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Anomalous Floquet Anderson insulator in a continuously driven optical lattice
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The anomalous Floquet Anderson insulator (AFAI) has been theoretically predicted in stepwise periodically
driven models, but its stability under more general driving protocols has not been determined. We show that
adding disorder to the anomalous Floquet topological insulator realized with a continuous driving protocol in
the experiment by Wintersperger et al. [Nat. Phys. 16, 1058 (2020)], supports an AFAI phase, where, for a range
of disorder strengths, all the time averaged bulk states become localized, while the pumped charge in a Laughlin
pump setup remains quantized.
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Introduction. Periodically driven quantum systems have
led to interesting phenomena in different experimental plat-
forms [1–6] and are particularly useful in the realization of
nontrivial effective equilibrium states [6–10]. The realization
of topological models such as the Hofstadter [11–13], the Hal-
dane [14–18] and the interacting Rice-Mele model [19–21]
have been reported in ultracold atom and photonic systems
[22–26]. Most of these employ the high driving-frequency
limit, where multiphoton absorption processes are suppressed
[2]. However, when the driving frequency becomes compa-
rable to the other energy scales of the driven system, novel
types of steady-state phases appear, which have no counterpart
in equilibrium systems [1,27,28]. New features in the band
structure show up due to multiple-photon processes between
neighboring bands which can survive even with weak two-
body interactions [29]. The anomalous Floquet topological
insulator (AFTI), with a novel bulk-boundary correspondence
was first theoretically predicted [27,28] with a step-driving
protocol, and realized in photonic systems [25,26]. The crucial
aspect for stabilizing the AFTI phase is the breaking of time-
reversal symmetry by circular driving, and hence, the discrete
nature of the drive does not play a major role. The AFTI
system was realized in an ultracold atomic hexagonal lattice,
with a continuous circular driving protocol, by modulating the
amplitudes of three laser beams out of phase [16–18].

Adding disorder to the AFTI phase can lead to a remark-
able new phase, the anomalous Floquet Anderson insulator
(AFAI), at an intermediate disorder strength which is com-
parable to the driving frequency. The phase is characterized
by the complete localization of all bulk states together with
the existence of robust edge states at all energies. This leads
to quantized pumping of charge, even when all the bulk
states are localized, which is impossible in equilibrium sys-
tems. In spite of theoretical predictions in idealized models
[30,31], it has not been experimentally realized. The real-
ization of this phase in ultracold atoms will, additionally,

allow us to study the interplay with two-body interactions in a
controlled way.

Our work provides numerical evidence that it is indeed
possible to stabilize the AFAI phase in the experimentally
accessible parameter regimes. However, its indicators are
strongly system size dependent. This is because complete
localization of bulk states for two-dimensional systems can
only be realized for very large system sizes. By considering
a Laughlin pump setup we show that the pumped charge
over one period of the threaded flux remains quantized even
when all bulk states become localized. We work with the
continuous driving protocol implemented on a honeycomb
lattice as realized in Refs. [16,17], and add on-site disorder
to it. The honeycomb lattice has a two-sublattice structure
which we denote by labels A and B [Fig. 1(a)]. The real-space
Hamiltonian is (h̄ = 1)

H (t ) =
∑

i

3∑
γ=1

(
Jγ (t )c†

i ci+βiγ
+ H.c.

) +
∑

i

Vic
†
i ci, (1)

where c†
i (ci ) creates (annihilates) a spinless fermion at site

i, Jγ (t ) = J exp[F cos(�t + φγ )], with φγ = 2π
3 (γ − 1), are

the hoppings across three nearest-neighbor bonds βiγ at each
site i. If the vector i points to a site in the A (B) sublat-
tice then βiγ = +(−)δγ (for γ = 1, 2, 3), where δ1 ≡ (0, a),

δ2 ≡ (−√
3a/2,−a/2), δ3 ≡ (

√
3a/2,−a/2) [Fig. 1(a)], a is

the lattice constant, J is the bare hopping amplitude, � is
the driving frequency and F is a dimensionless parameter
which controls the width of the bulk bands [32]. Vi is an
on-site disorder potential which is sampled from a uniform
distribution of width W and zero mean.

According to Floquet’s theorem, such a time-periodic
Hamiltonian admits stationary solutions, called Flo-
quet states, of the form |ψα (t )〉 = exp(−iεαt )|uα (t )〉,
where εα is the time-independent quasienergy and
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FIG. 1. (a) The driving protocol on the honeycomb lattice,
where the hopping amplitudes at each step are represented by false
color. Quasienergy spectrum at characterisic �/J values, (b1) 20,
(b2) 13.7, and (b3) 8.7 for a zigzag semi-infinite strip with 48 unit
cells and F = 2. (b1) denotes a CI regime where edge states corre-
sponding to nonvanishing bulk Chern number appear in the 0 gap. As
the driving frequency is lowered the π gap closes (b2) and reopens,
leading to an AFTI regime (b3) having edge states in all gaps but
vanishing Chern number of the bulk bands.

|uα (t )〉 = |uα (t + τ )〉 is periodic with the time-period
τ = 2π/� of the drive. Hence, |uα (t )〉 can be expanded
in its harmonics |u(n)

α 〉 = ∫ τ

0 (dt/τ ) exp(in�t )|uα (t )〉,
where n is an integer. The Hamiltonian in Eq. (1) can
be diagonalized by Fourier transformation [33] to obtain
a time-independent eigenvalue problem for the Floquet
harmonics

∑
j,m H̃ (n,m)

i j u(m)
jα = εαu(n)

iα , where H̃ (n,m)
i j = 1

τ

∫ τ

0 dt

ei(n−m)�t Hi j (t ) − m�δnmδi j is the “Floquet Hamiltonian”
[28], Hi j (t ) is the representation of H (t ) in a site-localized
basis {|i〉}, and u(m)

iα ≡ 〈i|u(m)
α 〉 is the wave function of the mth

harmonic of |uα (t )〉 (m is an integer). Henceforth, the index
α shall be restricted to the quasienergies in the first Floquet
Brillouin zone (FBZ) −�/2 � εα < �/2 [34].

Anomalous Floquet topological insulator (AFTI). We first
consider a clean system. In Fig. 1, we plot the dispersion of a
semi-infinite strip with zigzag edges for �/J = 20, 13.7, 8.7,
and |m|, |n| � N = 9. We define two gaps, the 0(π ) gap hav-
ing magnitude �0(π ), respectively, at the center and the edge
of the FBZ for bulk states. For �/J = 20, the system is a
Chern insulator (CI). On decreasing �/J , �π vanishes at
�/J ≈ 13.7 and the system undergoes a transition from a CI
phase to an AFTI phase, akin to that realized in the experi-
ments [16,17]. The dispersion for a zigzag strip when �/J is
tuned across the transition is shown in Fig. 1. In each FBZ,
the Chern number of the upper (lower) band (C±) is given by
C± = ∓(W0 − Wπ ), where W0(π ) is an integer topological
invariant for the periodically driven bulk system, called the
winding number, which counts the number of chiral edge
modes within the gap at quasienergy 0(�/2) when the system
is defined on a semi-infinite strip. This justifies how the Chern

FIG. 2. (a) Variation of the average LSR (r̄) with W/� at �/J =
8.7. Level statistics in the delocalized regime for W/� � 0.01 is
characterized by r̄ ≈ r̄GUE ≈ 0.6, and for the Anderson localized
regime for W/� � 3 by r̄ ≈ r̄Poisson ≈ 0.39. r̄ has a dip at W/� ≈
0.5, where r̄ approaches r̄Poisson with increasing system size, and
a peak at W/� ≈ 1.2. At the largest accessible size (80 × 80), the
region marked in red has localized states at all quasienergies (Fig. 3)
in the first FBZ, while the regions shown in orange and turquoise
show intermediate behavior. The red region is expected to grow
while the light red and turquiose regions are expected to shrink
with increasing size, and ultimately vanish in the limit of infinite
system size, leading to sharp localization-delocalization-localization
transitions. (b) Behavior of r̄ at W/� = 0.5 (r̄0.5) with increasing
linear dimension L of the system. The best fit (green) line indicates
that r̄0.5 should approach r̄Poisson for L � 103. (c) r̄ variation with
W/� at �/J = 20. The system goes from the delocalized Chern
insulator phase for W/� < 0.1 to a localized Anderson insulator
phase for W/� � 2 with an intermediate (blue) region which shrinks
with increasing size.

number for all the bulk bands in the anomalous phase can be
zero while it hosts robust chiral edge states [27,28].

Effect of disorder on the bulk. We focus on two charac-
teristic driving frequencies, �/J = 20 in the CI phase and
�/J = 8.7 in the AFTI phase, and study the effect of on-
site disorder in the bulk. The degree of localization in a
disordered system can be characterized by the level spacing
ratio (LSR) rα given by rα = min{sα, sα−1}/ max{sα, sα−1},
where α labels the quasienergies within the first FBZ and sα =
εα+1 − εα is the spacing between consecutive quasienergy
levels. The disorder-averaged LSR distribution is given by
p(r) = 〈∑α δ(r − rα )〉, where 〈..〉 denotes disorder averag-
ing. Results from random matrix theory suggest that p(r)
has a Poissonian form, characterized by the mean LSR (r̄)
approaching r̄Poisson = 2 ln 2 − 1 ≈ 0.39, if all the states in
the system are localized. On the other hand, p(r) in a system
without time-reversal invariance, in the thermodynamic limit,
for extended states is given by a Wigner-Dyson form cor-
responding to the Gaussian unitary ensemble (GUE), which
is characterized by r̄GUE = 2

√
3/π − 1/2 ≈ 0.60 [30,35–37].

Figures 2(a) and 2(c) show the behavior of r̄ as a function
of disorder strength W/� for �/J = 8.7 and 20, respectively.
The two-peak structure for �/J = 8.7, along with its size
dependence, indicates the presence of a localized bulk phase
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FIG. 3. (a) 〈IPRε〉 for different disorder strengths W/� for L =
80 at �/J = 8.7. The vertical cuts at center (I), three-quarters (II)
and edge (III) of the FBZ are selected and their size-dependence is
shown in the bottom panel. (b) Behavior of 〈IPR〉, the ε average of
〈IPRε〉, with varying W/�. Error bars indicate the standard deviation.
For W/� = 0.2 only one-sided error is shown since the lower bound
does not fit the plot range. The horizontal dashed black lines in both
(a) and (b) correspond to 80−2, which sets the reference level for
L−2 scaling of 〈IPRε〉. Bottom: Log-log plots of 〈IPRε〉 as a function
of L for states at the selected values of ε/� indicated by the red
triangles in (a). For 0.4 � W/� � 0.7 the system shows complete
localization marked by a size independent IPR for large L at all
quasienergies ε. For W/� ≈ 1.2 the system becomes delocalised for
large L, as inferred from the slope of the corresponding trace. It
should be compared with the black dashed line which corresponds
to L−2 scaling and represents the ideal delocalization limit in 2d. The
insets track the behavior of 〈IPRε〉 versus W/� for L = 80. The dip
occurs around W/� = 1.2 for the three energy slices.

around W/� ≈ 0.5, which is different from the Anderson
insulator (AI) phase realized for W/� � 3. Moreover, the
transition from this novel localized phase, which we call the
anomalous localized phase, to the AI phase involves a “crit-
ical” point [30], at W/� ≈ 1.2, where r̄ attains a maximum
value [38].

To investigate the localization properties of the anomalous
localized phase in more detail, we consider the inverse partic-
ipation ratio (IPR) for the time-averaged state |u(0)

α 〉, defined,
for each disorder realization, as IPRε ≡ ∑

i,α |〈i|u(0)
α 〉|4δ(ε −

εα ), where |i〉 is the site basis state [39]. Figure 3(a) shows the
disorder averaged IPR, 〈IPRε〉 for ε in the first FBZ, for dif-
ferent disorder strengths W/�. For W/� < 0.3, the spectrum
has a gap at ε/� = 0 and ±0.5, even for the largest system
size which could be accessed (80 × 80). For W/� ≈ 0.3, the
spectrum becomes gapless for large L, but has a gap at lower
L values, while for W � 0.4 the spectrum remains gapless for
all the accessed L values. In order to understand the overall
behavior of 〈IPRε〉 with changing W , we show its mean over
ε, 〈IPR〉, along with the corresponding standard deviation in

FIG. 4. (a) The Laughlin pump setup where a flux θ is threaded
through a cylindrical system. (b) The gauge choice in which ad-
ditional phases eiθ are acquired by the hopping amplitudes across
the bonds which intersect the x = 0 (dotted) line. Bottom: Variation
of the disorder normalized average pumped charge 〈P〉/P0, with
disorder strength W/� for �/J = 8.7 (c1) and 20 (c2). For 0.1 �
W/� � 1.2, in the anomalous phase (c1) 〈P〉/P0 remains quantized
to the value 1 (within error bars), and decays to zero with increasing
disorder strength. In the CI phase (c2), 〈P〉/P0 is reduced below
1 even for the lowest disorder strength considered, and decays to
zero with increasing disorder. The transitions become sharper with
increasing linear dimension L.

Fig. 3(b). As W/� increases, 〈IPR〉 attains its maximum value
near W/� = 0.5, indicating a maximally localized state on
average, and minimum value near W/� = 1.2, indicating that
on average, a maximum number of states are delocalized.

To further support these observations, we show the size
dependence of 〈IPRε〉 at three characteristic quasienergies
chosen at the center (I), three-quarters (II) and edge (III)
of the first FBZ in the bottom panel of Fig. 3. These points
are indicated by red triangles in Fig. 3(a). We find that for
0.4 � W/� � 0.7, 〈IPRε〉 remains L independent for L � 60,
across all the three ε slices. Hence, we expect the bulk states
at all quasienergies to be localized for this range of W values.
Even for lower L values 〈IPRε〉 shows almost no scaling
at the center and edge of the first FBZ for these values of
W/�, but shows scaling behavior for a quasienergy in be-
tween them [slice (II)]. Furthermore, at W/� ≈ 1.2 we find
the emergence of L−2 scaling for large L, at all the three ε

slices, even though the disorder strength is even larger than
the bandwidth of the clean system. This confirms the presence
of an additional localized phase around W/� = 0.5 and a
localization-delocalization transition around W/� = 1.2, as
indicated by the LSR.

Charge pumping. The topological properties of the phases
can by evaluated by setting up a Laughlin charge pump,
where a flux θ is threaded through the system in a cylindrical
geometry [40,41], as shown in Fig. 4(a). Assuming that the
zigzag edge of the cylinder is oriented along the x-direction,
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we choose a gauge such that the nearest-neighbor hopping
elements across the bonds which intersect the line x = 0 ac-
quire an additional phase exp(±iθ ) [30] for hopping to the
right (left) [Fig. 4(b)]. The total occupancies in the upper (U )
and lower (L) halves of the cylinder are given by QU (L)(θ ) =∑

i∈U (L) Qi, where Qi is the occupancy of the site at position
i. The difference between the total particle numbers accumu-
lated in the upper and lower halves of the cylinder is δQ(θ ) =
QU (θ ) − QL(θ ) and P ≡ (max{δQ(θ )} − min{δQ(θ )})/2 is
the pumped charge in one period of the threaded flux θ . In
a topologically nontrivial phase, the flux threading is accom-
panied by a discontinuity of δQ as θ is varied between [0, 2π ]
[41]. The site occupancies Qi can be expressed in terms of the
lesser Floquet Green’s function G< [33,41–43]

Qi =
N
2∑

n= −N
2

∫ �/2

−�/2

dω

2π
lim

�→0+
Im[G<

i,n;i,n(ω; θ )]

=
∑

α

(∑
n

∣∣u(n)
iα

∣∣2

)⎛
⎝∑

l,p

f (εα + p�)
∣∣u(p)

lα

∣∣2

⎞
⎠, (2)

where f (ω) ≡ (1 + exp(ω/T ))−1, and n and p are integers
[44]. We use Qi to calculate the disorder-averaged steady-state
pumped charge 〈P〉, normalized by its reference value P0 in
the clean system, by tracking the θ dependence of δQ for
every disorder realization. 〈P〉/P0 has been plotted in Fig. 4
(c1) for �/J = 8.7 in the anomalous localized phase and
in Fig. 4 (c2) for �/J = 20 in the CI phase. We find that
〈P〉/P0 remains quantized in the anomalous phase for W/� <

1.2, while it decreases rapidly with increasing W/� in the
CI phase [45]. This means the phase at �/J = 8.7 supports
quantized charge pumping through the edge states while its
time-averaged bulk states remain completely localized for
0.4 � W/� � 0.7. This is the signature of the AFAI phase, as
discussed in Ref. [30], which supports one chiral edge mode
at each edge of the cylinder, and the two edge modes have
opposite chiralities.

Discussion. When all the bulk states are localized then the
Chern number at any quasienergy must be zero. However, we
find that two chiral edge states, each localized at one of edges
of the system defined on a cylinder coexist with the localized
bulk states [33]. The quasienergies of chiral edge states have
a nontrivial flow under flux threading, which gives rise to
a quantized pumped charge, as was previously observed in
Ref. [30]. The localized bulk states do not flow under thread-
ing of flux and hence do not contribute to the charge pumping.
It was also shown in Ref. [30] that if one of the edge modes
is fully occupied, while the other remains unoccupied, then
the net charge flowing across any bond on the occupied edge,
per unit time remains quantized, and is equal to the winding
number in the bulk when the system has been driven over

many cycles. Here we show that the net charge pumped from
the bulk to the edges when one quantum of flux is threaded
through the cylinder also remains quantized.

Tuning F away from F = 2, for �/J = 8.7, increases
the dispersion of the bulk bands which has a destabilizing
effect on the AFAI phase. We find that the AFAI is stable
between 1.9 � F � 2.1 [33]. Topological edge states have
been observed in ultracold atoms by creating a programmable
repulsive potential and releasing a localized Bose-Einstein
condensate near the edge using an optical tweezer. Subse-
quently, in the clean system, the wave packet propagates along
the potential boundary, following its curvature, which is a
characteristic for chiral edge states [17]. Such chiral motion at
the potential boundary should also be observable in the AFAI,
while, in contrast, once the repulsive potential is switched off
the initial wave packet should remain localized [46].

Conclusion. We have studied localization properties and
charge pumping in a disordered, circularly driven honeycomb
lattice with a continuous driving protocol realized in the ex-
periments [16,17]. Within the scope of finite size numerics,
we found that a new phase emerges at intermediate disorder
strength, in which the time-averaged bulk states are fully lo-
calized while the system supports quantized charge pumping
via edge states, when the system has been evolved over many
driving cycles. This is the AFAI phase, previously predicted in
a simplified model [30] which is difficult to realize with ultra-
cold atoms. We also show that the quantized charge pumping
in the AFAI phase remains robust at intermediate disorder
strength, in contrast to the CI phase. Our approach will also al-
low us to study the interplay of on-site interactions and strong
disorder in the periodically driven system, which can lead
to discovery of new phases in hitherto unexplored parameter
regimes using Floquet-dynamical mean-field theory [29,41].
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