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We report on a realistic and rather general scheme where noncollinear magnetic textures proximitized with the
most common s-wave superconductor can appear as the alternative to p-wave superconductor—the prime pro-
posal to realize two-dimensional (2D) Kitaev model for topological superconductors (TSCs) hosting Majorana
flat edge mode (MFEM). A general minimal Hamiltonian suitable for magnet/superconductor heterostructures
reveals robust MFEM within the gap of Shiba bands due to the emergence of an effective “px + py”-type p-wave
pairing, spatially localized at the edges of a 2D magnetic domain of spin spiral. We finally verify this concept by
considering Mn (Cr) monolayer grown on an s-wave superconducting substrate Nb(110) under strain [Nb(001)].
In both 2D cases, the antiferromagnetic spin-spiral solutions exhibit robust MFEM at certain domain edges that
is beyond the scope of the trivial extension of one-dimensional (1D) spin-chain model in 2D. This approach,
particularly when the MFEM appears in the TSC phase for such heterostructure materials, offers a perspective
to extend the realm of the TSC in 2D.

DOI: 10.1103/PhysRevB.109.L121301

Introduction. A strong quest for topological superconduc-
tors (TSCs) hosting Majorana zero-modes (MZMs) [1–9] has
been accumulating an immense interest based on magnetic
adatoms fabricated on top of an s-wave superconductor (SC)
substrate [10–32]. These magnetic atoms in the presence of
superconductivity lead to the formation of Yu-Shiba-Rusinov
(YSR)/Shiba bands [10,11,33] inside the superconducting
gap. The mini gap created within such bands plays a pivotal
role in exhibiting topological MZMs [10,11,34–39] through
phase transitions, akin to the one-dimensional Kitaev model
(1D-KM) [1,4]. Generally, the corresponding features like
the Shiba states and/or the MZMs are experimentally de-
tected [40–46] in a 1D spin chain mimicking a trail of
magnetic impurities when grown on an s-wave SC. It is
essential to highlight that a transition from a 1D finite fer-
romagnetic (FM) spin-chain model with Rashba SOC to its
two-dimensional (2D) counterpart (FM finite domain) reveals
fresh and unique phenomena: the TSC phase in 1D is man-
ifested through the emergence of MZMs [47,48] while a
generalized “px + ipy”-type pairing governing 2D TSC phase
brings higher Chern numbers and dispersive chiral Majo-
rana edge modes [49,50]. Preserving all essential terms in
those models, this dimensional extension in the problem in-
troduces unique and distinct physics beyond the scope of
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its 1D counterpart. Therefore, moving to 2D-KM, the prime
proposal turns out to be the p-wave SCs and thus, there
has been a growing consensus on realizing p-wave SCs
in materials despite its rarity so far. A distinct signature
of such TSCs is nondispersive Majorana flat edge modes
(MFEMs) localized at edges of a 2D domain, which can be
probed experimentally using scanning-tunneling microscopy
(STM) and angle-resolved photo emission spectroscopy
(ARPES).

Recently, theoretical proposals for the 2D-KM with topo-
logical gapless phase hosting MFEMs has been put forward by
employing (px + py) SCs [51,52]. A few alternative schemes
using inhomogeneous magnetic fields, various magnetic or-
ders, etc., were also explored to generate different p-wave
pairing [53–55]. Although a formal connection involving both
model and real materials, manifesting similar behavior has
never been proposed in this context. Hence, we can address
the following intriguing questions that have not been an-
swered so far to the best of our knowledge: (a) Can we
architect and identify magnetic heterostructures where the
spin-spiral (SS) solution in the presence of s-wave SC exhibits
features of 2D-KM? (b) Is it possible to derive an effective
continuum model consisting of an induced effective spin-orbit
coupling (SOC) and Zeeman field to describe such system?
(c) Finally, and the most importantly, can we identify pro-
totype systems where the SS ground state exhibits gapless
TSC phase hosting MFEM within a lattice model? By stabi-
lizing the SS state in 2D films comprising of 3d transition
metal (TM) monolayer and s-wave SC substrate may offer
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the most promising platform for stabilizing the TSC phase in
experiments.

In this letter, we first deal with the SS textures in 2D,
mimicking spatially varying magnetic impurities proximitized
with an s-wave SC. An effective (px + py)-SC pairing is
identified for the SS propagating along [110] direction in a
square domain, manifesting gapless TSC phase. Note, the
signature of the TSC phase, i.e., the nondispersive MFEMs
cannot be obtained by straightforward generalization of a 1D
system [11]. The interplay between the SS state and s-wave
SC in our minimal model leads to the emergence of a dis-
tinctive “px + py”-type SC pairing, supporting the existence
of a gapless topological superconducting phase in 2D. At
the end, the designed TM/SC heterostructures must reveal
SS ground state. We design potential material candidates:
one monolayer of Mn and Cr on Nb(110) and Nb(001) SC
substrates, respectively. Experimentally observed in-gap YSR
band in Mn/Nb(110) [56] is well reproduced within our
minimal model, owing to the proximity induced SC in the
antiferromagnetic (AFM) state. By looking at other aspects of
2D noncollinear magnets [57–59], we apply uniform biaxial
strain for engineering AFM-SS state as the ground state in
Mn/Nb(110). The AFM-SS within a lattice model reveals
TSC phase hosting MFEM. The TSC phase is further ob-
served in another example, unstrained Cr/Nb(001). Hence,
such real materials platform adds significant merit to the prob-
lem we are dealing with.

Formulation of 2D Kitaev continuum model. Within a con-
tinuum model, we first propose a general route to design
2D gapless TSC phase via engineering SS textures, when
proximitized with an s-wave SC. The 2D model Hamiltonian
for locally varying magnetic impurities reads in the Nambu

spinor form �(r) = (cr,↑, cr,↓, c†
r,↓, −c†

r,↑)
T

as H2D =∫
dr�†(r) H �(r), where cr,↑(↓) represents the quasiparticle

annihilation operator for the up (down) spin at r = (x, y). The
first quantized form of this Hamiltonian reads

H = − 1
2∇2τz − JS(r) · σ + �0τx − μτz. (1)

For simplicity, we consider h̄ = 1 and m = 1. The Pauli ma-
trices σ and τ acts on the spin and particle-hole subspace,
respectively. J , �0, and μ denote the local exchange-
interaction strength between the magnetic impurity spin and
electrons in the SC, the s-wave order parameter, and the chem-
ical potential, respectively. We assume the impurity spins to
be classical and confined in the xy plane with magnitude
|S| = 1. Therefore, spin vector S(r) can be locally described
as S(r) = |S|(cos[φ(r)], sin[φ(r)], 0) with φ(r) the angle
between two adjacent spins. By a unitary transformation U =
e− i

2 φ(r)σz , an effective low-energy Hamiltonian H̃ = U †HU in
2D becomes

H̃ = −1

2

∑
ri=x,y

[
∇2

ri
−

(
∂φ

∂ri

)2

−
(

i
∂φ

∂ri
∇ri + i∇ri

∂φ

∂ri

)
σz

]
τz

− Jσx + �0τx − μτz. (2)

Note, the similar mapping was reported for 1D spin-chain
model in case of Majorana bound-state solution [60].

Henceforth, we assume that the SS is propagating along the
diagonal of a square domain as depicted in Fig. 1, effectively

FIG. 1. The schematic setup of our model, a 2D square lat-
tice with SS state placed on the surface of an s-wave SC. Two
possible experimental schemes to probe MFEM: the momentum-
space probe (e.g., ARPES), measures the spectral function as a
signature of the MFEM and the real space probe (e.g., STM),
measures the spatial distribution of the MFEM at edges, see the
corresponding right images.

along [110] direction. The angle φ(r) = g · r = (gxx + gyy)
defines the angle between two adjacent spins along the SS
propagation direction where gx and gy values control the SS
period and propagation direction. Generally, for |gx| �= |gy|,
one finds an asymmetric spin texture where the SS propagates
neither [110] nor [11̄0] directions and the Hamiltonian H̃ in
Eq. (2) can be rewritten in the momentum space as

H̃ (k) = ξk,gτz + 1
2 g · k σzτz + Jσx + �0τx, (3)

where, ξk,g = 1
2 (k2 + g2) − μ. The second term represents

an effective SOC, resulting from the spin texture in our
model. Although the nature of such SOC is quite non-
trivial as it originates from the spin texture, it can in-
terestingly show a gapless TSC phase in the presence of
Zeeman-like field of strength J along the x direction. We
obtain the spectrum for the Hamiltonian H̃ (k) Eq. (3)

as Er,s(k, g) = r
√

J2 + �2
0 + ξ 2

k,g + 1
4 k · g + sF (k, g), where

r, s = ± and F (k, g) =
√

[(k · g)2 + 4J2]2ξ 2
k,g + 4J2�2

0. Fol-

lowing the gap-closing condition corresponding to the two
lowest energy bands, the critical value of J becomes Jc(g) =√

�2
0 + (μ − g2/2)2. The SS period now can be manifested

like T = π/|g| = π/
√

g2
x + g2

y [60]. Hence, in case of |gx| =
|gy| = g, the period turns out to be T = π/

√
2g. Naively, the

SS solution is governed by the RKKY-type (Ruderman-Kittel-
Kasuya-Yosida) exchange frustration and if the period of SS
is set by the Fermi momentum kF , then T = π/|g| = π/|kF |
[12–14,60]. In such case, the topological transition occurs at
Jc = �0 so that μ = |kF |2/2. However, in real TM/SC sys-
tems, the SS solution is the outcome of a complex interplay of
material-dependent parameters: the exchange coupling con-
stants Ji j’s; the Dzyaloshinskii-Moriya Interactions (DMIs)
Di j’s; and the uniaxial magneto crystalline anisotropy K.

The band structure of this system has been analyzed using
the lattice version of the Hamiltonian H̃ (k) defined as H̃L(k),
see Eq. (S1) in the Supplemental Material (SM), Sec. S1
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FIG. 2. The bulk band structures of the Hamiltonian H̃L(k) in
the kx-ky plane is depicted for (a) the trivially gapped SC phase J <

Jc (= 1.6�0 ), (b) the gap-closing transition point J = Jc (= 1.77�0 ),
and (c) the gapless TSC phase hosting MFEM J > Jc (= 2.0�0 ).
(d) TDOS ρ(E ) is shown as a function of E/�0 for the above-
mentioned J values in the parentheses. All remaining parameters take
values gx = gy = π/2, μ = �0 = t .

[61]. We depict the bulk band structure of H̃L(k) and the
corresponding total density of states (TDOS) ρ(E ) in Fig. 2.
The topological phase transition occurs between a normal SC
phase with a trivial gap, Fig. 2(a) for J < Jc to the gapless
TSC phase, Fig. 2(c) for J > Jc via a gap-closing phase,
Fig. 2(b) at J = Jc = 1.77�0. The topological characteriza-
tion via appropriate topological invariant (ν) is provided in
the SM, Sec. S1 [61]. The invariant ν changes from 0 to 1 and
hence, the system undergoes a transition from a trivial gapped
state (J < Jc) to a nontrivial (J > Jc) TSC phase. This gap-
less phase displays graphenelike semimetalic behavior [62,63]
where ρ(E ) corresponding to the gapless TSC phase (J > Jc)
varies almost linearly with E , see Fig. 2(d). The band structure
illustrated in Fig. 2(c) resembles that of the 2D-KM in the
TSC phase, reported recently in Refs. [51,52]. There, the idea
of 2D-KM hosting MFEM has been analytically formulated
considering (px + py) SCs. Indeed, we derive an effective
“px + py” SC pairing [based on Eq. (3)] as a result of a domain
of SS states propagating along the [110] direction when it
is proximitized with an s-wave SC, see details in Sec. S6 in
the SM [61]. Moreover, the inclusion of Rashba SOC in our
model and the extension to multiorbitals [64,65] (see Sec. S7
in the SM [61]) do not significantly affect the presence and
characteristics of MFEMs. These results seemingly ensure
that the crucial prerequisite for the TSC phase is the non-
collinear SS state stabilized in TM/SC systems.

In a slab geometry, we then calculate the spectral func-
tion A(kx, ω) [66]. Figure 3 shows the behavior of A(kx, ω)
as a function of energy ω/�0. Indeed, the MFEM signa-
ture is found clearly in the gapless TSC phase in Fig. 3(c).
Figure 3(a) shows a trivial gap, i.e., without any signature
of MFEM and in Fig. 3(b) for J = Jc, the edge modes in
A(kx, ω) plot are still infinitesimally gaped. Experimentally,
one can probe these signatures of TSC phase using ARPES

FIG. 3. Panels (a)–(c), the density plots of A(kx, ω) in the kx-ω
plane. A signature of the MFEM is seen in panel (c) for J > Jc (=
2.0�0 ) where the bulk is a gapless TSC. We choose the same set of
respective parameters as mentioned in Fig. 2.

measurements but such a small gap close to the transition
point will be impossible to resolve.

2D Kitaev lattice model for TM/SC heterostructure.
Focusing on realistic materials framework, we rational-
ize the above-described phenomena using their magnetic
ground states. We, therefore, design two prototype TM/SC
heterostructures based on 3d-TM monolayer grown on s-
wave SC substrates: Mn/Nb(110) and Cr/Nb(001). The
Mn/Nb(110) example with its relaxed-film geometry con-
structed with the optimized lattice constant of bulk Nb [67]
indeed show a c(2 × 2) AFM order as the ground state (for
detailed results, see SM, Sec. S3(A) [61]), recently reported in
experiment also [56]. Surprisingly, we find a transition to an
AFM-SS state via a uniform biaxial compressive strain within
the range ∼ − 1 to −4%. Considering a = 3.234 Å and b =√

a = 4.574 Å (strain ∼ − 2.7%), Fig. 4(a) illustrates Ji j’s
and the absolute values of DMI (Di j) as a function of dis-
tance between Mn atoms and here, K is positive, i.e., out of
plane. The vector orientations of DMIs in the inset connecting
neighboring atoms match the symmetry rules for a system
with C2v symmetry [68]. Calculational details and more results
with varying planner strains on Mn/Nb(110) film are provided
in the SM, Sec. S3(B) [61]. The AFM-SS solution occurs
as the stable state even without DMIs, resulting from the
strong frustration in Ji j’s connecting Mn moments (MMn =
3.53 µB). The significantly weak DMI strengths (< 0.5 meV)
are attributed to the weak SOC in light atoms and here, it
determines a right-handed cycloidal AFM-SS as the ground
state propagating along the [010] direction, see Fig. 4(b).

FIG. 4. For Mn/Nb(110) with strain ∼ − 2.7%, (a) Ji j’s and
Di j’s are plotted as a function of distance measured in units of lattice
constant a. Calculated K is out-of-plane. Lower left inset shows the
c(2 × 2) AFM surface unit cell (yellow and green balls represent up
and down spins, respectively), possessing C2v symmetry. The lower
right inset describes vector orientations of DMIs. (b) The AFM-SS
ground state propagates along the [010] direction. (c) A 32 × 32
AFM-SS domain where edges are considered along [110] and [1̄10]
directions.
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Here, we elucidate a minimal electronic-model Hamilto-
nian in real space for a 2D lattice:

H = −
∑

〈i, j〉,α
ti jc

†
i,αc j,α − μ

∑
i,α

c†
i,αc j,α

+ J
∑
i,α,β

c†
i,α (ŝi · σ)α,βci,β + �0

∑
i

(c†
i,↑c†

i,↓ + H.c.), (4)

where i, j indices run over all the lattice sites, α, β denote
the spin, 〈〉 represents nearest-neighbor hopping only, μ,
J , �0 represent the chemical potential, exchange coupling
strength, s-wave SC gap, respectively, and c†(c) corresponds
to the electron creation (annihilation) operator for the SC. For
simplicity, we assume the hopping amplitude ti j = t ji = −t
with t = 1 for the overall energy scale of our system. This
minimal Hamiltonian is essentially constructed to ensure the
importance of magnetic textures (alternative to the intrinsic
SOC) of TM/SCs in the context of stabilizing TSC phase. All
spin textures are actually entered in the third term in Eq. (4),
describing a local interaction between the electron’s spin (σ )
and the moments of Mn or Cr. The unit vector ŝi denotes
(sin θi cos φi, sin θi sin φi, cos θi ), mimicking locally varying
magnetic impurities. One can extract these θ and φ from the
spin textures generated by the MC simulations for TM/SC
systems.

In the case of Mn/Nb(110), the c(2 × 2) AFM phase has
been assessed first via numerically solving Eq. (4). Our results
indeed describe the experimental findings where the s-wave
SC and AFM phases are found to coexist [56], see the SM,
Sec. S3(B) for more details [61]. The in-gap YSR bands en-
sure the qualitative accuracy of our minimal model in Eq. (4).

A few important results are obtained from the numeri-
cal simulations by considering the AFM-SS 2D domain. We
construct a domain of size 32 × 32 (1024 spins) where the
AFM-SS is propagating along the diagonal of that domain
(as similar in the FM-SS, Fig. 1) with edges along [110] and
[11̄0] directions, see Fig. 4(c). Hence, these directions are
parallel to the rotated vectors a′ and b′ of the 2D lattice in the
inset of Fig. 4(a). The measured θ and φ values describe ŝ to
solve Eq. (4), numerically. Results are summarized in Fig. 5,
where (a) and (b) depict the local density of states (LDOS)
for the zero-energy (E = 0) states using coupling constant
J = 4.5�0 and 5.0�0, respectively. The zero-energy states
populate along the edges of the domain in Fig. 5(a) and hence,
the system is in the TSC regime. The MFEM are maximally
localized at the two opposite corners of the system and dis-
perse gradually along the edges. Moreover, the signature of
the MFEM is more evident from the nondispersive states at
En = 0 in the eigenvalue spectrum plotted as a function of
the state index n in the inset of Fig. 5(a). The semimetallic
behavior of the bulk YSR band at J = 4.5�0 presented in the
SM, Sec. S5 [61] for the TSC regime qualitatively matches
with the continuum results presented in Fig. 2(d). The inset
of Fig. 5(b) shows a trivial phase by opening a gap in the
eigenvalue spectrum around En = 0.

Seemingly, it appears that the coupling constant J (rather,
J/�0) plays a major role in the phase transition between
trivial SC and TSC phases. Particularly, J value is often
very challenging to determine for such materials. Therefore,
in Fig. 5(c), we depict the eigenvalue spectrum E/�0 as

FIG. 5. The normalized LDOS for E = 0 eigenstate, computed
within a spin-lattice model of size 32 × 32 spins (Lx-Ly square
plane). Here, 2D lattice points are defined in units of a′ and b′,
as shown in the inset of Fig. 4(a). For Mn/Nb(110) with AFM-SS
state, (a) we identify the TSC phase for J = 4.5�0. The LDOS
is predominantly localized at the domain edges denoting MFEMs.
(b) In the trivial phase for J = 5.0�0, LDOS is delocalized over the
entire domain. Insets in (a) and (b) show a zero-energy flat mode
and a trivial gap in the eigenvalue En vs state n plots, respectively.
(c) Energy eigenvalues E of H is shown as a function of J using
OBC. (d) The bulk-gap �G profile is shown in the J-μ plane em-
ploying PBC, indicating the TSC phase (dark blue regime). The inset
is showing �G vs J plot for a fixed μ (= 4.0�0 and �0 = t ).

a function of J/�0 by employing open-boundary condition
(OBC). The MFEM appears at zero energy between J =
3.5�0 and J = 4.7�0, indicating the TSC regime. We there-
after identify the parameter regime where the MFEM appears
via calculating the bulk gap �G = |E2-E1|, within periodic
boundary condition (PBC). Here, E1 (E2) represents the two
low-energy bands. We depict �G/�0 in the J/�0-μ/�0 plane
in Fig. 5(d). The gapless TSC regime harboring MFEM is
highlighted by the dark blue strip (�G 
 0), while the regime
outside (�G > 0) represents gapped trivial superconducting
phase. In the inset of Fig. 5(d), we illustrate the bulk-gap �G
as a function of J for a fixed value of μ, for the transparent
visibility of the TSC regime. The bulk-gap �G vanishes in
the topological regime and MFEM appears at the boundary.

The new example, Cr/Nb(001), shows left-handed cy-
cloidal AFM-SS as the ground state without strain, propa-
gating along both [100] and [010] degenerate directions. The
degeneracy is owing to the symmetry rules followed by the
DMI vectors in the C4v symmetric film [68]. We solve Eq. (4)
again for the square domains and all results are presented in
the SM, Sec. S4 [61].

Summary and outlook. In conclusion, by employing a con-
tinuum model, we demonstrate a route to generate a gapless
TSC phase hosting MFEMs by engineering noncollinear SS
state proximitized with an s-wave superconductor. This under-
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lying scheme is later extended within a minimal lattice model
which provides a unique way to unveil the TSC phase in
prototype real TM/SC (s-wave) materials: Mn/Nb(110) under
strain and Cr/Nb(001). Even though the SOC strength in Nb
is expected to be very small, the AFM-SS can be stabilized
from the exchange frustration, particularly in the Mn/Nb(110)
sample and, thereby, an effective SOC and Zeeman field terms
due to the spin textures manifest the Hamiltonian obtained
in Eq. (3). The immobile MFEMs can be thought of as
edge channels to carry edge vortices in Josephson junction
geometries—offering a possibility for non-Abelian “braid-
ing” operations [69,70]. Note that a similar idea has been
demonstrated in the context of braiding mobile vortices via the
chiral dispersive edge channels in 2D [71]. Importantly, the
investigation of this “braiding” protocol for MFEMs is an in-
triguing and important direction for future studies. Indeed, our

realistic model Hamiltonian unveils excellent examples where
the strain-driven modulation of the noncollinear magnetic
phases can offer unprecedented control over various types of
TSC phases including 2D-KM, higher-order topological su-
perconductors [72], and AFM-SC spintronics [73] in the near
future.
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