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Unconventional spin transport in strongly correlated kagome systems
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Recent progress in material design enables the study of correlated, low-temperature phases and associated
anomalous transport in two-dimensional kagome systems. Here, we show that unconventional spin transport can
arise in such systems even at elevated temperatures due to emergent dynamical constraints. To demonstrate this
effect, we consider a strong-coupling limit of an extended Hubbard model on the kagome lattice with a density
of 2/3. We numerically investigate the charge and spin transport by a cellular automaton circuit, allowing us to
perform simulations on large systems to long times while preserving the essential conservation laws. The charge
dynamics reflects the constraints and can be understood by a Gaussian field theory of a scalar height field.
Moreover, the system exhibits a hidden spin conservation law with a dynamic sublattice structure, which enables
additional slow relaxation pathways for spin excitations. These features can be directly tested by measuring the
dynamic spin structure factor with neutron scattering.
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Introduction. Over the past few years, different material
classes of kagome systems have been identified. In these
systems, a quasi-two-dimensional lattice of corner-shared tri-
angles is formed with bands that are partially filled. The
unique geometric structure of the kagome lattice gives rise
to a rich variety of charge- and spin-ordered low-temperature
states, leading to unconventional transport phenomena. Previ-
ous studies have predominantly focused on transport in these
exotic phases of matter. Examples include the emergence
of giant anomalous Hall and Nernst effects in noncollinear
antiferromagnetic kagome materials Mn3X (X = Sn, Ge,
Ga) [1–7], collinear kagome antiferromagnets FeX (X = Sn,
Ge) [8–11], and kagome ferromagnets such as Fe3Sn2 [12–15]
and Co3Sn2S2 [16–18]. Recently, a giant anomalous Hall
effect has been observed in a charge-density-wave phase of
the kagome metal AV3Sb5 (A = K, Rb, Cs) as well [19,20].
At even lower temperatures, these materials exhibit supercon-
ductivity [21–24], further highlighting their unique electronic
properties. Moreover, at certain commensurate fillings, an
exotic interplay of charge and spin fluctuations has been theo-
retically predicted to arise in kagome systems [25–27]. There,
emergent constraints arise from the combined effect of strong
interactions and geometric frustration, which leads to exotic
ground states at low temperatures [25–27].

Here, we show that the emergent constraints lead to un-
conventional charge and spin transport even in the disordered,
high-temperature phase of a strongly correlated kagome sys-
tem. We numerically study transport with cellular automaton
circuits that encode the constraints exactly and allow us to
simulate large system sizes and long timescales [28–31]. The
charge dynamics directly reflects the constraints and can be
explained with an effective field theory for a height variable.
Moreover, we find that the spin dynamics exhibits additional
slow relaxation pathways due to an emergent constraint with
a dynamic sublattice structure. This emergent constraint acts
as a spatially modulated symmetry of spins, leading to an

additional slow mode at finite momenta. It arises from the
interplay between strong electron correlations and geometric
frustration of the kagome lattice. We demonstrate that the un-
conventional spin transport appears as a characteristic spectral
feature in a dynamic spin structure factor near the K̃ ′ point,
which can be experimentally measured by inelastic neutron
scattering as shown in Fig. 1.

Model. We consider an extended Hubbard model on the
kagome lattice with a density of 2/3,

Ĥ = −t
∑
〈r,r′〉

∑
σ

(ĉ†
r,σ ĉr′,σ + H.c.)

+ U
∑

r

n̂r,↑n̂r,↓ + V
∑
〈r,r′〉

n̂rn̂r′ , (1)

where 〈r, r′〉 denotes nearest neighbors, t is the hopping am-
plitude, U and V (U > V ) are the on-site and nearest-neighbor
repulsive interactions, ĉr,σ (ĉ†

r,σ ) annihilates (creates) an elec-
tron at site r with spin σ =↑,↓, n̂r = ∑

σ n̂r,σ is the particle
density operator at site r, and n̂r,σ = ĉ†

r,σ ĉr,σ . In the strong-
coupling limit, U,V � t, large on-site interactions U project
out double occupancies. Then the low-energy manifold has
exactly two electrons per triangle due to large nearest-
neighbor interactions V as shown in Fig. 1(a). Treating the
nearest-neighbor hopping t as a perturbation, we obtain a
lowest-order effective Hamiltonian Ĥeff = Ĥring + Ĥspin [26].
The first term describes ring-exchange processes

(2)

where g = 6t3/V 2 is the coupling constant and
∑

� runs
over all hexagons on the kagome lattice. Ĥring consists of the
collective clockwise and counterclockwise motions of three
electrons on the hexagons, as illustrated in Fig. 1(a). The sec-
ond term Ĥspin is the nearest-neighbor Heisenberg exchange
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FIG. 1. Constrained dynamics on the kagome lattice. We study
the high-temperature transport of a kagome system with density 2/3
in the strong coupling. (a) Snapshot of a charge and spin configura-
tion. The dynamics is governed by ring-exchange processes Ĥring and
a small fraction p of spin-exchange processes Ĥspin. The dynamics
exhibits a hidden sublattice structure, illustrated by the blue and
orange circles on the dynamical sublattices A and B. In the absence
of spin exchange p = 0, the total spin on each dynamic sublattice
is conserved. (b) Extended Brillouin zone of the kagome lattice.
(c)–(e) Dynamic spin structure factor S(k, ω) along the cuts shown in
(b) with (c) p = 0, (d) p = 0.03, and (e) p = 0.06. The hidden spin
conservation law manifests itself as a strong spectral response near
the K̃ ′ point (enclosed by the white dashed line) and decreases with
increasing spin exchange p.

interaction

Ĥspin = J
∑
〈r,r′〉

(
Ŝr · Ŝr′ − 1

4
n̂rn̂r′

)
, (3)

where Ŝμ
r = (1/2)

∑
σ,σ ′ ĉ†

r,σ τ
μ

σ,σ ′ ĉr,σ ′ is the spin operator at
site r with Pauli matrix τμ (μ = x, y, z) and J = 4t2/(U −
V ) + (4t3/V 2) · (U + V )/(U − V ) is the exchange coupling
constant.

The system we consider conserves both the total charge and
total spin. Therefore, we will investigate in this Letter both
charge and spin transport. In addition to these conservation
laws, for J = 0 the system has two unconventional conser-
vation laws due to the characteristic motion of the electrons

introduced by Ĥring [26]: First, a total charge conservation
law on any straight line along the edge of a hexagon; sec-
ond, an emergent conservation law of spins on dynamically
moving sublattices. To visualize this conservation law, draw
loops by connecting nearest-neighbor electrons. Every loop
consists of an even number of sites. Therefore, we can as-
sign sublattice labels, A and B, to each electron in the loop;
see the orange and blue circles in Fig. 1(a). We choose the
sublattice labels such that the next-nearest-neighbor electrons
have the same label. Then each electron loop has a bipartite
structure which is conserved during the time evolution. It has,
however, dynamics associated with it as the electrons move
by the ring-exchange processes. Hence, we call it a dynamic
sublattice. Since spins on different dynamic sublattices never
exchange with each other for J = 0, which can be achieved by
tuning t, U , and V appropriately [26], the total spin on each
dynamic sublattice is another conserved quantity in this limit.

We are interested in studying the consequences of the
interplay between the conservation laws at high tempera-
tures U,V � kBT � t. In this regime, the high-energy sector
violating the constraint of two electrons per triangle does
not contribute, and the dynamics is determined by the low-
energy effective Hamiltonian Ĥeff . The late-time transport
is governed by classical hydrodynamics which respects the
structure of the conservation laws [32–35]. System-specific
details only enter in the value of the transport coefficients,
i.e., the diffusion constants, which we do not aim to determine
quantitatively. This allows us to study the dynamics of our
system by classically simulable cellular automaton circuits,
which respect the conservation laws of the system [28–31].
The cellular automaton circuit describes the discrete time
evolution which is designed so that a product state is mapped
to another product state at each time step. A single time step in
our cellular automaton circuit consists either of Ûring or Ûspin,
which capture local ring-exchange processes and spin flips,
mimicking the action of Ĥring and Ĥspin, respectively; see
Supplemental Material for details [36]. The unitary operator
for the automaton time evolution is then given by a sequential
action, Û (t ) = · · · ÛringÛringÛspinÛring · · · . The effect of finite
J/g is reflected as a finite probability p of applying Ûspin at
each time step, which we use as a tuning parameter for the
dynamics. The cellular automaton circuit with small p effec-
tively describes the system’s dynamics with small |J/g| [36].
The time evolution of correlation functions are calculated
from the sequence of the product states generated by the
cellular automaton time evolution. Numerical simulations are
performed for systems with 150 × 150 hexagons with pe-
riodic boundary conditions. We have checked that on the
considered timescales finite-size effects are absent [36]. The
correlation functions are averaged over 2 × 105 random initial
product states.

Charge relaxation dynamics. We first study the charge
dynamics by measuring the dynamic charge structure factor

C(k, ω) = 1

N

∑
r,r′

∫ ∞

−∞
dt Cr,r′ (t )e−ik·(r−r′ )+iωt , (4)

where N is the number of sites and Cr,r′ (t ) is the charge
correlation function defined as

Cr,r′ (t ) = 〈δn̂r(t )δn̂r′ (0)〉 . (5)
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FIG. 2. Charge relaxation dynamics for p = 0. (a) Dynamic
charge structure factor C(k, ω). (b) The charge autocorrelation func-
tion obtained numerically (dots) is compared to the height-field
theory (dashed lines), which is almost identical to t−1. Inset: Summa-
tion range of C� (t ) and CK∪K ′ (t ). (c) The charge configuration maps
onto a fully packed loop model on the dual honeycomb lattice which
enables one to introduce a height variable whose value is indicated
in each hexagon. (d) Time-dependent charge structure factor at t =
10, 18, 32 near the � (left) and K point (right) along the kx direction
(blue dots). Good agreement is found with the height-field theory
(dashed line). (e) Time evolution of |tr[C(K, t )]| obtained from the
cellular automaton (dots) and height-field theory (dashed line) at the
K point. We set γ = 2.45 throughout, which is the free parameter of
the height-field theory.

Here, δn̂r(t ) = ∑
σ n̂r,σ (t ) − 2/3 specifies the deviation from

the average charge density at time t and 〈· · ·〉 is taken over
an infinite-temperature ensemble of charge and spin configu-
rations fulfilling the constraints. We use the worm algorithm
to sample these configurations [37,38]. Cellular automaton
results for the dynamic charge structure factor obtained with
p = 0 (J = 0) are shown in Fig. 2(a). Since the kagome lattice
has a three-sublattice structure, the structure factor has to be
considered on the extended Brillouin zone shown in Fig. 1(b).
The dynamic charge structure factor carries spectral weight
only near the K , K̃ ′, and �̃ points but no weight is observed
near the � point. The asymmetry of the spectral response near
�̃ can be understood from an underlying pinch point [39].
The absence of the spectral weight near the � point results
from the local constraint of having exactly two electrons per
triangle

∑
r∈� δn̂r(t ) = 0 [39].

To gain further insight into the charge dynamics,
we examine the charge autocorrelation function C(t ) =
(1/N )

∑
r Cr,r(t ) = (1/N )

∑
k tr[C(k, t )] and its momentum-

resolved contributions, C� (t ) = (1/N )
∑

k∼0 tr[C(k, t )] and
CK∪K ′ (t ) = (1/N )

∑
k∼K,K ′ tr[C(k, t )], where C(k, t ) is the

time-dependent Fourier component defined as

C�,�′ (k, t ) = 1

N/3

∑
r∈I�

∑
r′∈I�′

Cr,r′ (t )e−ik·(r−r′ ), (6)

where I� is the set of sites on the sublattice � = 1, 2, 3 of the
kagome lattice.

In the hydrodynamic limit, the relaxation dynamics of
systems with a simple charge conservation law is described
by the diffusion equation ∂t n = D∇2n, where n is a coarse-
grained charge density and D is a diffusion constant. From
that the correlation function can be obtained, which in
two dimensions is given by CD

r,r′ (t ) = (1/4πDt ) exp[−|r −
r′|2/4Dt]. The numerically computed autocorrelation func-
tion of our kagome system, evaluated at r = r′, decays as
C(t ) ∼ t−1 [see Fig. 2(b)], which is consistent with the pre-
diction from conventional hydrodynamic diffusion. However,
due to the underlying constraints, the autocorrelation func-
tion has strong contributions from the K = (4π/3, 0) and
K ′ = (2π/3, 2π/

√
3) points, which are the wave vectors at

the corner of the Brillouin zone. This is in stark contrast to
the result obtained from the simple diffusion equation, which
upon Fourier transform leads to an exponential decay for
finite-momentum correlations CD(k, t ) = exp(−Dk2t ).

To understand how this unconventional charge relaxation
emerges from the constraints, we utilize an effective Gaussian
field theory using a height representation of the dual loop
model [39–41]. Any charge configuration of the system can
be mapped to the fully packed loop configuration on the
dual honeycomb lattice as shown in Fig. 2(c), in which loop
segments are occupied when the particles sit on the links of
the dual lattice [26]. The integer-valued height variable is as-
signed to each hexagon through the following rule; the height
increases by one if a loop segment is crossed and decreases
by two otherwise when moving counterclockwise around a
gray honeycomb site in Fig. 2(c). When taking the contin-
uum limit of the height variable, the constraints have to be
carefully considered, which leads to low-energy modes near
the �, as well as the K and K ′ points. The dynamical charge
correlations can then be obtained analytically by assuming
that the dynamics is governed by a Langevin equation; we
present the details of this approach following Refs. [39,40]
in Supplemental Material [36]. We compare the predictions
for the autocorrelations obtained from the height-field theory
in Fig. 2(b) and find excellent agreement with the cellular
automaton simulation. When comparing the field-theoretic
predictions with our numerical simulations, we only need to
specify the effective diffusion constant, which is the same for
all comparisons shown in Fig. 2 [36].

To further substantiate the effective height-field representa-
tion of the charge dynamics, we compare the time-dependent
Fourier component of the charge correlations tr[C(k, t )] near
the � and K points along the kx direction [Fig. 2(d)]. The
field theory and numerical results exhibit excellent agreement
except precisely at the K point [Fig. 2(e)]. This deviation may
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arise from subleading terms that are relevant only at the K
and K ′ points, which would be interesting to identify in future
work. Nevertheless, the main characteristics of the charge
dynamics can be understood from the height-field theory.
The additional contributions to the charge correlations around
the K and K ′ points are thus the consequence of the local
charge constraints that arise in the strong-coupling limit.

Spin relaxation dynamics. We now turn to the dynamic spin
structure factor

S(k, ω) = 1

N

∑
r,r′

∫ ∞

−∞
dt Sr,r′ (t )e−ik·(r−r′ )+iωt , (7)

where Sr,r′ (t ) = 〈Ŝz
r (t )Ŝz

r′ (0)〉. From the conventional diffu-
sion equation, the correlation function in frequency and mo-
mentum space is CD(k, ω) ∼ (Dk2)/[(Dk2)2 + ω2]. Thereby
fixed-momentum cuts exhibit a peak at ω = 0 with height
(1/Dk2) and width Dk2, displaying a domelike spectral dis-
tribution near the � point [42,43]. Figure 1(c) shows the
dynamic spin structure factor with p = 0 (J = 0). We observe
a broad spectral distribution near the K̃ ′ point in addition
to the conventional domelike structures near the � and �̃

points. However, for conventional spin diffusion, no response
is expected near the K̃ ′ point.

To pinpoint the origin of the additional spectral intensity
near the K̃ ′ point, we perform additional simulations with
finite spin-exchange probability p (J �= 0), which breaks the
spin conservation law on the dynamic sublattices. As a con-
sequence for sufficiently large p, the dynamics is expected
to follow CD(k, ω), and the response near the K̃ ′ point to
vanish. Our simulations indeed confirm this expectation; see
Figs. 1(d) and 1(e) for p = 0.03 and p = 0.06. The larger
the spin-exchange probability, the weaker are the features
near the K̃ ′ point. From that we can conclude that the ad-
ditional contribution observed in the dynamic spin structure
factor in Fig. 1(c) results from the spin conservation law
on the dynamic sublattices. We also show that adding next-
nearest-neighbor spin-exchange terms, which respects the
spin conservation law on the dynamic sublattices, preserves
the sharp spectral features near the K̃ ′ point; see Supplemental
Material [36].

In order to gain further insights into the spin dynam-
ics, we investigate the spin autocorrelation function S(t ) =
(1/N )

∑
r Sr,r(t ). For systems with a trivial spin conserva-

tion law, the autocorrelation is again expected to follow
the diffusive scaling S(t ) ∼ t−1 in two dimensions at late
times. Figures 3(a) and 3(b) show the automaton time evo-
lution of the spin autocorrelation function for p = 0 and
p = 0.1, respectively. The spin dynamics with p = 0 displays
a large anomalous regime where S(t ) deviates significantly
from S(t ) ∼ t−1; the spin diffusion is very slow at relatively
short times (t < 102), then becomes faster at intermediate
times (t > 102), and then asymptotically approaches the dif-
fusive scaling t−1. This behavior, including the crossover
timescale (t ∼ 102), is size independent; see Supplemental
Material [36]. By contrast, the spin dynamics with p = 0.1
approaches the diffusive scaling at much earlier times.

To study momentum-resolved contributions to the spin au-
tocorrelation function, we evaluate the structure factor in the

(b)(a)

FIG. 3. Spin autocorrelation function. Time evolution of the spin
autocorrelation function S(t ) with (a) p = 0 and (b) p = 0.1. The
momentum-resolved contributions, S� (t ), SK∪K ′ (t ), and Srest (t ) =
S(t ) − S� (t ) − SK∪K ′ (t ), are also shown. The inset in (a) shows their
summation range in the first Brillouin zone. Although S(t ) finally
reaches the diffusive scaling t−1 (gray dashed line), there is still a
large anomalous regime in (a) due to the finite SK∪K ′ (t ), arising from
the spin conservation law on the dynamical sublattices.

momentum and time domain,

S�,�′ (k, t ) = 1

N/3

∑
r∈I�

∑
r′∈I�′

Sr,r′ (t )e−ik·(r−r′ ). (8)

The spin autocorrelation function can be written
as the k summation of the time-dependent Fourier
component S(t ) = (1/N )

∑
k tr[S(k, t )]. We focus on the

momentum-resolved contributions from the vicinity of the
high-symmetry points, S� (t ) = (1/N )

∑
k∼0 tr[S(k, t )] and

SK∪K ′ (t ) = (1/N )
∑

k∼K,K ′ tr[S(k, t )], which dominate at late
times as shown in Fig. 3. For conventional diffusion dynamics,
the dominant contribution comes from near the � point with
the form e−Dk2t . In our system with p = 0, however, there
are also subdominant contributions from the vicinity of the
K and K ′ points, which shift the intermediate-time diffusive
transport off the diffusive scaling. These contributions
decay as t increases and the spin autocorrelation function
asymptotically reaches t−1, originating from the contributions
near the � point. For p = 0.1, the violation of the spin
conservation law on the dynamic sublattices yields an
exponential decay of the subdominant contributions at
k ∼ K, K ′.

The additional contribution SK∪K ′ (t ) and the broad spec-
tral distribution near the K̃ ′ point in S(k, ω) arises from the
spin conservation law on the dynamic sublattices. Although
the position of the dynamic sublattice changes during the
time evolution, it on average prefers the particular spatial
profile determined by the wave vectors K and K ′ (see Sup-
plemental Material [36]). This creates an effective spatially
modulated symmetry of spins and leads to finite SK∪K ′ (t ).
Spatially modulated symmetries refer to conserved quantities
that are modulated in space, that give rise to slow dynamics
at finite momenta [44,45]. While the autocorrelation function
discussed here contains a sum over the sublattices, the dynam-
ical spin structure factor measures the scattering cross section.
Thus the three kagome sublattices lead to distinct contribu-
tions in the extended Brillouin zone shown in Fig. 1(b). The
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slow modes of the autocorrelation near the K, K ′ points then
arise in scattering experiments most pronouncedly near the
K̃, K̃ ′ points, as shown in Figs. 1(c)–1(e).

Conclusions and outlook. In the strong-coupling limit, the
extended Hubbard model on the kagome lattice with density
2/3 exhibits exotic dynamical constraints. We have shown
that at elevated temperatures these constraints lead to uncon-
ventional charge and spin relaxation dynamics, manifesting
most prominently as a strong spectral response of the spin
correlations at the K̃ ′ point. The emergent constraints give rise
to specific spectral fingerprints, which can be experimentally
detected with inelastic neutron scattering experiments.

There are several candidate materials for exploring these
unconventional relaxation dynamics. In a strongly correlated
organic material Cu-dicyanoanthracene (Cu-DCA), DCA
molecules form the kagome lattice with a desired density
of n = 2/3 [46–49]. Although J cannot be zero because
t > 0, this material is still expected to show the uncon-
ventional charge relaxation. In a hole-doped herbertsmithite
ACu3(OH)6Cl2 (A = Li+, Na+), the Cu ion forms the kagome
lattice layer with n = 2/3 and first-principles calculations pre-
dict t < 0 [50]. Applying the chemical or hydrostatic pressure
to these materials may lead to the desirable parameter range to
achieve J ∼ 0. A small next-nearest-neighbor hopping present
in these material classes does not smear out the unconven-
tional spin dynamics; see Supplemental Material [36]. Mo3O8

systems such as Li2XMo3O8 (X = Sc, In) [51] can be de-
scribed by the extended Hubbard model on the kagome lattice
with n = 1/3 [52]. Since the electrons in the strong-coupling
regime show a similar constraint dynamics, we expect

unconventional relaxation dynamics to prevail in these ma-
terials. Various other frustrated lattice models may give rise to
related features in inelastic scattering experiments, including
for example spin-ice systems, strongly correlated electrons on
pyrochlore lattices, and other models that effectively map on
loop or dimer manifolds [53–55].

Our cellular automaton circuit approach is expected to
have a wide range of applications in analyzing transport phe-
nomena in materials at elevated temperatures. Moreover, it
would be interesting to extend our study of cellular automaton
circuit dynamics to models with fracton constraints that are
relevant for certain materials [56,57] to test for the signatures
of their hydrodynamic response [31,58]. Another intriguing
future research direction is to investigate monopole dynamics
in spin-ice materials [59].

Data analysis and simulation codes are available on Zen-
odo upon reasonable request [60].
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