profile with a localization length independent of the system size. Here,
we experimentally demonstrate a new class of localized states called scale-free localized states, which has
an unfixed localization length scaling linearly with the system size. Using circuit lattices, we observe that
a non-Hermitian defect added to a Hermitian lattice induces an extensive number of states with scale-free
localization. Furthermore, we demonstrate that, in a lattice with a parity-time-symmetric non-Hermitian defect,
the scale-free localization emerges because of spontaneous parity-time symmetry breaking. Our results uncover
a type of localized states and extend the study of defect physics to the non-Hermitian regime.
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Wave localization is ubiquitous in nature, with examples
ranging from Anderson localization in electronic materials [1]
to optical solitons in nonlinear dielectrics [2]. The localized
states (LSs) therein play a crucial role in understanding the
physical properties of the system. For example, the formation
of LSs in an Anderson insulator is responsible for the metal-
insulator transition induced by random disorder. Localization
can also enhance transport, as in the cases of topological
materials where boundary-LSs protected by bulk topological
invariants enable robust propagation [3–6]. In non-Hermitian
topological systems, LSs known as skin modes can strongly
modify the spectrum of the system under open boundary
conditions, leading to a breakdown of the bulk-boundary cor-
respondence [7,8]. These LSs also offer fascinating routes
to the manipulation of wavefunctions and have resulted in
many practical applications, such as soliton microcombs [9],
random lasing [10], light funneling [11], and multifunctional
photonic circuits [12].

A key characteristic of an LS is its localization length. A
smaller localization length indicates a stronger localization
strength. Conventionally, the localization length is determined
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by one or several system parameters, such as the defect po-
tential for defect-induced localization, but is independent of
the system size when it is large enough to support the LS.
Recently, an exotic class of localization that does not obey
this common belief has been predicted in non-Hermitian sys-
tems [13–23], with a localization length proportional to the
system size. Thus, such an LS exhibits an unchanged dis-
tribution profile for systems with different sizes, dubbed as
the scale-free localization [13,14], provided the system size
is normalized to unity. In addition to many interesting phe-
nomena like exceptional points and the non-Hermitian skin
effect that have been investigated extensively in recent years
[24–26], scale-free LSs represent another unique feature of
non-Hermitian systems without a Hermitian counterpart, and
many efforts have been made in exploring their emergence
in various non-Hermitian models [13–23]. However, despite
these rapid theoretical advances, an experimental observation
of scale-free LSs is still lacking.

In this work, we present an experimental observation of
scale-free LSs in circuit lattices with non-Hermitian defects.
Through measurements of the eigenstates for lattices with
different sizes, the scale-free feature of the states is directly
visualized. We also experimentally uncover several uncon-
ventional properties of scale-free LSs that are not found
in conventional LSs. First, a single non-Hermitian defect
can induce an extensive number of scale-free LSs, in con-
trast to a Hermitian defect that can only lead to one or a
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FIG. 1. (a) Upper panel: Tight-binding model of a 1D chain with nearest-neighbor coupling t and a non-Hermitian defect −iγ at the
middle of the chain (site K + 1). Lower panel: Schematic diagram of the designed circuit realizing the tight-binding model. C, R, and L denote
capacitors, resistors, and inductors, respectively. (b) The real part of eigenvalues of a finite circuit chain with the fixed size N = 2K + 1 =
101, plotted as a function of frequency for fixed C = 22.7 nF, L = 1.18 µH, and R = 3.58 �. (c) Spatial distributions of all eigenstates at
0.9 MHz (the upper panel) and 1.02 MHz (the lower panel), as indicated by the yellow and brown dotted lines in (b). The inset in the upper
panel shows the spatial distributions of eigenstates without the conventional LS. The colors denote the real part of eigenvalues. (d) Rescaled
spatial distributions of conventional LSs (the upper panel) and scale-free LSs with the smallest localization lengths (the lower panel) in
systems with different sizes. The horizontal axis is normalized by the system size N and each eigenstate is normalized by its maximum
value.

few LSs. We note that such a scenario also differs from
the non-Hermitian skin effect where an extensive number
of skin modes exist: the skin modes have size-independent
localization length and are induced by a nontrivial point gap
of the bulk spectrum [27–30], while scale-free LSs do not
necessarily rely on a non-Hermitian bulk and can be supported
even in a Hermitian lattice with a single non-Hermitian defect.
Second, the localization strength of a scale-free LS is found
to decrease monotonically with the defect strength, in con-
trast to conventional LSs induced by the same defect. Lastly,
when the non-Hermitian defect is made to respect parity-time
(PT) symmetry, the scale-free localization emerges because
of spontaneous PT symmetry breaking. This property relates
scale-free localization to the widely studied physics and ap-
plications of PT symmetry [31–33].

We start with a one-dimensional tight-binding model with
N = 2K + 1 sites [see the upper panel of Fig. 1(a)], described
by the Hamiltonian

H1 =
N−1∑
n=1

t (ĉ†
n+1ĉn + H.c.) − iγ ĉ†

mĉm, (1)

where ĉ†
n and ĉn are the particle creation and annihilation

operators, respectively, and t is the nearest-neighbor coupling

strength. The last term corresponds to a non-Hermitian defect
at site m = K + 1 (i.e., the middle of the chain). In the present
study, we assume γ is a positive real number, which means
site m is lossy. This simple model can be implemented in var-
ious passive platforms where dissipation can be engineered,
such as coupled optical ring resonators [34], laser-written
waveguide arrays [35], and acoustic crystals [36,37]. Moti-
vated by recent experimental breakthroughs in studying novel
physics by electric circuits [38–48], here we utilize circuit
lattices to realize this tight-binding model. As shown in the
lower panel of Fig. 1(a), the nearest-neighbor couplings are
achieved through capacitors C, and the on-site loss is realized
by a resistor R. In addition, each node is grounded by an
inductor L.

According to Kirchhoff’s law, the circuit model can
be represented by the admittance matrix, also termed as
a circuit Laplacian J (ω). The circuit Laplacian describes
the voltage response V (ω) to an alternating-current input
I (ω) according to I (ω) = (D(ω) − E (ω) + W (ω))V (ω) =
J (ω)V (ω), where ω is the angular driving frequency. D(ω)
and W (ω) are diagonal matrices containing the total con-
ductances of each node to the other nodes and the ground,
respectively. E (ω) is the adjacency matrix of the conductances
[40,41]. For the current circuit model, its Laplacian takes the
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form

J1(ω) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −ωC 0 0 0 0 0

−ωC 0 −ωC 0 0 0 0

0 . . .
. . .

. . . 0 0 0

0 0 −ωC −i 1
R −ωC 0 0

0 0 0 . . .
. . .

. . . 0

0 0 0 0 −ωC 0 −ωC

0 0 0 0 0 −ωC 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
(

2iωC + 1

iωL

)
M, (2)

where M is an identity matrix of size N . J1(ω) has a similar
form to the tight-binding Hamiltonian [i.e., Eq. (1)] for a fixed
ω, except that J1 contains a global offset (2iωC + 1

iωL ) and an
extra imaginary factor i. We note that these two differences
only lead to some global changes to the eigenvalues but have
no influences on the eigenstates [43], allowing us to study the
physics of H1 using J1. In the experiment, the circuit Laplacian
is measured through a vector network analyzer. Therefore, we
have full access to the eigenspace of J1(ω) [49]. Moreover,
tuning the operating frequency is equivalent to tuning the
parameter γ /t in the tight-binding model, which allows us
to explore different parameter regimes without the need to
change the circuit lattices.

Figure 1(b) shows the calculated real part of eigenvalues
of the circuit Laplacian for a finite chain with N = 101. An
extensive number of scale-free LSs (blue dots) are induced
by a single non-Hermitian defect for a broad range of fre-
quencies. When the frequency is below a critical value, f0 =
1/(4πCR) ≈ 0.98MHz (for C = 22.7 nF and R = 3.58 �,
corresponding to γ /t = 2 in the tight-binding model) [49],
a branch of conventional LSs (red dots) bifurcates from the
continuum of scale-free LSs. The characteristics of differ-
ent types of states are clearly observed in the corresponding
eigenstate profiles at two representative frequencies (0.9 MHz
and 1.02 MHz) given in Fig. 1(c). In Fig. 1(c), the colors de-
note the real part of eigenvalues, which are proportional to the
localization strength of localized states [49]. To further distin-
guish the two types of LSs, we plot the spatial distributions
of conventional LSs and the scale-free LSs (with the smallest
localization length) for various system sizes in Fig. 1(d). Note
that the horizontal axis is normalized by the system size N
and each eigenstate is normalized by its maximum value. In
this plot, scale-free LSs under different sizes retain nearly the
same profile, indicating the scale-free properties (i.e., their lo-
calization length is proportional to the system size N). While
for the conventional LSs, their profiles differ from each other.
Analytically, we find that this simple model always supports
K extended states, K scale-free states, and a single state being
a scale-free/conventional LS when f is larger/smaller than
1/(4πCR).

To experimentally verify the theoretical predictions, we
fabricate a size-tunable electric circuit as shown in Fig. 2(a).
The circuit parameters are similar to those in the theoretical
model except that realistic inductors are with direct-current
resistors Rd = 330 m�, which only leads to a global offset
to the eigenvalues but has no influences on the eigenstates

[43]. The zoomed-in image displays 13 nodes, in which the
red one is the lossy node. There are several switches com-
posed of two-pin headers (highlighted with white boxes in
the zoomed-in image) in the sample, which are used to adjust
the circuit size by isolating or connecting with the back-end
circuit when we insert mini jumpers at different locations.
With this design, we can realize several different values of
N on one single chip. The circuit Laplacian is experimentally
obtained by measuring the N port S parameter of the entire
work [43,44,48,49].

Figure 2(b) shows the experimental eigenvalues (the real
part) obtained from measured circuit Laplacian for a chain
with N = 21, which are consistent with the numerical results
shown in Fig. 1(b). The small deviation can be attributed to
the errors of the circuit elements, the frequency dependence of
circuit elements, and the direct-current resistor of the inductor
[49]. The corresponding eigenstates at two specific frequen-
cies (0.9 MHz and 1.02 MHz) are given in Fig. 2(c), which
reveal the coexistence of scale-free LSs and extended states at
1.02 MHz and the emergence of one extra conventional LS at
0.9 MHz.

To further confirm the nature of the observed LSs, we
use the switches to adjust the size of the circuit and re-
peat the measurement of the circuit Laplacian for different
system sizes. Figure 2(d) displays the measured localized
eigenstates with the smallest localization length in systems
with different sizes at 0.9 MHz and 1.02 MHz. Similar
to numerical results, the selected eigenstates at 0.9 MHz
have different profiles (note the horizontal axis is normalized
by the system size N), which indicates they are conven-
tional LSs. While the profiles of the selected eigenstates
at 1.02 MHz remain unchanged, showing the scale-free
behavior.

The scale-free property of the measured states can be
further quantified with the localization length and inverse
participation ratio (IPR) of the states. The localization length
of a state is obtained by fitting a numerical eigenstate to the
profile Ae−|x−x0|/ξ , where A is a normalization factor, x0 is the
center of the chain and ξ is the localization length. The IPR
of a state is defined as

∑N
x=1 |ψ (x)|4/(

∑N
x=1 |ψ (x)|2)2, where

the index x = 1, 2, . . ., N is the site index. A larger IPR value
indicates a more localized profile. As depicted in Fig. 2(e),
the localization length of scale-free LS scales linearly with the
system size, which is the hallmark of scale-free localization.
This also indicates that the scale-free LS becomes less local-
ized as the system size grows and eventually transforms into
an extended state (i.e., ξ → ∞) when N → ∞. By contrast,
the conventional LS has a constant localization length with
respect to the system size [Fig. 2(e)]. Such a difference is also
seen in the IPR scaling plot, where the IPR of a scale-free
LS exhibits a linear scaling to the inverse of the system size.
Such a behavior is typical for an extended state. From these
scaling properties, we can see that a scale-free LS is indeed a
new state of matter whose localization strength lies between a
conventional LS and an extended state.

Another intriguing property of scale-free LSs is the anoma-
lous decrease of localization strength when the defect strength
increases. Sweeping frequencies from 0.8 MHz to 0.95 MHz,
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FIG. 2. (a) Photo of the fabricated circuit. The zoomed-in image shows 13 nodes where the red one denotes the lossy node and white boxes
highlight switches composed of two-pin headers. (b) The real part of measured eigenvalues of a finite circuit chain with N = 21. (c) Spatial
distributions of all measured eigenstates at 0.9 MHz (the upper panel) and 1.02 MHz (the lower panel), as indicated by the yellow and brown
dotted lines in (b). The colors denote the real part of eigenvalues. (d) Rescaled spatial distributions of measured eigenstates with the smallest
localization length at 0.9 MHz (the upper panel) and 1.02 MHz (the lower panel) in systems with different system sizes. Note that the horizontal
axis is normalized by the system size N and each eigenstate is normalized by its maximum value. (e) Plots of localization length against N (the
upper panel) and the IPR against 1/N (the lower panel) of measured conventional LSs (red dots) and scale-free LSs (blue dots) shown in (d).
The black dotted lines denote linear fits. (f) Defect strength dependence of localization length. The plots show the IPR against frequencies of
conventional LSs (the upper panel) and scale-free LSs (the lower panel) with the smallest localization lengths in a circuit chain with the fixed
size N = 21. Note that the increased frequency is equivalent to decreased defect strength.

where conventional and scale-free LSs coexist, we can
clearly identify the relations between the localization strength
(measured by the IPR) and defect strength for these two
kinds of LSs. As shown in Fig. 2(f), counterintuitively, the
localization strength of a scale-free LS increases with in-
creased frequency [equivalent to decreased defect strength;
see Eq. (2)]. The situation for a conventional LS, as one
normally expected, reverses [Fig. 2(f)]. This phenomenon
can be intuitively understood as follows. As the strength
of the non-Hermitian defect increases, the defect site be-
comes effectively more decoupled from other sites, which
makes the conventional LS more confined to the defect. How-
ever, the scale-free LSs, which have strong support on other
sites, become less confined to the defect due to the effective
decoupling. Note that this anomalous relationship between
localization length and defect strength only exists for a cer-
tain frequency range and does not apply to very small defect
strength.

So far, we have shown that scale-free localization can be
induced simply by a single non-Hermitian defect. In fact,
scale-free localization takes place in various non-Hermitian
settings and can interact with other non-Hermitian phenomena
[13–23]. Here, we demonstrate the emergence of scale-free

localization from a PT-symmetric non-Hermitian defect and
its deep connection with the PT phase transition. Consider
a finite tight-binding lattice that contains N = 2K sites and
two defects with gain iγ and loss −iγ at sites m1 = K and
m2 = K + 1, respectively [see the upper panel of Fig. 3(a)].
The corresponding Hamiltonian reads

H2 =
N−1∑
n=1

t (ĉ†
n+1ĉn + H.c.) + iγ ĉ†

m1
ĉm1 − iγ ĉ†

m2
ĉm2 . (3)

It is easy to check that [H2, PT ] = 0 with P, a 2K × 2K
matrix with antidiagonal elements being one, and T the
complex conjugation. To avoid using active elements, we ap-
ply a background loss in the circuit design to make the system
totally passive. This procedure, which is commonly adopted in
studying non-Hermitian PT symmetry [35,51], will not alter
the physics but only add a uniform shift to the imaginary
part of the eigenvalues. The circuit design is illustrated in the
lower panel of Fig. 3(a), where the unequal resistors R1 and
R2 in the middle of the circuit are introduced to realize the
PT-symmetric defect, and resistors R0 connected to all nodes
are introduced as the global loss, which satisfies 1

R0
− 1

R0+R1
=

1
R2

. The Laplacian of this circuit is J2(ω) = J2,eff(ω) + 1
R0

M,

where M is an identity matrix of size N , and the circuit
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FIG. 3. (a) Upper panel: Tight-binding model of a 1D finite chain with nearest–neighbor coupling t and two non-Hermitian defect sites
(iγ and −iγ ) respecting PT symmetry. Lower panel: Schematic diagram of the designed circuit realizing the tight-binding model. (b) Photo
of the fabricated circuit. The zoomed-in image shows 14 nodes where the red and orange ones denote the two lossy nodes and the white boxes
highlight switches composed of two-pin headers. (c) The real part of eigenvalues of a finite circuit chain with the fixed size N = 2K = 102,
plotted as a function of frequency. The black arrow denotes the PT phase transition point. (d) Spatial distributions of all numerical eigenstates
at 1.5 MHz (the upper panel) and 0.68 MHz (the lower panel, with two conventional LSs excluded), as indicated by the yellow and brown
dotted lines in (c). The colors denote the real part of eigenvalues. (e) Spatial distributions of two measured eigenstates (N = 46) at 1.5 MHz
(the upper panel) and 0.68 MHz (the lower panel), which correspond to an extended state and a scale-free LS, respectively. (f) Upper panel:
Rescaled spatial distributions of the measured scale-free LSs with the largest IPR values in systems with different sizes at 0.68 MHz. Note that
the horizontal axis is normalized by the system size N and each eigenstate is normalized by its maximum value. Lower panel: Plot of the IPR
of the measured scale-free LSs shown in the upper panel against 1/N . The black dotted line denotes the linear fit.

Laplacian apart from global loss is written as

J2,eff(ω) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −ωC 0 0 0 0 0 0

−ωC 0 −ωC 0 0 0 0 0

0 . . .
. . .

. . . 0 0 0 0

0 0 −ωC i 1
R2

−ωC 0 0 0

0 0 0 −ωC −i 1
R2

−ωC 0 0

0 0 0 0 . . .
. . .

. . . 0

0 0 0 0 0 −ωC 0 −ωC

0 0 0 0 0 0 −ωC 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
(

2iωC + 1

iωL

)
M. (4)
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The PT symmetry is evident through the relation
[−iJ2,eff, PT ] = 0. The electric circuit we fabricate is shown
in Fig. 3(b). The zoomed-in image displays 14 nodes, in
which the red and orange ones denote the two lossy nodes.
Similar to the sample shown in Fig. 2(a), switches following
the same schemes are adopted to adjust the size of the
circuit.

Through analytical calculation, we identify two phase tran-
sitions of this model that alter the spatial distribution of
eigenstates [49]. Namely, all eigenstates are extended in the
PT-unbroken phase with 1/(R2ωC) < 1, and scale-free LSs
emerge only in the PT-broken phase with 1/(R2ωC) > 1. Fur-
ther decreasing the frequency, two conventional LSs emerge
when 1/(R2ωC) >

√
2. These two transitions can be clearly

seen in Fig. 3(c), which shows our calculated eigenvalues (the
real part) of a finite circuit chain with N = 46, plotted as a
function of frequency for fixed C = 22.7 nF, L = 1.18 µH,
R0 = 1 �, R1 = 0.25 �, and R2 = 5 �. A PT phase transition
point around f0 = 1/(2πR2C) ≈ 1.4 MHz is clearly observed
(indicated by a black arrow). When f > f0, all eigenvalues are
purely imaginary, corresponding to the PT-unbroken phase.
Decreasing f to be lower than f0, the system goes into a
PT-broken phase and the eigenvalues become complex. Pick-
ing two specific frequencies in different phases [indicated by
the vertical dashed lines in Fig. 3(c)], we find that eigen-
states are all extended in the PT-unbroken phase, while in
the PT-broken phase, there emerge scale-free LSs [Fig. 3(d)].
Note that two conventional LSs, corresponding to the two
bifurcated branches of eigenvalues with larger |Re( j)| when
f < 1/(2

√
2πR2C) ≈ 0.99MHz in Fig. 3(c) are excluded in

Fig. 3(d) for a clear visualization of other states. Figure 3(e)
displays two representative measured states in PT-symmetric
and broken phases, respectively, which are consistent with the
numerical results. To clearly visualize the scale-free local-
ization, we again pick up the experimental eigenstates with
the largest IPR values for systems with different sizes. As
shown in Fig. 3(f), the highly overlapped profiles and linear

IPR scaling in experimental eigenstates prove the scale-free
localization behavior. Besides, these scale-free LSs only have
strong support on half of the chain and thus are not eigen-
modes of the PT symmetry operator, consistent with the fact
that they lie in the PT-broken phase [31–33].

In summary, we have experimentally observed scale-free
LSs in circuit lattices with two kinds of non-Hermitian
defects, i.e., a single defect and two defects respecting
PT symmetry. Our results highlight the unique features of
scale-free LSs and provide a new route to the study of non-
Hermitian physics. In the future, it would be interesting to
investigate scale-free localization in higher dimensions and its
interplay with other effects, such as nonlinearity, disorder, and
the non-Hermitian skin effect, which are all available in the
circuit platform. The current scheme that uses non-Hermitian
defects to induce scale-free localization can also be applied to
photonic, acoustic, and mechanical systems. On the practical
level, the scale-free LSs, which have a much larger mode area
and highly tunable localization length compared to conven-
tional LSs, might be useful in energy harvesting, high-power
lasers, and high-efficiency waveguiding.
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