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We investigate the large Kondo coupling limit of the Kondo-Heisenberg model on one- and two-dimensional
lattices. Focusing on the possible superconducting states when slightly doping the Kondo insulator state, we
identify different pairing modes to be most stable in different parameter regimes. Possibilities include uniform
s wave, pair density wave with momentum π (in both one and two dimensions) and uniform s ± idx2−y2 wave
(in two dimensions). We attribute these exotic pairing states to the presence of various pair hopping terms with a
“wrong” sign in the effective model, a mechanism that is likely universal for inducing pairing states with spatially
modulated pair wavefunctions.
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The Kondo-Heisenberg model is a paradigmatic model of
strongly correlated electronic systems, attracting interest as a
model of various materials [1–11] and as a prototypical model
for various exotic physical phenomena including quantum
criticality [12–16], fractionalization [17,18], odd-frequency
pairing [19,20] and pair density wave [20–24]. Although it has
received considerable theoretical investigations, the majority
of research efforts have adopted bosonization techniques in
one dimension [2,3,22,25–27] or large-N techniques [28–30]
in two or higher dimensions [1,31–43], and, with a few
exceptions [2,3,44–47], focused on relatively weak-coupling
regimes (i.e., the Kondo coupling strength is not strong com-
pared to the bandwidth of the itinerant electrons).

In pursuit of an in-depth understanding of this important
model, this paper focuses on the large Kondo coupling regime,
where the (antiferromagnetic) Kondo coupling JK is much
greater than the electron hopping amplitude |t | and the local
moment (antiferromagnetic) Heisenberg coupling JH. In this
limit, a mapping to the infinite U Hubbard model [44] and a
strong-coupling expansion can be justified, based on which we
explicitly derive the low-energy effective model. This model
is similar to the t − J model derived from the strong-coupling
limit of the Hubbard model but features various additional pair
hopping terms. Based on this effective model, we investigate
the superconducting (SC) phase diagram at a filling fraction
slightly away from one electron per unit cell and at a low tem-
perature, by means of numerical mean-field (MF) theory. For
each set of parameters (t/JK and JH/JK), we solve the pairing
wavefunction self-consistently and compute the free energy
at every Cooper pair momentum q, allowing us to determine
the optimal pairing momentum, and, if the pairing is at certain
high-symmetry momentum, the pairing symmetry. The phase
diagrams are summarized for the 2D and 1D cases in Figs. 1
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and 2, respectively. Remarkably, in the 2D scenario, an s ±
idx2−y2 pairing state featuring broken time-reversal symmetry
is found to be stable within a regime of the phase diagram.
More interestingly, within a similar parameter regime for both
cases, a pair density wave (PDW) [48] with momentum π is
found to be the most stable state, in possible agreement with
the 1D result obtained by a bosonization method [22] and nu-
merical density matrix renormalization group studies [23,24].
We explain the observed exotic pairing phases from a strong-
pairing perspective based on the observation that the leading
pair hopping terms in the effective model have a “wrong” sign,
which is likely a general mechanism for such exotic pairing
momenta and/or symmetries (e.g., Refs. [49,50], for similar
scenarios).

Model and Method. In this paper, we study the Kondo-
Heisenberg model,

Ĥ = − t
∑
〈i j〉,σ

(ĉ†
iσ ĉ jσ + H.c.) + JK

∑
i

ŝi · Ŝi

+ JH

∑
〈i j〉

Ŝi · Ŝ j (1)

where ĉiσ annihilates a spin σ , itinerant electron on site i, and
ŝi and Ŝi respectively represent the electron spin and the local
moment on site i. While this model is definable on any lattice,
for concreteness we will focus on the 1D chain and the 2D
square lattice. Due to the bipartite nature of the lattices, there
is a particle-hole symmetry generated by ĉiσ → (−1)iĉ†

iσ , al-
lowing us to concentrate on the hole-doped side, where n ≡
1
N

∑
i〈ĉ†

iσ ĉiσ 〉 < 1 (N is the system size). Furthermore, since
the sign of t can be trivially altered by a gauge transformation
ĉiσ → (−1)iĉiσ , we assume t > 0 without loss of generality.

In this paper, we consider the large-JK limit by regarding
t/JK and JH/JK as small parameters. To the zeroth order of the
analysis and when electron filling n < 1, each site has three
possible states: (|⇑↓〉 − |⇓↑〉)/

√
2 (Kondo singlet) or |∅�〉,

2469-9950/2024/109(12)/L121101(5) L121101-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2905-2990
https://orcid.org/0000-0002-1778-6906
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L121101&domain=pdf&date_stamp=2024-03-01
https://doi.org/10.1103/PhysRevB.109.L121101


FANGZE LIU AND ZHAOYU HAN PHYSICAL REVIEW B 109, L121101 (2024)

FIG. 1. Condensation energy in 2D square lattice. (a) Condensation energy difference (per site) between q = (π, 0) and q = (0, 0), i.e.,
(F (π,0)

H − F (0,0)
H )/N . The black-dashed lines serve as visual guides to demarcate distinct phase regions. (b) Examples of condensation energies

at several high-symmetry q’s along the vertical-dotted line cut in (a). (c) The full q dependence for a few representative choices of parameters
for different phases marked in (a). Simulations are done with a N = 12 × 12 lattice for (a) and (b), and a N = 24 × 24 lattice for (c).

where � represents the spin of the electron, � represents the
local moment, and ∅ indicates the absence of any itinerant
electron. Different tensor-product combinations of these states
form the low-energy Hilbert space Heff, which is separated
from all the other states by an energy gap ∼JK. To describe the
low-energy physics within Heff, we define a set of fermionic
operators ĥiσ to effectively describe the holes doped into the
system. The mapping between these hole operators and the
operators in Heff can be locally established as [44]

ĥi� ↔ 1√
2

(|⇑↓〉 − |⇓↑〉)〈∅�|, (2)

thus ĥiσ annihilates a spin-σ , charge-−1 object relative to the
“vacuum” of Heff, which refers to the strong-coupling Kondo
insulator state with a Kondo singlet on every site. Note that,
to faithfully map between in the physical Hilbert space Heff

and the Fock space of the hole operators, it needs to be further
recognized that two holes cannot simultaneously occupy the
same site.

We then perform a perturbation expansion to derive
a low-energy effective Hamiltonian. Leveraging the above
equivalence mapping of Hilbert space, we express the result

in terms of the hole operators, including all terms to the zeroth
and the first order in powers of 1/JK,

Heff = P̂(Ĥt + Ĥτ + ĤV )P̂, (3)

Ĥt = t1
∑
〈i j〉σ

(ĥ†
iσ ĥ jσ + H.c.)

+ t2
∑
〈i jk〉σ

(ĥ†
iσ ĥkσ + H.c.), (4)

ĤV = JH

∑
〈i j〉

Ŝi · Ŝ j + V
∑
〈i j〉

n̂h
i n̂h

j

− J ′ ∑
〈i jk〉

Ŝi · Ŝk
(
1 − n̂h

j

)
, (5)

Ĥτ =
∑
〈i jk〉

[
t ′
1

∑
σ

ĥ†
iσ n̂h

k ĥ jσ + τ1ξ̂
†
ik ξ̂k j + (i ↔ k)

+ t ′
2

∑
σ

ĥ†
iσ n̂h

j ĥkσ + τ2ξ̂
†
i j ξ̂ jk + H.c.

]
, (6)

where 〈i jk〉 represents a triplet of sites in which site j is a
nearest-neighbor of two distinct sites i and k, n̂h

i ≡ ∑
σ ĥ†

iσ ĥiσ

is the hole density on site i, and P̂ is a projector enforcing

FIG. 2. Condensation energy in 1D lattice. (a) Condensation energy difference (per site) between q = π and q = 0, i.e., (F (π )
H − F (0)

H )/N .
The black dashed lines serve as visual guides to demarcate distinct phase regions. (b) Examples of condensation energies at several high-
symmetry q’s along the vertical dotted line cut in (a). (c) The full q dependence for a few representative choices of parameters for different
phases marked in (a). Simulations are done with a N = 128 chain for (a) and (b), and a N = 256 chain for (c).
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the Hilbert constraint, i.e., excluding the states with double
occupation of holes on any site. The effective parameters

are t1 = t
2 − 3tJH

4JK
, t2 = t2

6JK
, V = ( 5t2

6JK
+ 9J2

H
32JK

), J ′ = J2
H

2JK
, t ′

1 =
− tJH

8JK
, τ1 = tJH

2JK
, t ′

2 = t2

12JK
, and τ2 = t2

2JK
. For convenience,

we have defined ξ̂i j ≡ (ĥi↑ĥ j↓ + ĥ j↑ĥi↓)/
√

2, the singlet an-
nihilation operator on sites i and j. We note that a similar
mapping and expansion have been done for the Kondo lattice
model without Heisenberg coupling [2,3,46], and our results
agree with the existing literature upon setting JH = 0. We also
note that the generalization of this expansion to other similar
physical models (e.g., the one in Ref. [4]) can be done in a
systematic manner.

To mitigate the complexities of this Hamiltonian, we in-
voke an exact rewriting (for any i, j)

P̂ĥ†
iσ ĥ jσ P̂ = (

1 − n̂h
iσ̄

)
ĥ†

iσ ĥ jσ
(
1 − n̂h

jσ̄

)
(7)

to equivalently implement the projection. Then, we consider
the dilute hole limit, i.e., nh ≡ 1 − n � 1. In this limit, the
expectation values of all pairs of fermion operators, i.e., ĥ†ĥ,
are bounded by nh. Therefore, we neglect the terms consisting
of more than four fermion operators, as they are of order
O[(nh)3] and thus insignificant relative to other terms.

After these manipulations of the Hamiltonian, writing in
momentum space, we obtain a standard interacting Hamilto-
nian for fermions,

Heff ≈
∑
kσ

εkĥ†
kσ

ĥkσ

+ 1

N

∑
k,k′;

σ,σ ′;q

�σ,σ ′

k,k′;qĥ†
q
2 −kσ

ĥ†
q
2 +kσ ′ ĥ q

2 +k′σ ′ ĥ q
2 −k′σ (8)

where the expressions of the bare dispersion εk and interacting
vertex �σ,σ ′

k,k′;q are explicitly given in Supplemental Material
(SM) [51].

Finally, we perform MF analysis for the possible SC states
in the system. Due to the spin rotation symmetry, we can
focus on the sector with σ ′ = σ̄ , since the other two triplet
states are degenerate with the one with Sz = 0. Then for each
possible Cooper pair momentum q, we adopt the Bogoliubov-
de Gennes MF ansatz (note that in the equation below, q is no
longer a dummy variable)

H (q)
MF =

∑
kσ

εkĥ†
kσ

ĥkσ

+ 2

N

∑
k,k′

�
↑↓
k,k′;q

[
ĥ†

q
2 −k↓ĥ†

q
2 +k↑φ

(q)
k′ + H.c.

]
(9)

where

φ
(q)
k′ ≡ 〈

ĥ q
2 +k′↑ĥ q

2 +k′↓
〉
MF (10)

gives the MF self-consistency equation that we will solve by
numerical iteration.

Numerical results. For each set of parameters
{t/JK, JH/JK, nh}, we perform MF calculation on various
different q values. For each specific q, we solve the MF
equation Eq. (10) and obtain a solution with the lowest
Helmholtz free energy F (q)

H . By comparing the free energies
for different q values, the optimal SC states can then be

FIG. 3. The magnitude of pairing order parameters, as defined in
Eqs. (11) and (12), for the uniform pairing states [q = (0, 0)] in 2D.
Simulations are done on a 12 × 12 lattice. Note that as in Fig. 1(a),
distinct phase regions are delineated by black-dashed lines; within
the dashed-out region, the uniform pairing state is less favorable than
the PDW state.

determined. The condensation energy can be further obtained
by comparing the free energy F (q)

H with that of a system
without SC order, denoted as F 0

H .
For all the computations presented in this study, we set

JK = 10 as the large energy scale and explore the system’s
behavior at T = 1/20, the lowest temperature at which we can
attain well-converged solutions [52]. For these calculations,
we properly choose the chemical potential to ensure a hole
density of nh = 1/8. We systematically explore a range of rel-
atively small values for JH ∈ [0, 5] and t ∈ [0, 3] are studied.
The primary results are presented in the main text, while more
detailed data can be accessed within the SM [51].

We first investigate the 2D square lattice that is of most
interest. The results of the condensation energy density are
summarized in Fig. 1. In Figs. 1(a) and 1(b), it is evident that
over a broad region at large JH, a PDW state with Cooper
pair momentum q = (π, 0) [or (0, π )] is energetically more
favorable, and we have verified that there is no other com-
peting q within the entire Brillouin zone. To provide a better
illustration, we select three representative sets of parameters
and plot their condensation energy density as a function of
q in Fig. 1(c). For (t, JH) = (1.3, 4.5), it is clear that the
energy minimum is located at (π, 0) [or (0, π )]. It should
also be noted that the three curves have notable qualitative
distinctions. Clearly, two of them [with (t, JH) = (1.3, 4.5)
and (0.5,2.0)] have a small curvature around the minimum
and a narrow bandwidth relative to the condensation energy,
whereas the other point [with (t, JH) = (1.3, 1.0)] has the
opposite features. This observation suggests that the JH � 2t
region is in a strong-pairing regime that can be more suit-
ably described by a Bose-Einstein condensation (BEC) of
preformed pairs, whereas the JH � 2t region is a weak-pairing
region and can be effectively described by the Bardeen-
Cooper-Schrieffer (BCS) theory.

To further investigate the pairing symmetries of the uni-
form pairing [q = (0, 0)] states occupying most parts of the
phase diagram in Fig. 1(a), we compute several order param-
eters defined as

O	 ≡ 1

N

∑
k

f 	
k φ

(0,0)
k (11)
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FIG. 4. The magnitude (represented by circle radius) and phase
(indicated by color) of the normalized pair field φ (q)

r /
√∑

r |φ (q)
r |2

(i.e., the wavefunction of the Cooper pairs) as a function of r (the
relative coordinate between the two electrons in a Cooper pair),
at several representative parameter points marked in Fig. 1(a). The
φ

(q)
r=(0,0) is manually set to zero in these plots to respect the Hilbert

space constraint. The parameters for these representative points are
as follows: (left) t = 1.3, JH = 1, q = (0, 0); (middle) t = 0.5, JH =
2, q = (0, 0); (right) t = 1.3, JH = 4.5, q = (π, 0). Simulations are
done on a 24 × 24 2D square lattice.

where 	 = s, dxy, dx2−y2 , (px, py) are the irreducible repre-
sentations of the D4 group, and f 	 are the corresponding
form factors. For the pairing symmetries that are nonzero in

our case, we take f s
k ≡ cos kx + cos ky, and f

dx2−y2

k ≡ cos kx −
cos ky. To detect time-reversal symmetry breaking, we com-
pute

OT ≡ 1 −
∣∣∑

k

(
φ

(0,0)
k

)2∣∣∑
k

∣∣φ(0,0)
k

∣∣2 . (12)

The amplitudes of these order parameters are plotted in Fig. 3.
It is probably not surprising to see that the BCS uniform
pairing state is a pure s-wave state. However, interestingly, we
find the BEC uniform phase has coexisting s and dx2−y2 pairing
components, and the time-reversal symmetry is also sponta-
neously broken, suggesting an exotic s ± idx2−y2 pairing. This
finding gains further support through the direct visualization
of the pairing wavefunctions in real space in Fig. 4, where it
can be directly seen that the relative phase between the pair
fields on the nearest neighbor bonds in x and y directions
is π/2. It is also remarkable that in the dashed-out regime
where the uniform pairing state gives way to the PDW state,
the uniform pairing state itself crossovers from an s + idx2−y2

to a dx2−y2 -wave state, and has competitive energy compared
to the PDW state [Fig. 1(c)]. We hope that our MF results can
serve as an invitation for further investigations of the problem
in this relatively unexplored parameter regime.

Although mean-field theories are generically less reliable
in 1D due to strong fluctuations, we nonetheless performed
the same analysis for the 1D chain case, with the aim of
facilitating comparison with existing results. The outcomes,
as depicted in Fig. 2, closely resemble the findings in the
2D scenario, and the differences compared to the 2D case

are (1) the PDW state with q = π is favorable in an even
broader regime, and (2) the BEC uniform pairing state is no
longer exotic. It is encouraging to note that density matrix
renormalization group (DMRG) studies have found PDW to
be the ground state at JH/JK = 1, t/JK = 1/2 [23,24], a point
that is possibly connected to the PDW regime in Fig. 2(a) after
extrapolating the phase boundary.

A possible mechanism of the exotic SC states. As seen in
Fig. 4, we find that the interesting PDW and s ± idx2−y2 states
have dominant pairing amplitude on the nearest-neighbor
bonds. On the other hand, from Fig. 1(c) it can be seen that the
energy gain associated with the pair formation ∼|F (q)

H /(nhN )|
(or the single-particle gap presented within the SM [51]), is
much higher than the phase stiffness ∼∇2

q F (q)
H /N at the opti-

mal q, so it can be concluded that these pairs are preformed
before phase coherence develops. This can be intuitively un-
derstood by the presence of a strong JH, which stabilizes such
a local singlet pairing at a relatively high-energy scale. This
observation motivates us to take a perspective starting from
these preformed “bond dimers” by considering an effective
dimer theory (subject to hard-core constraints that are rela-
tively unimportant in the dilute limit due to the low collision
probability),

Ĥdimer = −
∑

〈i j〉,〈mn〉
(τi j,mnξ̂

†
i j ξ̂mn + H.c.), (13)

where τi j,mn is the effective pair hopping amplitude between
bond 〈i j〉 and bond 〈mn〉. The BEC of these dimers onto the
boson band minima determines the pairing mode of the SC
state. From the form of the effective Hamiltonian in Eq. (3),
the leading terms that can contribute to the boson hopping ma-
trix are the t2 terms in Eq. (4) and t ′

2, τ2 terms in Eq. (6), which
can move a bond dimer to another bond with a shared site. The
crucial thing that allows the exotic pairing states to arise in this
system is that these dominant terms contribute negatively to
the hopping matrix τi j,mn, circumventing the limitation of the
Perron-Frobenius theorem that always gives rise to a uniform
s-wave pairing ground state and is applicable when all matrix
entries are non-negative. Actually, these leading contributions
yield an exactly flat boson band at low energy, which opens
room for the higher-order perturbations in the boson hopping
matrix to lift the degeneracy and lead to an exotic pairing
momentum and/or symmetry. This picture for PDW based
on the “wrong” signs of certain pair hopping terms seems to
be a general, strong-coupling mechanism already seen to be
valid in several systems [49,50] and may be responsible for
the PDW phase in other systems [5,53].
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