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Theory of weak localization in graphene with spin-orbit interaction
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A theory of weak localization in graphene with Rashba splitting of the energy spectrum is developed.
Anomalous magnetoresistance caused by weak localization is calculated accounting for inter- and intravalley,
and spin-orbit and spin-valley scattering processes. It is shown that the anomalous magnetoresistance is described
by an expression different from the traditional Hikami-Larkin-Nagaoka formula. The reason is that the effect of
Rashba splitting gives rise to the spin-orbit vector potential which is not reduced to a spin dephasing only. The
developed theory can be applied to heterostructures of graphene with transition metal dichalcogenides.
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Introduction. Weak localization (WL) is an interference
phenomenon based on the wave properties of particles.
WL mainly consists in the interference of waves backscat-
tered from groups of defects. In conductors WL results in
anomalous negative magnetoresistance in classically weak
magnetic fields at low temperatures. The study of the
magnetic-field and temperature dependence of anomalous
magnetoresistance allows determining various system pa-
rameters such as dephasing rates rarely accessible in other
experiments [1]. In spin-orbit coupled systems, WL is
much richer due to the constructive and destructive charac-
ter of the interference in different spin channels described
by additional spin-related phases acquired by electrons at
backscattering. This results in sign-alternating magnetore-
sistance with a positive part at the lowest fields and is
referred to as weak antilocalization (WAL). Studies of WAL
in two-dimensional semiconductors give access to spin-orbit
splittings and spin relaxation times [2]. Weak localization
in graphene is specific due to the Berry phase π ac-
quired by Dirac fermions at backscattering [3]. However, this
does not always result in WAL due to effective intervalley
scattering [4,5].

In graphene-based systems the spin-orbit effects are im-
portant when the spin-orbit coupling is induced by proximity
effects [6,7]. A theory for graphene heterostructures predicts
the Rashba [8] spin-orbit splitting from 0.1 to a few meV
in different graphene heterostructures with transition metal
dichalcogenides (TMDCs) [9–12] and topological insulators
[13]. Experiments on the anomalous magnetoresistance in
graphene with spin-orbit coupling demonstrate WAL in dif-
ferent single- and bilayer graphene/TMDC heterostructures
[14–21]. The determination of spin-orbit and dephasing pa-
rameters from experimental data is always performed by the
theoretical expressions of Ref. [22] containing the Hikami-
Larkin-Nagaoka (HLN) function [23]. However, it is known
from studies of WAL in two-dimensional semiconductors with
Rashba spin-orbit splitting that the HLN expression does
not describe anomalous magnetoresistance. Another formula
derived by Iordanskii, Lyanda-Geller, and Pikus should be
used for a description of the experimental data [24,25]. In
this Letter we show that the same situation takes place in

graphene with spin-orbit coupling and derive an expression
for the WL-induced anomalous magnetoresistance.

Theory. The Hamiltonian of graphene with spin-orbit cou-
pling has the following form in the basis of eight-component
Bloch functions of electrons on two sublattices in two valleys
and with one of two spin projections [5,22,26],

H = v� · p + γ [� × s]z + λ�zsz + �s�z�z

−μ�z
[
�x

(
p2

x − p2
y

) − 2�y px py
]
. (1)

Here, p is momentum, v is the Dirac fermion velocity, z is a
coordinate normal to the graphene layer, the terms ∝γ and
∝λ are Rashba and Kane-Mele (enhanced by phonons [27])
spin-orbit couplings, �s is an orbital gap due to staggered sub-
lattice potential, and the term ∝μ describes trigonal warping.
We use three sets of Pauli matrices to describe spin s, sublat-
tice “isospin” �, and matrices � acting in the valley space [5].
They are related to the Pauli matrices σ acting in the sublattice
space by �x,y = �z ⊗ σx,y, �z = σz. Disorder is described by
a sum of the spin-independent and spin-dependent terms [22]

V = uI +
∑

a,l=x,y,z

ual�a	l

+
∑

j=x,y,z

s j

⎛
⎝ ∑

a=x,y,z

αa j�a +
∑

l=x,y,z

βl j	l

⎞
⎠, (2)

where valley “pseudospin” matrices are 	x,y = �x,y ⊗ σz,
	z = �z. The terms with sz and with sx,y describe the spin-
orbit scattering due to z → −z symmetric and asymmetric
perturbations, respectively [22].

The low-temperature transport involves only the electrons
at the Fermi level, which is assumed to be far enough from
the Dirac point. Therefore it is useful to pass to the new
basis of electron states characterized by the momentum p,
which belong to a valley K±. If we consider the Hamilto-
nian H0 = v� · p only, then we obtain that the energy of
these states is equal to vp and the eigenfunction is |K±, p〉 =
[1,± exp(iϕp)]T /

√
2, where exp(iϕp) = (px + ipy)/p. In this

new basis, the conduction-band Hamiltonian has the following
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TABLE I. Dephasing rates l
j for different valley and spin channels with l, j = s, t0, t1. Here, KM = 2π

h̄ g
∑

l=x,y,z α2
lz + 2π

h̄ g(uλ/εF )2, α =
2π

h̄ g
∑

l=x,y,z α2
lx , z = 2π

h̄ g
∑

l=x,y,z u2
lz + w + 2π

h̄ g(u�s/εF )2, where w = (με2
F/h̄v2)2τtr , iv = 2π

h̄ g
∑

l=x,y,z u2
lx , {zv,e, iv,e, zv,o, iv,o} =

πg
h̄ {β2

zz, β
2
xz, β

2
zx, β

2
xx}, ∗ = z + iv , and SO = asy + sym, where asy = α + 2zv,o + 4iv,o and sym = KM + 2zv,e + 4iv,e.

Valley

Spin t1 t0 s

t1 ∗ + KM + 2iv,e + α + 2zv,o + 4iv,o 2iv + KM + 2zv,e + α + 2zv,o + 4iv,o SO

t0 ∗ + 2(α + zv,e + iv,e + 2iv,o) 2(iv + α + 2zv,o + 2iv,e) 2asy

s ∗ + 2(zv,e + 2zv,o + iv,e + 2iv,o) 2(iv + 2iv,e + iv,o) 0

form [28],

Hc = vp + γ

p
[p × s]z − μp2 cos 3ϕp�z, (3)

and the matrix elements of disorder scattering read

Vp′,p = e−iθ/2

⎡
⎣cos(θ/2)

⎛
⎝u +

∑
l, j=x,y,z

βl j�l s j

⎞
⎠

+
∑

i,i′=x,y,z

κi(αii′si′ + uii′�i′ ) + u
κz

εF
(λsz + �s�z )

⎤
⎦.

(4)

Here, εF is the Fermi energy, θ = ϕp′ − ϕp is the scat-
tering angle, and we introduced a vector κκκκ(p′, p) =
[cos �,− sin �, i sin(θ/2)] where � = (ϕp′ + ϕp)/2. The
Kane-Mele term ∝λ and the staggered-potential term ∝�s in
Eq. (1) mix the conduction- and valence-band states in each
valley, which results in spin- and valley-dependent scattering
corrections.

It follows from Eqs. (3) and (4) that the Hamiltonian in
both valleys has the same form as that for spin-split massive
electrons with angle-dependent scattering, so the only differ-
ence is the factor e−iθ/2 in the scattering amplitude. Therefore
the problem of WL in graphene with spin-orbit splitting is
reduced to the problem of WL of massive electrons with
Rashba splitting solved in Ref. [24]. For the Hamiltonian (3),
the equation for the cooperon C(q) has the form [29]{

Dq2 + φ +  + R
(
S2 − S2

z

)
+

√
2Rτtr[S × q]zv

}
C(q) = 1. (5)

Here, q is the generalized momentum of a double charge in
the magnetic field, φ is the spin- and valley-independent
dephasing rate, D = v2τtr/2 is the diffusion coefficient, where
τ−1

tr = πgu2/(2h̄) is the transport relaxation rate and g =
εF/(2π h̄2v2) is the density of states at the Fermi energy per
spin per valley,  is the dephasing operator including the
effect of warping from the last term in Eq. (3) but independent
of the Rashba splitting, R = 2(γ /h̄)2τtr is the Rashba-term
induced Dyakonov-Perel spin relaxation rate, and S is the
operator of the total spin of two interfering particles. It is
crucial that the bilinear in momentum and spin term ∝[S × q]z

is present in the cooperon equation which mixes different
spin interference contributions into the conductivity. The R-
related terms in Eq. (5) mean that the spin-orbit splitting

results in a spin-orbit vector potential ASO = (γ /ev)[ẑ × S]
which is not reduced to spin dephasing only [29].

There are valley and spin-singlet (s) and triplet (t0, t1)
interference channels of WL where t0 and t1 correspond to
spin/pseudospin z projections equal to zero or ±1, respec-
tively [30]. Projecting the operator  in Eq. (5) onto these
states [29], we obtain, in addition to φ , nine dephasing rates
l

j for valley l and spin j channels with l, j = s, t0, t1 given
in Table I [31]. Note that, by contrast with Ref. [22], R is not
added to α because it enters into the cooperon equation (5)
not only as quadratic but also as linear in S terms, and is an
independent parameter of the theory.

Solving Eq. (5) in magnetic field B normal to the graphene
layer we obtain the WL induced magnetoconductivity �σ =
σ (B) − σ (0) in the following form [29],

�σ

σ0
= −

∑
l=t1,t0,s

cl

[
Ft

(
Bφ

B
,
BR

B
,
Bl

t1

B
,
Bl

t0

B

)

− F

(
B

Bφ + Bl
s

)]
. (6)

Here, σ0 = e2/(2πh), the common negative sign is caused
by the Berry phase π of Dirac fermions, {BR,Bφ,Bl

j} =
{R, φ, l

j}h̄/(4|e|D), and ct1 = 2, ct0 = 1, cs = −1. The
singlet contribution is expressed via the HLN function F (x) =
ψ (1/2 + 1/x) + ln x with the digamma function ψ (y). By
contrast, the triplet contribution is given by a four-parametric
function,

Ft (bφ, bR, b1, b0) =
∑

m=0,±

[
umψ (1/2 + bφ + b̄ − vm)

− u(0)
m ln

(
bφ + b̄ − v(0)

m

)]
+ 1

(bφ + bR + b1)2 − 1/4
. (7)

Here,

b̄ = (b0 + 2b1)/3, b− = (b0 − b1)/3, (8)

and the coefficients um, vm are found by the method of Pun-
noose [32,33],

vm = 2δ cos

(
ϕ + 2π

3
m

)
, δ =

√
−C/3,

ϕ = 1

3
arccos

(
− G

δ3

)
− 2π

3
, um = 3v2

m + 4bRvm + A∏
m′ 	=m(vm − vm′ )

,

(9)

L121407-2



THEORY OF WEAK LOCALIZATION IN GRAPHENE WITH … PHYSICAL REVIEW B 109, L121407 (2024)

where

A = 5b2
R + 4bR(bφ + b̄) − 1 − b−(3b− + 2bR),

C = A − 4bR(bR − b−),

G = 2bR(bφ + b̄)(bR − b−) + b3
R − b−(bRb− − b2

− + b2
R + 1).

(10)

The coefficients v(0)
m and u(0)

m are calculated by Eqs. (9) with
the zero-field asymptotes of A, C, and G given by A(0) = A + 1,
C(0) = C + 1, G(0) = G + b−. The coefficients vm depend on
magnetic field, and hence their zero-field asymptotes v(0)

m are
different from vm. The same is true for the coefficients um.
Therefore Eq. (7) does not reduce to the HLN-like expression.

Discussion. In the absence of Rashba splitting, BR = 0, we
have A = C = −1 − 3b2

− and G = b−(b2
− − 1). This yields

u0,± = 1, {v0, v+, v−} = {b− − 1, b− + 1,−2b−}, hence the
triplet contribution is simplified to Ft (bφ, 0, b1, b0) =
2F [(bφ + b1)−1] + F [(bφ + b0)−1], and we obtain the HLN-
like expression

�σ

σ0

∣∣∣∣
BR=0

= −
∑

l=t1,t0,s

cl

[
2F

(
B

Bφ + Bl
t1

)

+ F

(
B

Bφ + Bl
t0

)
− F

(
B

Bφ + Bl
s

)]
. (11)

Let us consider a limit of fast valley-triplet relaxation:


t1,0

j 
 s
j . Then the anomalous magnetoresistance is de-

scribed by just four dephasing rates, R, φ , SO, and asy,

�σ

σ0

∣∣∣∣


t1,0
j 
s

j

= Ft

(Bφ

B
,
BR

B
,
BSO

B
,
Basy

B

)
− F

(
B

Bφ

)
, (12)

where BSO = SOh̄/(4|e|D) and Basy = asyh̄/(2|e|D). If, in
addition, BR = 0, then, combining two previous equations, we
obtain the expression of Ref. [22],

�σ (B)

σ0

∣∣∣∣
BR=0,

t1,0
j 
s

j

= 2F

(
B

Bφ + BSO

)

+ F

(
B

Bφ + Basy

)
− F

(
B

Bφ

)
.

(13)

In Ref. [22], McCann and Fal’ko (MF) derived an expres-
sion, which, in the absence of spin-orbit scattering but in the
presence of Rashba splitting, gives

�σMF

σ0
= 2F

(
B

Bφ + BR

)
+ F

(
B

Bφ + 2BR

)
− F

(
B

Bφ

)
.

(14)

This expression treats the Rashba spin-orbit coupling as de-
phasing only and ignores the effect of the linear in S terms
in the cooperon equation. Theory developed in the present
Letter gives for this case Eq. (12), where BSO = Basy = 0. In
Fig. 1(a) we compare these two expressions, demonstrating
that they differ significantly. The MF expression is correct
either in the absence of spin-orbit coupling (BR = 0) or
when it is very large and the triplet contribution is negligible

Solid: Present work

Dashed: MF theory

(a)

(b)

FIG. 1. Conductivity correction in the absence of spin-orbit scat-
tering. (a) Present work, Eq. (12) (solid lines), and MF theory,
Eq. (14) (dashed). (b) Equation (12) at different values of BR/Bφ .

(BR 
 Bφ). At intermediate values of the ratio BR/Bφ , the
expression derived in the present Letter shows that a strong
WAL effect is already present at moderate Rashba splitting
when BR � 3Bφ . Comparing two blue curves or two green
curves in Fig. 1(a), we see that these two theories give very
different results for the same Rashba splitting. Furthermore,
if we compare the blue dashed and green solid curves, we see
that they are close to each other. This means that they can both
fit some data when the experimental points are between them.
However, the extracted Rashba magnetic field BR is more
than four times different when the HLN-like expression is
used instead of the correct formula presented in this Letter. In
Fig. 1(b) we show the magnetoconductivity in the absence of
spin-orbit scattering at different values of the Rashba splitting.

The effect of spin-orbit scattering is demonstrated in Fig. 2.
In the presence of a moderate Rashba splitting BR = 2Bφ ,
both symmetrical and asymmetrical spin-orbit scattering
processes result in a more antilocalizing behavior of the
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Spin-orbit scattering
Solid: asymmetrical

Dashed: symmetrical

FIG. 2. Effect of spin-orbit scattering at BR = 2Bφ . Solid
(dashed) lines: Basy(Bsym ) = 0.5Bφ (blue), Bφ (green), 2Bφ (ma-
genta), and 5Bφ (black). Red: Basy = Bsym = 0.

magnetoresistance. We considered asymmetrical (Bsym = 0,
BSO = Basy/2) and symmetrical (Basy = 0, BSO = Bsym) scat-
tering. Figure 2 shows that the effect of the asymmetrical
scattering is stronger.

In an in-plane magnetic field, the Zeeman term (εZ/2)s · l‖
is added to the Hamiltonian, where εZ is the Zeeman splitting
and l‖ is a unit vector in the direction of the field. It results in a
mixing of singlet and triplet spin cooperons in addition to the
pure triplet mixing by the spin-orbit vector potential [34,35].
A WL conductivity correction calculation in the presence of
both Rashba and in-plane Zeeman splittings [2] showed that
the conductivity as a function of an in-plane magnetic field has
a maximum when the Zeeman and Rashba splittings are equal,
εZ ≈ 2γ . In moderate fields where the Zeeman splitting is
smaller than the spin relaxation gaps, εZ  h̄R,SO, the effect
of the parallel field mainly consists in a suppression of the
spin-singlet interference channel [34,35]. For graphene with a
spin-orbit interaction, this Zeeman splitting induced dephas-
ing rate is s

s = (εZ/h̄)2/(R + SO), and Eq. (12) yields

�σ

σ0
= Ft

(Bφ

B
,
BR

B
,
BSO

B
,
Basy

B

)
− F

(
B

Bφ + Bs
s

)
, (15)

where we again assumed valley-triplet channels to be
suppressed, 

t1,0

j 
 s
j . In the opposite limit of large Zee-

man splitting εZ 
 γ , Dyakonov-Perel spin relaxation is
suppressed, and the magnetoconductivity is given by the
expression with R → 0, Eq. (13).

The valley-Zeeman term λVZ�zsz [17,26] makes a similar
effect if intervalley scattering is ineffective. The spin-singlet
dephasing rate s ∼ (2λVZ/h̄)2/(R + SO) appears for each
valley resulting in the magnetoconductivity given by Eq. (15)
multiplied by a factor −2. In the opposite limit of comparable
inter- and intravalley scattering efficiencies the valley-Zeeman
splitting has no effect on WL.

The pseudospin inversion asymmetry terms in the Hamil-
tonian that are bilinear in spin and momentum [9,11] result
in small renormalizations of the Rashba constant and the spin
relaxation rate α .

The theory presented above gives WL magnetoconduc-
tivity in magnetic fields smaller than the “transport” field
Btr = h̄/(4eDτtr ). In higher fields B ∼ Btr 
 Bφ , interference
on ballistic trajectories with a few number of scatterers is
important in WL. In this case, the nondiffusive theory can
be developed accounting for both the Dirac fermion nature
of carriers [36,37] and the spin-orbit coupling [2] as well as
valley-Zeeman splitting of arbitrary strengths.

In bilayer graphene with spin-orbit coupling, the spin-orbit
vector potential in Eq. (5) is quadratic in q. Therefore it has
no significant effect on the anomalous magnetoresistance, and
the HLN-like theory [21] is correct. The same is true for
WL in TMDC layers where the spin-orbit vector potential is
absent due to the lack of linear in momentum terms in the
Hamiltonian [38].

Conclusion. The developed theory of WL in graphene
accounts for the Rashba spin-orbit splitting, and spin-orbit
and valley-dependent scattering. It is shown that the Rashba
interaction affects WL in graphene not via spin dephasing
but via a spin-orbit vector potential. This results in the ex-
pression for the anomalous magnetoconductivity which is
not reduced to the traditional formulas with HLN func-
tions. The importance of this difference is demonstrated. The
present theory allows one to determine adequately the spin-
orbit parameters of graphene with spin-orbit interaction from
experimental data.
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