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Using a pure electric current to control kagome noncollinear antiferromagnets is promising in information
storage and processing, but a full description is still lacking, in particular, on intrinsic (i.e., no external magnetic
fields or external spin currents) spin-orbit torques. In this work, we self-consistently describe the relations among
the electronic structure, magnetic structure, spin accumulations, and intrinsic spin-orbit torques in the magnetic
dynamics of a noncollinear antiferromagnet driven by a pure electric current. Our calculation can yield a critical
current density comparable with those in the experiments, when considering the boost from the out-of-plane
magnetic dynamics induced by the current-driven spin accumulation on individual magnetic moments. We stress
the parity symmetry breaking in deterministic switching among magnetic structures. This work will be helpful
for future applications of noncollinear antiferromagnets.
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Introduction. Antiferromagnets have been expected to re-
place the ferromagnets in information storage and processing
because they are robust against perturbations guaranteed by
their zero stray field and have higher energy scale for ultra-
fast performance. However, it is hard to read out ordinary
PT -symmetric antiferromagnets (e.g., ↑↓↑↓ . . .) because of
their weak magnetization. Recently, kagome noncollinear an-
tiferromagnets [Fig. 1(a)] have attracted increasing attention
because they have strong anomalous Hall, Nernst, and mag-
netooptical Kerr effects [1–11] to serve as readout signals.

Using only pure electric current to manipulate the kagome
antiferromagnets can greatly facilitate device applications
[12]. Nevertheless, so far the theories mainly focus on their
anomalous [4,8,13–16] and spin [17,18] Hall effects, and their
magnetic dynamics driven by the extrinsic mechanisms, i.e.,
through an extrinsic spin current assisted by a magnetic field
[19–21]. A theory that fully describes the magnetic dynamics
driven by a pure electric current is still lacking, in particular,
on their intrinsic spin-orbit torques.

In this Letter, we theoretically show how a kagome non-
collinear antiferromagnet can be manipulated by the intrinsic
spin-orbit torques from the spin accumulations induced by a
pure electric current, following the microscopic mechanism
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below [Figs. 1(b)–1(d)].
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FIG. 1. (a) A kagome noncollinear antiferromagnet, e.g., Mn3Sn.
The red, green, and blue arrows stand for the three Mn moments
m (1–3 on layer A, 1′–3′ on layer B) in the unit cell of a single
kagome layer. (b) and (c) The spin-orbit coupling converts a pure
electric current into spin accumulations (dashed arrows for in-plane
s|| and ⊗ for ut-of-plane s⊥). The spin accumulations induce an
out-of-plane component m⊥ of m, via the field-like torque m × s||
for s|| in (b) or via the damplike torque αm × (m × s⊥) for s⊥ in
(c). (d) For a moment m, its antiferromagnetic interaction with other
two moments acts like an effective field HAFM and m⊥ × HAFM gives
the torques (orange arrows and ⊗) that rotate the magnetic structure
in the kagome (x-z) plane. The fieldlike torque in (b) is dominant,
because of the small damping constant α in front of the damplike
torque in (c).
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FIG. 2. The flowchart of the numerical simulation. We start by
assuming an initial magnetic structure described by Eq. (1), which
serves as local magnetic fields in the s − d model Eq. (7). Then,
we use Eqs. (4) and (5) to calculate the spin accumulations on
the Mn atoms at a given injecting current Eq. (6) and use Eq. (3)
to calculate the magnetic torques of the spin accumulations in the
Landau-Lifshitz-Gilbert equation, Eq. (2), which generates a new
magnetic structure. The steps are iterated until the magnetic structure
converges, then the sign of the Hall signal can be determined by ϕ2.

We self-consistently calculate the electronic structure, mag-
netic structure, spin accumulations, and intrinsic spin-orbit
torques (Fig. 2). We point out the significance of parity
symmetry breaking in deterministic switching (Fig. 3). Our
calculation can yield a critical current density comparable
with those in the experiments (Fig. 4), when considering the
boost from the out-of-plane magnetic dynamics induced by
the current-driven spin accumulation on individual magnetic
moments. Our description of the magnetic dynamics of the
kagome noncollinear antiferromagnet will be helpful for fu-
ture applications.

Intrinsic spin-orbit torques. First, we illustrate the spin-
orbit torques from the spin accumulations induced by the pure
electric current. The noncollinear antiferromagnet Mn3Sn is
formed by stacked bilayers along the c (y here) axis (Fig. 1).
One layer in the bilayer is the inversion of the other, composed
of a Mn kagome lattice and a Sn hexagonal lattice. In the unit
cell of the Mn lattice, the magnetic moments of the three Mn
atoms are rotated with respect to each other by nearly 120◦,
forming a noncollinear antiferromagnetic structure (Sec. S1
of Supplemental Material [22]). The unit moment ma on Mn
atom a is governed by [15]

Hm = 2
∑

ab

[Jmma · mb + Dŷ · (ma × mb)]

− K
∑

a

(êa · ma)2, (1)

where a, b ∈ {1, 2, 3} index the three Mn atoms in the
unit cell, the first summation runs over the combinations

ab ∈ {12, 23, 31}. The nearest-neighbor Heisenberg interac-
tion Jm and Dzyaloshinskii-Moriya interaction D describe
a perfect triangular noncollinear antiferromagnetic structure
with exactly 120◦ between the Mn magnetic moments. The
anisotropy K term breaks the in-plane U (1) symmetry and
leads to six stable positions to which the magnetic struc-
ture tends to relax [15] (see Fig. 4), êa represents the
anisotropic axis for ma. The injected current has to exert
enough spin-orbit torques to overcome the six stable positions
for switching.

The dynamics of the magnetic moments ma is described by
the Landau-Lifshitz-Gilbert equation (Sec. S2A of Ref. [22])

(1 + α2)ṁa = |γ |
MS

ma × δHm

δma
+ Ta + αma

×
( |γ |

MS
ma × δHm

δma
+ Ta

)
, (2)

where γ (<0) is the gyromagnetic ratio of the electron, α de-
notes the Gilbert damping coefficient, the saturation moment
of a Mn atom MS = 3μB with μB the Bohr magneton, and Ta

is the spin-orbit torques induced by the electric current. Dif-
ferent from the extrinsic damplike spin-orbit torques [23,24]
Ta ∼ ma × (ma × s) caused by externally injected spin cur-
rents with a uniform spin s, we can show that the exchange
interactions between the Mn moments and current-induced
spin accumulations (Sec. S2B of Ref. [22]) naturally give the
intrinsic fieldlike spin-orbit torques [25,26]

Ta = 2|γ |JsdVU

MSh̄
ma × s̃a, (3)

where the torques from the divergence of spin current and
spin-orbit coupling [26] have been taken into account, Jsd

is the exchange interaction between the Mn moments and
itinerant electron spins, VU is the volume of the unit cell, and
interlayer antiferromagnetic interactions (e.g., 1–2′ and 1–3′)
tend to synchronize the diagonal moments (i.e., 1 and 1′) on
two layers, so we use the averaged local spin accumulation
density s̃a = (sa + sa′ )/2. With the help of the linear-response
theory [27] (derivations in Sec. S3 of Ref. [22]), the local spin
accumulation density on Mn atom a induced by a pure electric
current are found to have two parts (d for diagonal and od for
off-diagonal matrix elements of the operators v and σ )

sd
a = eh̄

2V
τ

∑
ν,k

∂ fν
∂εν

(E · vνν )σa
νν, (4)

sod
a =eh̄2

2V

∑
μ �=ν,k

( fμ − fν )Im

[
(E · vμν )σa

νμ

(εμ − εν )2

]
, (5)

where the current density j injected along an arbitrary direc-
tion enters as an electric field

E = m∗

e2n3Dτ
j, (6)

e = −1.6 × 10−19 Coulomb, m∗ is the effective mass, n3D is
the carrier density, τ is the relaxation time. Under the driv-
ing electric current, the system will enter a nonequilibrium
static state, in a time scale described by τ (usually 1–100
picoseconds) in the current-spin correlation Eq. (4). τ is much
shorter than the nanosecond timescale of switching in Fig. 4,
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FIG. 3. Parity symmetry has to be broken for an electric current
to deterministically manipulate the Mn moments, because the same
magnetic structure is allowed for opposite electric currents (black
arrow) under parity symmetry. We list all possible linear-momentum
Hamiltonian terms that break parity symmetry and their resulting
magnetic structures under the switching current.

where the spin density is relaxed by the torque Ta in Eq. (3)
to transfer angular momenta to the magnetic structure. V is
the volume of the system, f is the Fermi-Dirac distribution
function, σa = (σ a

x , σ a
y , σ a

z ) are the Pauli matrices for the local
spin density on Mn atom a, ε and v are the energy and group
velocity operators, ν and μ label the energy bands, described
by an s − d model (Sec. S4 of Ref. [22])

Hsd = Jsd

∑
i,a,n,n′

ma · σnn′c†
iancian′ + He, (7)

where Jsd is the exchange interaction between the Mn mo-
ments (a ∈ {1, 2, 3, 1′, 2′, 3′}) and spins of itinerant electrons
(n ∈ {↑,↓}), and i indexes the unit cell. The itinerant electron
part He needs to include parity symmetry breaking, as illus-
trated below.

Requirement of parity symmetry breaking. The parity op-
eration transforms the current (a radial vector) to the opposite
direction while leaving the Mn moments (axial vectors) in-
variant, which means that an opposite current could also lead
to the same final state of the Mn moments, so there is no
one-to-one deterministic relation between the current direc-
tion and magnetizations of the Mn moments under parity
symmetry (Fig. 3). This can also be seen from a symmetry
analysis of Eqs. (4) and (5) (Sec. S5 of Ref. [22]). Required
by parity symmetry breaking, we figure out all possible linear-
momentum Hamiltonian terms that break parity symmetry, as
shown in Fig. 3. To construct the itinerant electron Hamilto-
nian He, we choose to add pyσy term with magnitude �I

p or
py term with magnitude �II

p to break parity symmetry in the
previously proposed three-dimensional (3D) Weyl model [16].
Its tight-binding model reads

HW
e =

∑
〈ia, jb〉‖

c†
iatia, jbc jb +

∑
〈ia, jb〉⊥

c†
iat ′

ia, jbc jb

+
∑

〈ia, jb〉
c†

iai
(
�I

pσy + �II
p

)
sgn(ŷ · d̂ia, jb)c jb, (8)

TABLE I. Diagonal [Eq. (4)] and off-diagonal [Eq. (5)]
spin accumulations on the diagonal lattice sites (a, a′) ∈
{(1, 1′), (2, 2′), (3, 3′)}, constrained by the symmetries of the
model in Eq. (8) with two different parity symmetry breaking terms
�I

p and �II
p . Here, ‖∈ {x, z} and ⊥= y mean in and out of the kagome

planes, respectively. P and T are the inversion and time-reversal
operations, respectively, C2y is the twofold rotation around the y axis,
and τy is the translation along the y axis for half-lattice constant c/2.

Symmetry Diagonal Off-diagonal

�I
p �= 0, T {C2y|τy}

(
sa

d + sa′
d

)
‖ �= 0

(
sa

od + sa′
od

)
‖ = 0

�II
p = 0

(
sa

d + sa′
d

)
⊥ = 0

(
sa

od + sa′
od

)
⊥ �= 0

�I
p = 0, T {PC2y|τy}

(
sa

d + sa′
d

)
‖ = 0

(
sa

od + sa′
od

)
‖ �= 0

�II
p �= 0

(
sa

d + sa′
d

)
⊥ �= 0

(
sa

od + sa′
od

)
⊥ = 0

where cia = (cia↑, cia↓)T , ‖ and ⊥ distinguish the intralayer
and interlayer nearest-neighbor sites, tia, jb = t exp[±iα1σy/2],
with + for ab ∈ {12, 23, 31, 1′2′, 2′3′, 3′1′} and − for
ab ∈ {21, 31, 13, 2′1′, 3′2′, 1′3′}, t ′

ia, jb = t exp[− i
2 sgn(d̂ia, jb ·

ŷ)α2(cos θ d̂‖
ia, jb + sin θ ŷ) · σ]. α1, α2, and θ are the model

parameters. With the help of symmetry analysis, we find that
for �I

p �= 0, the nonzero diagonal term of spin accumulations
are in plane and nonzero off-diagonal term of spin accumu-
lations are out of plane; for �II

p �= 0, the nonzero diagonal
term of spin accumulations are out of plane and nonzero off-
diagonal term of spin accumulations are in plane (see Table I).
Another choice to break parity symmetry is a 2D Rashba
model with pxσz − pzσx term, as compared in Sec. S5 of
Ref. [22].

Complete simulation of magnetic dynamics. Following the
steps in Fig. 2, we perform numerical simulations to show how
the pure electric current switches the magnetic structure of
the kagome noncollinear antiferromagnet. The results for one
of the Weyl model (�I

p �= 0, �II
p = 0) are shown in Fig. 4(a),

measured by the magnetic moment angle of one of the Mn
atoms ϕ2. As the current along the +z (−z) direction is turned
on and above a critical current density, the magnetic structure
can be fully polarized to a metastable position at ϕ2 = π/2
(ϕ2 = −π/2). As the current is turned off, the magnetic struc-
ture relaxes to the nearest one of the six stable positions. More
simulations for the other Weyl model and Rashba model can
be found in Fig. S8 of Sec. S4C in Ref. [22].

Our simulations yield a low critical current density com-
parable with those in the experiments [12] for two reasons.
First, we reveal a boost from the out-of-plane magnetic dy-
namics, similar to a case in the collinear antiferromagnets
[28]. According to our simulations, the torque is dominantly
contributed by the scenario in Fig. 1(b), where, taking Mn 2
for example (m), its current-induced in-plane spin accumu-
lation s|| can induce an out-of-plane component m⊥ under
the fieldlike torque m × s||, as shown by Fig. 1(b). For Mn
2, its antiferromagnetic interactions with other two Mn mo-
ments [i.e., (|γ |/MS )ma × (δHm/δma) in Eq. (2)] act like
an effective field HAFM and m⊥ × HAFM gives the torque in
the kagome plane, as shown by the orange ⊗ in Fig. 1(d)
and orange arrow in Fig. 1(b). This out-of-plane dynamics
is efficient, because HAFM ∼ 2Jm/Ms ∼ 264 Tesla, is pretty
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FIG. 4. (a) Simulated magnetic dynamics of Mn3Sn in terms
of the moment angle ϕ2 (inset) of the Mn atom 2, driven by a
pure electric current below (7.5 × 106), well above (54 × 106), and
at the critical current density ( j ∼ 9.0 × 106A/cm2, comparable
with those in the experiment [12]), for the Weyl model (�I

p =
0.075eV, �II

p = 0) in Eq. (8); From 2 through 30 ns (from 50
through 75 ns), j is along the +z (−z) direction. In absence of j,
ϕ2 tends to relax at one of the six stable positions marked on the
right axis. (b) The total out-of-plane magnetic moment of all three
Mn atoms (m1 + m2 + m3)⊥ for the three current densities in (a).
The parameters are t = 0.25 eV, Jsd = 0.125 eV, α1 = α2 = π/5,
θ = π/4 [16], τ = h̄/2� with � = 1.25 meV, m∗ = 9.1 × 10−31 kg,
n3D = 6 × 1023/cm3; Jm = 23 meV, D = 1.6 meV, K = 0.17 meV,
α = 0.003 [19].

strong. This out-of-plane magnetic dynamics also occurs to
Mn 1 and Mn 3. When the total out-of-plane moments of three
Mn atoms (m1 + m2 + m3)⊥ > 0 (<0), the entire magnetic

structure rotates counterclockwise (clockwise) among stable
and metastable positions. Figure 4(b) shows that a peak of
(m1 + m2 + m3)⊥ always emerges along with a transition
in Fig. 4(a), indicating the significance of the boost from
the out-of-plane magnetic dynamics. By contrast, although
the damplike torque m × (m × s⊥) from out-of-plane spin
accumulation s⊥ in Fig. 1(c) can also induce the out-of-plane
moment, it is much smaller because of the small damping con-
stant α in front (see Sec. S2C in Ref. [22]). Second, we assume
that the Mn atoms feel different fields locally produced by the
spin accumulations in the simulation. In contrast, if we assume
that the Mn atoms feel the same field collectively (like the
torques from the extrinsically injected spin currents [19]), the
critical current density has to be about three orders larger (see
Fig. S13 in Sec. S7B of Ref. [22]). The sharp difference can
be understood as follows. The above-mentioned (m1 + m2 +
m3)⊥ is proportional to m1 × s1 + m2 × s2 + m3 × s3 under
the different-field assumption, and (m1 + m2 + m3) × s in
the same-field assumption, where s = s1 + s2 + s3, compa-
rable with each of sa (see Fig. S9 of Ref. [22]). For the
noncollinear 120◦ texture of Mn3Sn, m1, m2, m3 nearly can-
cel with each other, and m1 + m2 + m3 is about 0.01μB [19],
three orders smaller than that of ma ∼ 3μB, so the critical
current density under the same-field assumption is about three
orders larger.

Our simulations also reveal many microscopic details. For
the current density of 54 × 106 in Fig. 4(a), after turning
off the current, it takes a few ns to transit to another state.
This feature appears when the magnetic structure is very
close to a metastable position (e.g., ϕ2 = π/2) at the middle
of two neighbor stable positions (ϕ2 = π/3 and 2π/3). The
argument is, at exactly the metastable position, there is no
preference of falling to any one the two equivalent neighbor
stable positions, so it takes a longer time to break the de-
tailed balance to escape from the vicinity of the metastable
position. To illustrate this, we present the simulations starting
from slightly below, extremely close to, and slightly above a
metastable position (Fig. S15 in Ref. [22]).
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