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Recently, higher-order topology has been expanded to encompass aperiodic quasicrystals, including those with
eightfold or twelvefold rotational symmetry. The underlying mechanism for these high-order topological phases
is generally protected by CnMz symmetry, resulting in the presence of n corner states. However, this mechanism
is not applicable to other C2N quasicrystals when N is an odd number. In this work, we propose the realization
of a second-order topological superconductor (SOTSC) within a sixfold symmetric bronze-mean hexagonal
quasicrystal with six Majorana zero-energy modes. This SOTSC emerges from the combination of vertical and
horizontal mirror symmetries, which flips the mass-term sign along the horizontal mirror-invariant line and
produces Majorana zero-energy modes at each corner of the quasicrystal sample. Moreover, this mechanism
can extend to quasicrystals with C4N+2 and C4N rotational symmetries, namely encompassing systems with C2N

symmetry. Our findings provide useful guidance for achieving SOTSC in quasicrystals featuring C2N rotational
symmetry and introduce bronze-mean hexagonal quasicrystals as a promising platform for exploring quasicrystal
SOTSC.
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Introduction. There has been a significant surge
in research interest regarding higher-order topological
insulators/superconductors (HOTIs/HOTSCs) [1–66], which
extends beyond the scope of conventional (first-order)
topological phases [67,68]. HOTIs/HOTSCs, existing
in d dimensions, exhibit gapless boundary states in
d − n dimensions (n � 2). For instance, a second-order
topological insulator/superconductor (SOTI/SOTSC) in
two dimensions (2D) manifests 0D corner/Majorana states
localized at its corners. Until now, HOTIs/HOTSCs has
been extensively studied on crystalline systems. Recently, a
lot of attention has been directed toward aperiodic systems,
particularly quasicrystals, as intriguing platforms for realizing
higher-order topological states [69–83]. Quasicrystalline
systems featuring forbidden rotational symmetries, such as
C5, C8, and C12, serve as a promising platform for exploring
novel topological phases that expand the current topological
classification of crystalline materials.

However, in quasicrystals with C8 (or C12) symmetries,
the corner states are generally protected by the combined
symmetry C8(12)Mz, which make the mass-term sign alternate
at the corners of the 0D systems, leading to the emergence of
corner states. The number of them is equal to the order of
rotational symmetry [see Fig. 1(a) for C8 quasicrystal]. This
mechanism to induce higher-order topological states can be
applied to quasicrystals with C4N rotational symmetry (N is a
positive integer) but not to that with C4N+2 rotational symme-
try. The typical example with N = 1 (C6) is shown in Fig. 1(b).
The corner states can not emerge at the two horizonal corners
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due to the identical signs at adjacent edges. Therefore, it raises
the question of whether there are alternative mechanisms to
induce six (4N + 2) corner modes in C6 (or more general
C4N+2) symmetric quasicrystal. Moreover, it is of great inter-
est to explore the new mechanism of higher-order topological
phases in crystal with C6 symmetry.

In this work, we propose bronze hexagonal quasicrystals
exhibiting C6 symmetry that can function as a platform for
achieving 2D SOTSC. The emergence of this quasicrystal
SOTSC stems from the combined symmetry of vertical and
horizontal mirrors, which results in a reversal of the mass-
term sign on either side of the horizontal mirror-invariant
line, giving rise to Majorana zero-energy modes at each
corner of the quasicrystal sample. These Majorana zero-
energy modes exhibit resilience against symmetry-preserving
perturbations, provided that both the bulk and edges main-
tain their gap. Additionally, this mechanism is extendable
to quasicrystals featuring C4N+2 and C4N rotational symme-
tries, essentially applying to quasicrystalline systems with C2N

symmetry.
Results and discussion. One notable example of qua-

sicrystal lattices possessing C6 rotational symmetry is the
bronze-mean hexagonal quasicrystal [87], as illustrated in
Figs. 2(a) and 2(b). The unique symmetrical and aperiodic
characteristics of the hexagonal quasicrystal can be attributed
to the existence of an irrational ratio between two length scales
that determine its structural arrangement. The bronze-mean
tiling consists of three types of tiles, each associated with
two different lengths: small equilateral triangles with an edge
length denoted by s, large equilateral triangles with an edge
length indicated as e, and rectangles with dimensions of s × e.
The procedure for generating hexagonal quasicrystals using
the inflation method is shown in Fig. S1 [88].
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FIG. 1. The arrangement of edge mass terms and domain wall states along the perimeter of (a) eightfold and (b) sixfold symmetric
quasicrystal samples. In the case of the latter, domain wall states will not form on the two corners of the My-invariant line, as the adjacent
boundaries of these corners have the same signs of mass terms. (c) However, if a Wilson mass term with alternating sign is introduced, six
corner states can be formed in the sixfold symmetric quasicrystal.

Our investigation begins with the analysis of a 2D topolog-
ical superconductor (TSC) model on this lattice, as outlined
in the methods section of the Appendix. This particular
model describes a system featuring 2D first-order TSCs with
opposite Chern numbers within class D [69,89,90] (with pa-
rameters t = � = 1 and μ = −1.5), representing fermions
subject to p-wave odd momentum pairing, denoted as
�(p) = −�(−p). The system displays counterpropagating
Majorana edge modes along its boundary, as illustrated in
Figs. 2(c) and 2(d). The real-space Bogoliubov-de-Gennes
(BdG) Hamiltonian H for this system has particle-hole

symmetry (P), satisfied by the relation {H,P} = 0, with P
representing an antiunitary operator given by P = τzσx1K,
where K denotes complex conjugation, and 1 signifies the
identity operator within the quasicrystal lattice site space.
Additionally, the system exhibits three mirror symmetries
denoted as Mi (i = x, y, z), which satisfy the commutation
relation [H,Mi] = 0, with Mx = iτxσxRx, My = iτxσyRy,
and Mz = τzσ01. Here, Rx,y are orthogonal matrices that flip
the entire system vertically and horizontally by permuting the
sites of the tiling. The mirror symmetry Mz endow the system
with a Z2 topological structure, determined by the parity of

FIG. 2. (a) The metallic means [84] is hidden in the geometry of quasicrystals. The side of the primitive tile of quasicrystals l in the nth

generation denoted by ln is determined by the recurrence relation ln+1 = k · ln + ln−1. The inflation factor is defined by ln+1
ln

= k+
√

k2+4
2 and

referred to as the metallic means. When k = 1, 2, 3 corresponds to gold related to Penrose tiling [85], silver related to AB tiling [86], and
bronze mean [87], respectively. (b) The hexagonal quasicrystal [87] with bronze mean 3+√

13
2 is composed of three types of primitive tile based

on two lengths: small colored in red and large colored in blue equilateral triangles, and rectangles colored in yellow with the ideal length
ratio e

s =
√

3+√
39

6 . (c) Energy spectrum of the first-order TSCs BdG Hamiltonian on a hexagonal quasicrystal vs the eigenvalue index. The
orange dots mark all the Majorana edge modes. (d) The probability density of doubly degenerate eigenstates is marked by the orange dot in
(c). (e), (g) The energy spectrum of the HOTSCs Hamiltonian versus the eigenvalue index for the mass term Vx0 and Vxx , respectively. (f),
(h) The probability density of zero-energy modes in (e) and (g), respectively. The color map shows the values of the probability density. We
take the model parameters � = 1, t = 1, μ = −1.5, V = 1, and lattice site number N = 4729. For the first-order TSCs, the system hosts
counterpropagating Majorana modes on any edge, protected by mirror symmetry. For mass term, Vx0 or Vxx gaps out the edge, leading to the
higher-order topological phase.
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TABLE I. Symmetries of the BdG Hamiltonian H on the bronze mean tiling quasicrystalline lattice with the hexagonal boundaries without
and with mass term V . σx,y,z and τx,y,z are the Pauli matrices. K is the complex conjugate operator, and 1 is the N × N unit matrix with the
lattice number N . Rx,y, are orthogonal matrices permuting the sites of the tiling to flip the whole system vertically and horizontally. R2,6 are
orthogonal matrix permuting the sites of the tiling to rotate the whole system by an angle of π and π

3 , respectively. Check marks indicate that
the symmetry in this case is preserved, and a cross mark means the symmetry is absent.

V = 0 V = Vx0 V = Vxx V = Vxy

P = σzτx1K PHP−1 = −H √ √ √ √
C6 = exp(−i π

6 σ0τz )R6 C6HC−1
6 = H √ × × ×

C2 = iσ0τzR2 C2HC−1
2 = H √ √ × ×

Mx = iσxτxRx MxHM−1
x = H √ √ √ ×

My = iσxτyRy MyHM−1
y = H √ √ × √

Mz = σzτ01 MzHM−1
z = H √ × × ×

C6Mx C6MxH(C6Mx )−1 = H √ × × ×
C6My C6MyH(C6My )−1 = H √ × × ×
C6Mz C6MzH(C6Mz )−1 = H √ × × ×
C2Mz C2MzH(C2Mz )−1 = H √ × √ √
MxMz MxMzH(MxMz )−1 = H √ × × √
MyMz MyMzH(MyMz )−1 = H √ × √ ×

the number of helical Majorana edge modes [48]. Moreover,
owing to the distinctive shape of the tiling, the system pos-
sesses a global sixfold rotation symmetry centered around
its core, given by [H,C6] = 0, where C6 = exp(−i π

6 σ0τz )R6.
Here, R6 is an orthogonal matrix responsible for rotating the
entire system by an angle of π

3 by permuting the lattice sites.
For a more comprehensive understanding of the symmetry
analysis associated with the BdG Hamiltonian H, additional
details can be found in Table I.

In order to produce the SOTSC phase, a mass term is
incorporated into the BdG Hamiltonian H through inclusion
of the following term:

V pq = V

2

∑

〈 j,k〉
�

†
j [sgn( j − k)σpτq cos(3α jk )]�k, (1)

where σp or τq (p or q can take the values 0, x, y, and z)
represent the 2 × 2 identity matrix and the three components
of the Pauli matrices, respectively. The α jk is the angle be-
tween the bonding direction and the horizontal direction [70],
V represents the amplitude of the mass term, and sgn( j − k)
means if j − k > 0 return +1 or j − k < 0 return −1. The
mass term V pq has sixteen possible terms in total, but only
four of them (Vx0, Vxx, Vy0, and Vyx) are capable to gap out the
Majorana edge modes and consequently give rise to Majorana
zero-energy corner modes. In the subsequent discussion, since
Vx0 and Vxx yield the same results as Vy0 and Vyx, respectively,
our focus will be exclusively on the two specific terms Vx0

and Vxx. The remaining terms are addressed in Sec. II of the
Supplemental Material [88].

The results obtained by incorporating Vx0 are depicted in
Figs. 2(e) and 2(f). It is observed that the gapless Majorana
edge states become gapped, and four Majorana zero-energy
modes emerge within this gap around the Fermi level, pri-
marily localized at the four corners of the upper and lower
edges. The opening of the gap can be explained by the
anticommutative relationship of {Vx0,Mz} = 0. These non-
trivial Majorana zero-energy modes can be explained through
the Jackiw-Rebbi mechanism [91]. According to this mecha-
nism, Majorana zero-energy modes emerge when a domain

wall with varying mass is present. If the gapless Majorana
edge modes are gapped, the edge Hamiltonian can be de-
scribed by a 1D Dirac model with a mass term denoted as

Hedge = −iν(l )∂lσz + m(l )σx, (2)

where l represents the real-space coordinate along the
boundary of sixfold symmetric quasicrystals. As a rough ap-
proximation, however, we can view an edge of the hexagonal
sample boundary as an extended “bond.” The sign of the
effective Wilson mass for the Majorana edge mode is deter-
mined by the orientation of the edge, represented by the polar
angle α jk , and the Kronecker product of spin and electron-hole
degrees of freedom, denoted as σpτq. Indeed, this effective
edge Hamiltonian can be obtained from an effective k · p
Hamiltonian expanded around 
 under the long-wavelength
approximation [79].

The factor cos(3α jk ) determines the initial distribution of
the mass-term sign in the sample, as shown in Fig. 1(b). By
considering the σxτ0, the Vx0 adheres to the Mx and My

symmetries (detailed in Table I). In contrast to the eightfold
quasicrystal with C8Mz symmetry [69,70], the preservation of
Mx, My symmetries in the hexagonal quasicrystal where Vx0

is introduced prevents the sign of the mass term to alternate
along the sample boundary. This indicates that the mass term
Vx0 shares the same sign of cos(3α jk ). As depicted in Fig. 2(f),
four Majorana zero-energy modes emerge at the adjoining
boundaries of the upper and lower corners within the sample,
attributed to opposing mass-term signs. However, Majorana
zero-energy modes do not manifest at the two corners along
the My-invariant line, as their adjacent boundaries feature
identical mass-term signs.

Now, let’s delve into the scenario involving the mass term
Vxx, which breaks the C6 and two mirror (My and Mz) sym-
metries, while it preserves the MyMz symmetry. Importantly,
the symmetries My and Mz anticommute with the mass term
Vxx, namely {Vxx,My} = 0 and {Vxx,Mz} = 0, leading to
the opening of a band gap in the Majorana edge modes. Mean-
while, the MyMz symmetry induces an initial distribution
of mass-term sign flips between My-contrasting edges, as
illustrated in Fig. 1(c). The signs of the mass terms at the
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FIG. 3. (a) Energy spectrum of the Hamiltonian H in finite asymmetric sample vs the eigenvalue index for the mass term Vxx . (b) The
probability density of eigenstates marked by the red dot in (a). For the symmetric sample with lattice number N = 4192, we take the parameters
� = 1, t = 1, μ = −1.5, and V = 1. (c), (d) The spectrum of Hamiltonian H with perturbation U0x and U0z vs the eigenvalue index in the
symmetric sample with Vxx , respectively. We take the parameters � = 1, t = 1, μ = −1.5, V = 1, the on-site potential strength U = 0.1, and
the lattice number N = 4729.

adjacent boundaries of the two corners along the My-invariant
line change from being the same to being opposite. In other
words, the sign of the mass term alternates between adjacent
boundaries encircling the perimeter of the sample, leading to
six Majorana zero-energy modes localized at each corner of
the hexagonal tiling, as shown in Fig. 2(h).

The inherent quasiperiodicity of a quasicrystal implies that
any finite region within an infinite sample recurs. Conse-
quently, there are numerous locations within the quasicrystal
closely resembling the vicinity of a corner in an exactly
symmetric sample with MyMz symmetry. To investigate
the robustness of the higher-order topological phases with
these local symmetries and breaking of the global MyMz

symmetry, we further calculate the Majorana zero-energy
modes from asymmetric cutouts of the quasicrystal system
with mass term Vxx. As depicted in Figs. 3(a) and 3(b), we
observe the emergence of six Majorana zero-energy modes
in an asymmetric sample, which indicates the robustness
of the zero-energy mode under the broken global MyMz

symmetry.
To further verify the topological origin of Majorana zero-

energy modes, we investigate the robustness of these modes to
various on-site potential perturbations that break symmetries.
In our subsequent calculations, we denote the perturbations
as

Upq = U
∑

j

�
†
j σpτq� j, (3)

where U represents the strength of the on-site potential. There
are 16 potential on-site perturbation terms, denoted as Upq. In
the main text, we present the results of two types of perturba-
tions, namely U0x and U0z (for more information about other
perturbations, please refer to Sec. IV of the Supplemental
Material [88]). As shown in Figs. 3(c) and 3(d), when we
add perturbation terms to the quasicrystalline Hamiltonian H
(including the mass term Vxx), we observe that the gapless
Majorana zero-energy modes are eliminated by the pertur-
bation U0x, while the Majorana zero-energy mode remains
unaffected by the perturbation term U0z. Through symme-
try analysis (detailed in Table S1 [88]), we discover that
the perturbation U0x breaks the symmetries MyMz, C2Mz,
and P , whereas U0z only breaks the combined symmetry
MyMz. The results indicate that as long as the system with
mass term Vxx maintains the combined symmetry constraints
of C2Mz and/or MyMz, the gapless Majorana zero-energy
modes are robust to weak perturbations. In other words, the
Majorana zero-energy modes that appear after the symmetry
MyMz flips the sign of the mass term are protected by C2Mz

symmetry.
Here, we turn to explore the topological invariants of

higher-order topological states in sixfold quasicrystals. The
topological invariants of quasicrystals are generally ob-
tained from the eigenstates of compound operation CnMz

[69,70,81]. However, the mass terms in our model break
the C6Mz symmetry. Here we employ the eigenstates of
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FIG. 4. The energy spectrum as a function of chemical potential μ with t = � = V = 1, and and lattice site number N = 4729.
(a) Topological invariants νM,0, νM,�, and νM = νM,0νM,�. The topological phase transitions occur near μ ≈ ±2.6. (a) Spectrum of the 30
states closest to zero energy in a finite sample. The line color shows the weight of the state on the corners (red), edges (blue), and bulk (black).
The bulk gap closes at certain μ without affecting the topological properties.

compound operation MyMz because it commutes with the
Hamiltonian [92]. Since (MyMz )2 = +1, the eigenvalues of
it can be +1 or −1, and their eigenstates are linked by the
particle-hole symmetry P . Subsequently, a Z2 invariant νM in
the two reflection sectors is defined as

νM = sign[pfH±(k0) · pfH±(kπ )], (4)

where pf denotes the Pfaffian, and k0 = (0, · · · , 0) and kπ =
(π, · · · , π ) represent high-symmetry momentum. H± is the
Hamiltonian restricted to the ±1 eigensubspace of MyMz.
The selection of the reflection sector is arbitrary (H+ or H−)
since they can yield identical topological invariants. Conse-
quently, a robust Z2 invariant is established as νM = νM,0νM,�.
By conducting numerical computations, we observe a band
inversion occurring at μ ≈ ±2.6, with the topological invari-
ant νM = −1 existing between these thresholds, as depicted
in Fig. 4(a). The eigenvalues corresponding to different μ val-
ues in Fig. 4(b) demonstrate that the Hamiltonian supporting
nontrivial invariants exhibit nontrivial Majorana zero-energy
corner modes.

Additionally, the mechanism that achieves higher-order
topology in sixfold quasicrystal is also applicable to other
quasicrystal systems with C4N+2 rotational symmetries (see
Sect. V of the Supplemental Material [88] for details). For
example, we have achieved higher-order topology in tenfold
quasicrystal by the combined symmetry MyMz when the
mass term Vxx is introduced, as shown in Fig. S5 [88]. The
symmetry MyMz flips the initial distribution of the mass-
term sign with respect to the My-invariant line, so that the
sign of the mass term alternates between adjacent boundaries
encircling the perimeter of the sample, leading to ten Majo-
rana zero-energy modes. Moreover, by substituting the factor
in the mass term from cos( 4N

2 α jk ) to sin( 4N
2 α jk ), our mech-

anism extends its applicability to quasicrystalline systems
possessing C4N symmetry (see Sec. V of the Supplemental
Material [88]). Within quasicrystals featuring C4N symmetry,
the mass term Vx0 concurrently anticommutes with Mx, My,
and Mz symmetries, leading to the formation of a band gap in
the Majorana edge modes. Simultaneously, the joint influence
of symmetries MxMz and MyMz results in the mass-
term sign alternating along the sample boundaries, thereby

generating Majorana zero-energy modes at each corner of the
sample, as shown in Figs. S7 and S8 [88]. This suggests that
our mechanism applies to quasicrystalline systems with C2N

symmetry, encompassing both C4N+2 and C4N .
Recently, the higher-order topological phase of 2D qua-

sicrystals has been extended to higher-order topological
semimetals in 3D quasicrystals [83,93]. Similarly, a fasci-
nating 3D higher-order topological semimetal can also be
realized in sixfold symmetric quasicrystals. Here, we assume
the quasicrystal is periodic along the z axis and the interlayer
Hamiltonian Hinter can be expressed as follows:

Hinter = tz cos(kz )
∑

j

�
†
j σxτx� j, (5)

where tz represents the magnitude of the interlayer interaction.
After introducing this Hamiltonian, it is found that the Hamil-
tonian is topologically nontrivial for −0.5π � kz � 0.5π and
trivial for other values of kz. The results of our numerical
calculations are presented in Fig. S9 [88], revealing that the
hinge states are clearly visible near the Fermi level within the
range of −0.5π � kz � 0.5π , and there are no hinge states in
other ranges of kz.

Conclusion. To sum up, we propose that a 2D quasicrys-
talline SOTSC with six corner states can be realized on a
bronze hexagonal quasicrystal. The realization of such a qua-
sicrystalline SOTSC is based on the combined symmetry of
vertical and horizontal mirrors, which causes a sign change in
the mass term with respect to the horizontal mirror. Further-
more, our calculations demonstrate that the nontrivial corner
states remain robust even under global symmetry breaking
and weak perturbations. This mechanism is also applicable
to quasicrystals with rotational symmetries of C4N+2 and C4N ,
indicating its broad applicability in quasicrystalline systems
with C2N symmetry. Recently, the HOTIs has been realized
in artificial systems like photonic [38] or acoustic [30] meta-
materials, ultracold atoms [94], and even topolectrical circuits
[74]. Similarly, we can realize the sixfold symmetric higher-
order topological states with specific structure and “hopping”
interactions. Consequently, we anticipate that our proposal
will swiftly capture theoretical interest in noncrystalline sys-
tems and may promptly attract experimental attention.
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Appendix: Methods. We consider a model describing a 2D
TSC within class D [69,89,90], representing fermions sub-
ject to p-wave odd momentum pairing, denoted as �(p) =
−�(−p). To construct the real-space Bogoliubov-de-Gennes
(BdG) Hamiltonian, we associate sites and hoppings to the
vertices and edges of a Cn symmetric quasicrystal lattice. The
BdG Hamiltonian is expressed in the following form:

H =
∑

j

�
†
j H j� j +

∑

〈 j,k〉
�

†
j H jk�k, (A1)

with �
†
j = (ψ†

j,↑, ψ j,↑, ψ
†
j,↓, ψ j,↓), where ψ

†
j,σ represents the

fermionic creation operator for a particle on site j with spin
σ , and 〈· · · 〉 indicates sites connected by a bond. The on-site

Hamiltonian is

H j = μσzτz, (A2)

where μ signifies the chemical potential. Pauli matrices τ and
σ operate on the electron-hole and spin degrees of freedom,
respectively. The hopping terms takes the form:

H jk = t

2
σzτz + �

2i
[cos(α jk )σzτx + sin(α jk )σzτy], (A3)

with t representing the normal hopping strength, � denoting
the p-wave pairing strength [95–98], and α jk indicating the
angle formed by the hopping with respect to the horizontal
direction [70]. The model describes a 2D TSCs with opposite
Chern numbers within class D. This system hosts a pair of
counterpropagating Majorana edge modes along its boundary.
The presence of reflection symmetry in the system prevents
these edge modes from gapping out. To achieve a higher-order
topological phase, we introduce an additional mass term.
This term effectively gaps the 1D lower boundary modes of
conventional topological phases. As a result, Dirac-mass do-
main wall states emerge at the intersections between adjacent
boundaries.

[1] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quan-
tized electric multipole insulators, Science 357, 61 (2017).

[2] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[3] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topolog-
ical insulators, Sci. Adv. 4, eaat0346 (2018).

[4] Z. Song, Z. Fang, and C. Fang, (d − 2)-dimensional edge
states of rotation symmetry protected topological states, Phys.
Rev. Lett. 119, 246402 (2017).

[5] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I.
Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig,
and T. Neupert, Higher-order topology in bismuth, Nat. Phys.
14, 918 (2018).

[6] C. Yue, Y. Xu, Z. Song, H. Weng, Y.-M. Lu, C. Fang, and
X. Dai, Symmetry-enforced chiral hinge states and surface
quantum anomalous Hall effect in the magnetic axion insulator
Bi2−xSmxSe3, Nat. Phys. 15, 577 (2019).

[7] X.-L. Sheng, C. Chen, H. Liu, Z. Chen, Z.-M. Yu, Y. X. Zhao,
and S. A. Yang, Two-dimensional second-order topological
insulator in graphdiyne, Phys. Rev. Lett. 123, 256402 (2019).

[8] C. Fang and L. Fu, New classes of topological crystalline insu-
lators having surface rotation anomaly, Sci. Adv. 5, eaat2374
(2019).

[9] Y. Xu, Z. Song, Z. Wang, H. Weng, and X. Dai, Higher-order
topology of the axion insulator EuIn2As2, Phys. Rev. Lett. 122,
256402 (2019).

[10] M. Ezawa, Higher-order topological insulators and semimetals
on the breathing kagome and pyrochlore lattices, Phys. Rev.
Lett. 120, 026801 (2018).

[11] M. Ezawa, Topological switch between second-order topologi-
cal insulators and topological crystalline insulators, Phys. Rev.
Lett. 121, 116801 (2018).

[12] M. Ezawa, Magnetic second-order topological insulators and
semimetals, Phys. Rev. B 97, 155305 (2018).

[13] M. Ezawa, Strong and weak second-order topological insula-
tors with hexagonal symmetry and Z3 index, Phys. Rev. B 97,
241402(R) (2018).

[14] F. K. Kunst, G. van Miert, and E. J. Bergholtz, Lattice mod-
els with exactly solvable topological hinge and corner states,
Phys. Rev. B 97, 241405(R) (2018).

[15] M. Ezawa, Minimal models for Wannier-type higher-order
topological insulators and phosphorene, Phys. Rev. B 98,
045125 (2018).

[16] G. van Miert and C. Ortix, Higher-order topological insulators
protected by inversion and rotoinversion symmetries, Phys.
Rev. B 98, 081110(R) (2018).

[17] S. Franca, J. van den Brink, and I. C. Fulga, An anomalous
higher-order topological insulator, Phys. Rev. B 98, 201114(R)
(2018).

[18] Y. You, T. Devakul, F. J. Burnell, and T. Neupert,
Higher-order symmetry-protected topological states for in-
teracting bosons and fermions, Phys. Rev. B 98, 235102
(2018).

[19] M. Lin and T. L. Hughes, Topological quadrupolar semimet-
als, Phys. Rev. B 98, 241103(R) (2018).

[20] L. Trifunovic and P. W. Brouwer, Higher-order bulk-boundary
correspondence for topological crystalline phases, Phys. Rev.
X 9, 011012 (2019).

[21] J. Ahn, S. Park, and B.-J. Yang, Failure of Nielsen-Ninomiya
theorem and fragile topology in two-dimensional systems with
space-time inversion symmetry: Application to twisted bilayer
graphene at magic angle, Phys. Rev. X 9, 021013 (2019).

[22] C. H. Lee, L. Li, and J. Gong, Hybrid higher-order skin-
topological modes in nonreciprocal systems, Phys. Rev. Lett.
123, 016805 (2019).

[23] T. Liu, Y.-R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M.
Ueda, and F. Nori, Second-order topological phases in non-
Hermitian systems, Phys. Rev. Lett. 122, 076801 (2019).

L121403-6

https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41567-019-0457-0
https://doi.org/10.1103/PhysRevLett.123.256402
https://doi.org/10.1126/sciadv.aat2374
https://doi.org/10.1103/PhysRevLett.122.256402
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.121.116801
https://doi.org/10.1103/PhysRevB.97.155305
https://doi.org/10.1103/PhysRevB.97.241402
https://doi.org/10.1103/PhysRevB.97.241405
https://doi.org/10.1103/PhysRevB.98.045125
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1103/PhysRevB.98.201114
https://doi.org/10.1103/PhysRevB.98.235102
https://doi.org/10.1103/PhysRevB.98.241103
https://doi.org/10.1103/PhysRevX.9.011012
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevLett.123.016805
https://doi.org/10.1103/PhysRevLett.122.076801


SECOND-ORDER TOPOLOGICAL STATES IN A SIXFOLD … PHYSICAL REVIEW B 109, L121403 (2024)

[24] F. Liu, H.-Y. Deng, and K. Wakabayashi, Helical topologi-
cal edge states in a quadrupole phase, Phys. Rev. Lett. 122,
086804 (2019).

[25] Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig,
Higher-order topology, monopole nodal lines, and the origin
of large fermi arcs in transition metal dichalcogenides XTe2

(X = Mo, W), Phys. Rev. Lett. 123, 186401 (2019).
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