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Bosonic collective modes are ubiquitous in metals, but over a wide range of energy and momenta suffer from
Landau damping, decaying into the continuum of particle-hole excitations. Here we point out that interactions
can suppress this decay, protecting a finite fraction of the total spectral weight associated with the collective
mode, e.g., a plasmon. The underlying mechanism is level repulsion between a discrete mode and the continuum.
We demonstrate the effect using a number of simplified models of strongly correlated Fermi-liquid metals,
including a solvable random flavor model in the large-N limit. We discuss in detail the possibility of observing
such an avoided decay for plasmons in (moiré) graphenelike systems.
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Introduction. Weakly interacting Fermi-liquid (FL) metals
have a qualitatively universal excitation spectrum [1]. In the
vicinity of the sharply defined Fermi surface, single-particle
excitations correspond to the long-lived renormalized quasi-
particles. The two-particle excitations associated with the den-
sity fluctuations in a neutral FL include: (i) the particle-hole
(ph) continuum, which contains significant spectral weight
over a range of frequencies, 0 � ω � W (≡ bandwidth), and
momenta, 0 � q � 2kF (kF ≡ Fermi momentum), and (ii) a
gapless collective (zero-sound) mode associated with fluctua-
tions of the entire Fermi surface [2]. In a charged FL where
electrons interact via Coulomb interactions, the zero-sound
mode renormalizes into the plasmon excitation, which can
either be gapless or gapped depending on the interplay of
dimensionality and screening. The spectral weight in the ph
continuum has a sharp onset across a dispersive threshold,
ω�(q); the collective modes in a FL generically enter the ph
continuum at sufficiently large q and acquire a finite life-
time, decaying via Landau damping. Finding routes to avoid
this (kinematically seemingly inevitable) decay of collective
modes into the continuum has important experimental and
technological implications. For instance, one of the main
challenges in the field of plasmonics is tied to the plasmon
decay [3,4].

Here, we demonstrate, by a combination of analytics for
solvable models and explicit numerics, that a collective mode
in an interacting metal can avoid disappearing into the ph
continuum. Instead the continuum partially repels it, placing
a finite amount of its spectral weight outside and thereby
partially eliminating Landau damping.

We explicitly demonstrate this effect using examples of
well-known materials, such as (moiré) graphene. While the
parameter regimes required to display level repulsion for these
materials in an experimentally resolvable fashion might lie
outside current capabilities, it seems eminently possible that
there exist closely related materials where the effect can be
probed directly in the not too distant future. The basic mecha-
nism for such a kinematically allowed [5,6] but avoided decay
was identified [7] when it was noted that a quasiparticle (e.g.,
magnon) could be repelled by its own two-particle continuum,

with repulsion between a discrete level and a continuum stud-
ied in Ref. [8]. The present work extends this to the setting
of metals, where an abundance of gapless excitations tied to
the metallic Fermi surface leads to a continuum that persists
down to ω → 0, which necessitates a careful analysis of the
fate of the collective modes. In addition, the plasmon can
exhibit an interaction-derived gap, which distinguishes it from
Goldstone modes in magnetic systems.

Model. A simple low-energy theory that illustrates the
mechanism of level repulsion of a gapped bosonic collective
mode from the ph continuum associated with a Fermi liquid
metal has the following Matsubara action:

S[c†, c,�] = Sc + S� + Sint, (1a)

Sc =
∑

k

c†
k (iωn − εk)ck , (1b)

S� =
∑

q

(
�2

n + ρsq2 + �2
)|�q|2, (1c)

Sint = λ
∑
k,q

�qc†
k+qck . (1d)

The fields c†
k , ck denote the electronic quasiparticle creation

and annihilation operators with dispersion εk. The bosonic
collective mode, �, has a gap �, and stiffness ρs. It is coupled
to a ph excitation via a Yukawa coupling of strength, λ. We use
a shorthand notation, k ≡ (iωn, k) and q ≡ (i�n, q), where
iωn (i�n) represent fermionic (bosonic) Matsubara frequen-
cies, respectively.

Analytical results. For analytic tractability, we linearize the
dispersion near the Fermi surface, εk ≈ vc|δk|, where |δk|
measures the deviation around the Fermi momentum. Tracing
out the c electrons yields an effective theory purely in terms
of the collective modes:

Seff[�]=
∑

q

[�2−(ρsq2+�2)+�c(q,�)]�q�−q, (2a)

�c(q,�)= λ2

vc

[
1 − �√

�2 − (vcq)2

]
. (2b)
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FIG. 1. The response function log[ImD(q, �)] in Eq. (3) ob-
tained from Eq. (1), evaluated at (a) weak (λ̃ = 0.09) and (b) strong
(λ̃ = 0.9) coupling, respectively. We introduce a small broadening,
η = 0.01, for visualization purpose when evaluating ImD(q, � +
iη). The white vertical dashed line in (a) labels the momentum
q∗ at which the collective mode crosses the onset of the ph con-
tinuum when λ = 0. (c) Numerically obtained Z� as a function
of λ̃ for two different q values [vertical colored dashed lines in
(b)]. We set �̃ = 0.5 to be in the regime where the asymptotic
limit in Eq. (5a) is justified. (d)–(e) Disorder-averaged results for
log[ImD(q, �)] for the random flavor model with tc = 1, � = 1,
μ = −1.25tc and interaction strengths (d) λ = 0.5, and (e) λ = 1.2,
respectively. The corresponding λ̃ is defined as described in the
main text. White dashed lines denote the onset of the continuum.
Blue dashed lines denote the peak associated with Im[D(q, �)],
corresponding to the renormalized collective mode. The electronic
quasiparticle residue, Zc, is obtained self-consistently by solving the
saddle point equation [9], with (d) Zc ∼ 0.9, and (e) Zc ∼ 0.8, respec-
tively. (f) Feynman diagrams for multiparticle scattering processes
and the leading-order self-energy for the collective mode.

We introduce dimensionless units, λ̃ = λ2/v3
c , �̃ = �/vc,

ρ̃s = ρs/v
2
c , and �̃ = �/vc. We set the lattice constant a = 1

for convenience; so that q denotes a dimensionless momen-
tum. Henceforth we focus specifically on two-dimensional
systems; the approach can be similarly extended to higher
dimensions in an analogous fashion. The renormalized �

propagator can then be expressed as

D(q,�) = 1/v2
c[

�̃2 − (ρ̃sq2 + �̃2 − λ̃) − λ̃�̃√
�̃2−q2

] . (3)

In Figs. 1(a)–1(b), we plot the associated spectral function,
Im[D(q,�)], as a function of q, � for two different values of
λ̃.

For λ̃ � 1, we recover the picture of standard Landau
damping—the mode remains sharply defined until it enters
the continuum and decays by emitting particle-hole pairs,
resulting in a broadened dispersive mode [Fig. 1(a)]. There
is a tiny expelled fraction outside the continuum, but the gap

between the expelled fraction and the onset of continuum
∼λ̃2/2q3 [9], which makes it difficult to discern at large q.
On the other hand, for λ̃ 	 1, part of the collective mode is
repelled outside of the continuum [Fig. 1(b)], grazing along
its edge; the remaining fraction enters the continuum and is
damped strongly due to the larger coupling. Thus while it is
impossible to avoid decay altogether, an appreciable fraction
of the collective mode appears to escape the inevitable damp-
ing: this is what we refer to as interaction-mitigated Landau
damping.

Note that the model by construction does not have any
information associated with momentum transfer near 2kF , as
shown in Figs. 1(a)–1(b). Next we address two questions,
namely (i) what is the maximum spectral weight contained in
the undamped branch of the collective mode in the asymptotic
limit of λ̃ 	 1, and, (ii) is there a strong-coupling limit where
the above picture can be applied using a controlled computa-
tion. We consider the quasiparticle residue associated with the
collective mode, Z�(q) = [1 + ∂�2�′

c(q,�)]−1, given by

Z�(q) =
[

1 + λ̃
q2

2�̃peak
(
�̃2

peak − q2
)3/2

]−1

, (4)

where �peak denotes the renormalized dispersion for the long-
lived collective mode outside the continuum, obtained as the
solution to D−1(q,�peak ) = 0. The numerical solution [9] for
Z�(q) for two different q values [dashed colored lines in
Fig. 1(b)] is shown in Fig. 1(c) as a function of λ̃. Clearly,
there are qualitative differences in the λ̃ dependence of Z�(q)
even for the collective mode branch lying outside the ph
continuum, depending on whether for the specific q decay to
particle-hole excitations is kinematically allowed.

Let us denote the crossing point between the collective
mode and the onset of the continuum in the absence of a
coupling (λ = 0) as q∗ [see Fig. 1(a)]. For the collective
mode branch with q < q∗, Z� decreases monotonically from
Z�(λ = 0) = 1 with increasing λ̃; see the orange curve in
Fig. 1(c). On the other hand, for the portion of the branch
with q > q�, we find that Z� increases monotonically from
Z�(λ = 0) = 0 with increasing λ̃. After all, the branch does
not exist outside the continuum at infinitesimal coupling, but
develops a finite Z� once it is pushed outside it. We find that
for λ̃ 	 1, the spectral weight converges to Z�(q) → 1/2 for
both branches, suggesting a universal limit. The analytical
expressions in the two limits is obtained as follows [9]: (i) for
λ̃ 	 1, start from Z�(q) = 1/2 and include the higher-order
corrections in powers of δq/λ̃, where δq = (2/q2)|q2

� − q2|2,
and (ii) for λ̃ � 1 and q < q�, Z�(q) is computed in the limit
q � �̃, whereas for q > q� it is computed in the limit q 	 �̃,
respectively. Explicitly,

Z�(q < q�) �
⎧⎨⎩1 − |q|2

2�̃4 λ̃, λ̃ � 1,

1
2 + 3

8

(
δq
λ̃

)1/2
, λ̃ 	 1,

(5a)

Z�(q > q�) �
{

2λ̃2

|q|4 , λ̃ � 1,

1
2 − 3

8

(
δq
λ̃

)1/2
, λ̃ 	 1.

(5b)
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Note that even when λ � 1, a nonzero fraction of the spectral
weight is contained in the branch of the collective mode that
is repulsed outside the continuum. However, since both Z�

and the energy separation between the collective mode and
the continuum are relative small (∼λ̃2), we focus on the strong
coupling case for a clearer illustration of the effect.

Exact results for random flavor models. Given that our
results are obtained in an RPA theory without a small param-
eter, we now turn to a solvable model where the analogous
computations can be carried out in a controlled setting [10].
We reprise Eq. (1) and replicate the actions Sc, S� to include
N copies of fermions, c†

k,i, ck,i (i = 1, . . . , N) and M copies of
the gapped collective mode, �q,α (α = 1, .., M). We replace
the uniform Yukawa interaction, Sint , by the random-flavor
form [11–20],

Sint →
√

2

MN

∑
i,i′

∑
α

∑
r

λi,i′,α�r,αc†
r,icr,i′ . (6)

Here the couplings λi,i′,α are drawn from a random distribution
with λi,i′,α = 0 and λ2

i,i′,α = λ2. We are interested in the large-
N, M limit at fixed N/M. The RPA equations for the boson
and fermion self-energy are exact in this limit for arbitrarily
large λ [9]. While much of the recent interest in this model is
tied to its non-Fermi-liquid regime, where the boson is critical,
here we focus on the situation where the renormalized boson
mass is fixed to be �∗ = vc, with vc the bare Fermi velocity.
The metallic system remains in a renormalized Fermi liquid
regime at low energies whenever �∗ is finite.

Repeating the earlier analysis, we find that a significant
spectral weight associated with the bosonic collective mode
is repelled outside and continues to graze the edge of the
renormalized ph continuum; see Figs. 1(d)–1(e). However,
with increasing λ the mode appears to be broader (i.e., has
a larger decay rate). The enhanced broadening is due to multi-
particle decay, as shown by the Feynman diagram in Fig. 1(f).
Note that such processes are automatically included in the
self-consistent equations for the boson lifetime, leading to
�′′

�(�) ∼ λ̃3� at q = 0 [9].
Our computations thus highlight the nontrivial aspects as-

sociated with both decay into, and level repulsion from, a
multiparticle continuum in a renormalized Fermi liquid for
arbitrarily strong interactions. While it is rare to find real-
istic model Hamiltonians where theoretically well-controlled
computations can be carried out in the strong-coupling limit,
we find that RPA already captures much of the essence of the
underlying physics.

We next turn to the charge response in graphene, and moiré
graphene, in the presence of screened Coulomb interactions.
Importantly, instead of focusing on an independent bosonic
mode, we focus on the intrinsic plasmon excitation and ana-
lyze the regime where it is repelled from the continuum.

Charge response in graphenelike models. We will begin
by analyzing numerically the charge response for the usual
honeycomb model of graphene, with the Coulomb interaction
treated at the RPA level. The ph continuum in graphene is well
known to host an intra- and interband contribution: �(q,�) =
2[�intra(q,�) + �inter(q,�)], where the factor of 2 is due to

FIG. 2. Numerical results for the spectral function,
log Im[χ (q,�)], for graphene [without substrate in (a), (b)]
with 2D Coulomb interaction with ẽ2 = 15 � 6ẽ2

real. The Fermi
energies are (a) EF /W0 � 0.83 (b) EF /W0 � 0.5, respectively, where
EF is measured relative to charge neutrality. The plasmon is repelled
from the interband continuum, and its dispersion develops a negative
slope in the region indicated by the white arrows. Numerical results
for log Im[χ (q,�)] for graphene on a metallic substrate (without
direct electron tunneling) coupled through Coulomb interaction with
ẽ2 = 7 for (c) vsub

F < vG
F , and (d) vsub

F > vG
F . The red line with the

largest slope is the plasmon mode of the substrate.

spin degeneracy. The full RPA charge susceptibility is

χ (q,�) = �(q,�)

1 − V (q)�(q,�)
. (7)

We allow ourselves the freedom to tune the strength of
Coulomb interaction, V (q), by effectively varying the charge
of the electron. We will demonstrate that for strong enough
Coulomb interaction and heavy doping, the plasmon mode
is completely pushed out of the intraband continuum, enters
partially inside the interband continuum at a momentum q�,
and is repelled partially away from the interband continuum;
see Figs. 2(a)–2(b). For a two-dimensional (2D) Coulomb in-
teraction derived from an underlying one in three dimensions,
V (q) = 2πe2/κq, where κ is an effective dielectric constant.
To compare the scale of the Coulomb interaction with the
graphene bare bandwidth, W0, we define a dimensionless
Coulomb potential [9], Ṽ (q) = 2πe2/(κa2

0W0q) = ẽ2/a0q.
The dimensionless interaction strength ẽ2 ≡ 2πe2/κa0W0 (a0

is the lattice constant). We are now in a position to obtain an
analytical understanding of the level repulsion in graphene,
building on the results of our earlier simple models.
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Within RPA and for q → 0 and (2EF − � − vF q) → 0,
the asymptotic expressions [21–24] for �intra(q,�) and
�inter(q,�) are given by [9]

�intra(q,�) =
[

1 − �̃√
�̃2 − |q|2

]
, (8a)

�inter(q,�) � π [(�̃ − 2ẼF ) +
√

(�̃ − 2ẼF )2 − |q|2] + �reg

(8b)

where �̃ ≡ �/vF , ẼF ≡ EF /vF , and �reg includes additional
nonsingular terms. The pole structure of Eq. (7) in the limit
� 	 |q| is given by,

χ (q,�) ≈ �(q,�)

1 − β0|q|
�̃2 − ẽ2

|q|�inter(q,�)
. (9)

The 1 − (β0|q|/�̃2) term is obtained upon expanding
V (q)�intra(q,�) in powers of |q|/�̃, leading to a plasmon
mode with dispersion � ∼ √

β0|q| (β0 = πe2/κW0), which
is coupled to the interband continuum through the Coulomb
interaction. Solving for Reχ−1(q,�) = 0 yields the disper-
sion of the mode that avoids repulsion from the interband
continuum, in a manner analogous to our earlier discussion.

To study the consequences of dynamical screening of the
Coulomb interaction on the phenomenology of level repul-
sion, we have also analyzed the charge response in a bilayer
system where a single sheet of graphene (with a Fermi ve-
locity denoted vG

F ) is coupled via Coulomb interaction to a
metallic Fermi liquid substrate. We describe the latter micro-
scopically by a lattice model of electrons on a triangular lattice
with Fermi velocity, vsub

F . We choose the filling such that
E sub

F = 0.6W sub
0 , where W sub

0 is the electronic bandwidth in the
substrate. Note that we exclude direct hopping of electrons
between the two layers, such that there is a U (1) × U (1)
symmetry associated with the two conserved densities. Within
RPA, the dynamics of both charge degrees of freedom is
coupled in a nontrivial fashion. For vsub

F < vG
F [Fig. 2(c)], the

phenomenology of level repulsion is qualitatively similar to
where the substrate is absent [Fig. 2(a)], and the latter only
modifies the results quantitatively by screening the Coulomb
potential. Importantly, in this case, the onset of the ph contin-
uum for the substrate lies inside the graphene ph continuum.
On the other hand, for vsub

F > vG
F [Fig. 2(d)], the graphene

plasmon decays into the ph continuum of the metallic sub-
strate before entering the graphene interband continuum. As
a result the phenomenology changes qualitatively. This il-
lustrates that, in principle, the fate of the graphene plasmon
can be determined by tuning the properties (e.g., density,
bandwidth) associated with an underlying substrate in a con-
trollable device geometry.

Charge response in twisted bilayer graphenelike mod-
els. Our results so far suggest that heavily doped graphene
(EF /W0 ∼ 0.8, where W0 is the bandwidth) with larger than
usual strength of Coulomb interaction can display an avoided
level repulsion of the plasmon from the interband contin-
uum. Let us now turn to the related setup of twisted bilayer
graphene, in order to analyze the extent of possible phe-
nomenological similarities. We focus on angles away from
magic angle, where the isolated bands are not flat and the

FIG. 3. Numerical results for the dielectric function [Eq. (10)],
log Im[ε−1(q, �)G=0], for the model with interactions projected to
flat bands, for twisted bilayer graphene at θ = 1.4 for (a) realistic
parameters, and (b) enhanced Coulomb interaction (see main text).
The level repulsion associated with the plasmon is marked by white
arrows. (c) Band structure at θ = 1.4, with dashed line denoting the
chemical potential EF = 20 meV.

effects of Coulomb interactions can be justifiably treated
within RPA.

We begin with the Bistritzer-Macdonald (BM)
model [25–28] at twist angle θ = 1.4, and include the effect of
a screened Coulomb interaction, V (q) = (2πe2/κq) tanh(ξq),
where the background dielectric constant κ � 6 with a
screening length ξ � 10 nm [9]. The numerical results for
the charge response are shown in Fig. 3, where we plot the
dielectric function [9,29,30] to leading order, after projecting
to the flat bands,

ε−1
G (q,�) =

[
1 −

∑
η

V (q + G)�η

G(q,�)

]−1

, (10)

with η denoting the valley index and G the reciprocal lat-
tice vector in the moiré Brillouin zone. Interestingly, the
experimentally realistic value of Coulomb interaction does
not immediately repel the plasmon from the continuum
[Fig. 3(a)], as was the case for single-layer graphene. How-
ever, if the strength of Coulomb interaction is increased (by
a factor of 4), a clear signature appears of plasmon level
repulsion from the interband continuum [Fig. 3(b)] for the
density shown in Fig. 3(c). A fraction of the plasmon is re-
pelled outside the interband ph continuum near q∗ (marked by
white arrows), while the rest enters the continuum (marked
by blue arrows) and is Landau damped. For � � 70 meV,
the plasmon exits the interband ph continuum and remains
undamped. Although the plasmon above the interband ph
continuum may finally decay into the continuum associated
with the remote bands, the fraction of plasmon repelled be-
low the interband continuum remains undamped [9]. While
the latter mechanism was studied in previous work [21], our
observations point out a distinct mechanism to avoid plasmon
decay via level repulsion from the continuum. As long as the
interaction between the plasmon and the interband continuum
is kinematically allowed (e.g., achieved by increasing the
strength of the effective Coulomb interaction), the mechanism
of level repulsion discussed here can appear in tandem with
the unrelated mechanism pointed out in previous work [21] at
different energy scales.

Outlook. A number of experiments have reported mea-
surements of the plasmon mode at room temperature using
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terrahertz near-field microscopy in graphene-based struc-
tures, ranging from microribbon [31], single layer [32–35],
to even twisted bilayer graphene away from magic an-
gle [36]. These experiments have focused primarily on the
low-doping regime [32–35], or at high energies (∼200 meV)
where the interband plasmon lies between the flat and
remote bands [36,37], respectively. These relatively high-
temperature measurements also have inevitable thermal
broadening (∼25 meV), which makes it challenging to resolve
a broadened plasmon that is repelled outside the contin-
uum. However, with further technical advances in optical
microscopy and identification of the ideal dielectric environ-
ment, future experiments will hopefully be able to observe an
avoided level repulsion and an undamped plasmon.

On the theoretical front, a numerically exact investigation
of the coupled dynamics of an intrinsic collective mode and
the many-particle continuum in electronic models beyond an
RPA-like expansion, used very commonly also in other set-
tings related to ours [38], is clearly desirable. A possible path

would be to investigate correlated one-dimensional lattice
models using time-dependent density matrix renormalization
group techniques. Finally, whether a possible generalization
of the same mechanism for avoiding (partially) a decay of
the collective mode in non-Fermi-liquid metals without long-
lived quasiparticles [39–41] exists, remains an interesting
open question.
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