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Motivated by the recent progress in realizing and controlling extended Bose-Hubbard systems using excitonic
or atomic devices, the present Letter theoretically investigates the case of a two-band Bose-Hubbard chain with
nearest-neighbor interactions. Specifically, this study concentrates on the scenario where, due to the interactions,
one band supports a density-wave phase, i.e., a correlated insulating phase with spontaneous breaking of
translational symmetry in the lattice, while the other band supports superfluid behavior. Using the density matrix
renormalization group method, we show that supersolid order can emerge from such a combination, that is,
an elusive quantum state that combines crystalline order with long-range phase coherence. Depending on the
filling of the bands and the interband interaction strength, the supersolid phase competes with phase-separation,
superfluid order, or Mott insulating density-wave order. As a possible setup to observe supersolidity, we propose
the combination of a lower band supporting density-wave order and a thermally excited band that supports
superfluidity due to weaker lattice confinement.
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Introduction. Bosons have long occupied a niche role in
the study of strongly correlated many-body phases. While
interacting fermions in the lattice have been described by the
Hubbard model since 1963 [1], the bosonic variant of this
model gained prominence only after 1989 [2] (although it
was essentially already introduced by Gersch and Knollman
in 1963 [3] to study the effects of repulsive interactions on the
condensation of bosons). As for fermions, the Bose-Hubbard
model also features a quantum phase transition into a Mott
insulating phase, caused by the repulsive local interaction.
On the other hand, the weakly interacting Bose system con-
denses into a superfluid. Apart from the intrinsic theoretical
interest in these phases, much of the original motivation for
the Bose-Hubbard model was to describe the behavior of
4He. However, the model found a second more direct and
far-reaching application as an accurate description of certain
ultracold bosonic atoms moving in optical periodic lattices [4]
that was experimentally and spectacularly confirmed in 2002
[5]. The realization of this theoretical model in a synthetic
quantum system gave birth to the field of practical quantum
simulations and has been followed by a tremendous amount
of experimental and theoretical work [6,7], for instance, ex-
ploring different lattice geometries, quasiperiodic potentials,
synthetic gauge degrees of freedom, and many more. These
developments have put an end to bosons’ niche existence in
the field of quantum many-body physics.

The standard Bose-Hubbard model is limited to a single
energy band, a simplification that tends to be justified if
the lattice potential is the dominant energy scale. However,
the possibility of activating additional bands significantly

enriches the model [8–12] and has, for instance, led to the
observation of orbital or staggered superfluidity [13–15]. An-
other extension of the Bose-Hubbard model that has attracted
a lot of attention is long-range interactions [9,16–35]. The
inclusion of nearest-neighbor interactions can lead to density-
modulated phases, that is, a spontaneous breaking of the
(discrete) translational symmetry of the lattice. Depending on
the filling of the lattice, the density modulation may occur
in the Mott insulating regime, forming phases also known
as (charge) density wave, Mott crystal or staggered Mott
insulator, or checkerboard phase [in two dimensions (2D)].
Most striking, however, is the appearance of density mod-
ulations in the superfluid regime, where the coexistence of
superfluid correlations and translational symmetry breaking
leads to a so-called supersolid phase. Another phase of great
interest that is stabilized by nearest-neighbor interactions is
the Haldane insulator. This gapped phase does not break the
translational symmetry, but is characterized by a hidden string
order: Particle-hole fluctuations appear in alternating order
and are separated by strings of equally populated sites.

The experimental realization of the novel phases induced
by the long-range interaction is one of the frontiers in quantum
many-body physics. Cold atoms stand out by their detection
opportunities, as string order parameters can be measured
through single-site microscopy [36], and different atomic sys-
tems with long-range interactions have been developed. In
some atomic species, such as erbium, a strong magnetic dipole
moment leads to long-range interactions and has enabled the
detection of a supersolid phase in a continuous trap [37]
and, very recently, also of charge density waves in a lattice
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system [38]. In systems of polar molecules, the electric dipole
moment is the source of strong long-range interactions. Fur-
thermore, by Rydberg dressing, it is possible to synthesize
long-range interactions between cold atoms [39,40]. Notably,
bosonic many-body phases can also be studied in electronic
systems by optically exciting bound electron-hole pairs. These
composite bosons, also known as excitons, can possess a large
electric dipole moment. In such a system, the Bose-Hubbard
model can be realized by assembling a lattice potential via
nanolithography on a GaAs double quantum well [41]. Al-
ternatively, twisted layers of transition-metal dichalcogenides
can be used to produce a tunable lattice geometry originating
from the twist-induced Moiré pattern [42]. Only a few months
after the implementation of standard Bose-Hubbard physics in
the excitonic device, the strong dipolar interactions between
excitons have also enabled, for the first time, the realization
of the extended Bose-Hubbard model [43] in a 2D square
lattice. Indirect hints for the formation of a checkerboard solid
have been measured. Interestingly, due to the extremely strong
interactions, multiband effects may also play an important role
in this system.

Motivated by these experimental breakthroughs in a variety
of different platforms, this Letter takes a theoretical perspec-
tive on the combined effect of nearest-neighbor interactions
and two-band physics in one-dimensional Bose-Hubbard
systems. To investigate the ground-state phases, we use
the density matrix renormalization (DMRG) group method
[44,45]. In particular, we focus on scenarios where the two
bands possess sufficiently distinct parameters such that each
band on its own would be in a different phase. Specifically,
we are interested in the case where a band with relatively
strong nearest-neighbor interactions favors a charge density
wave, whereas the other band is in the superfluid regime due
to enhanced tunneling. We analyze the interplay of two such
bands, induced by density-density interband interactions, and
demonstrate that supersolid behavior may emerge from such
a combination. After introducing the model, we first concen-
trate on the case where both bands are equally filled, and then
study the fate of the supersolid phase as a function of band
population.

Model. We study the one-dimensional two-band ex-
tended Bose-Hubbard model described by the following
Hamiltonian:

Ĥ = −Ja

∑

〈i, j〉
(â†
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Here, â†
i , âi (b̂†

i , b̂i) denote the creation and annihilation
operators on site i in band A (B), and n̂a

i (n̂b
i ) denote the

corresponding number operators. Particles in each band move
between neighboring lattice sites with hopping Ja and Jb and

FIG. 1. Five possible states at unit filling with negligibly small
hopping. These states appear depending on the competition of inter-
actions. In the case of phase separation (PS), the two subsystems may
form n = 2 Mott states (as shown here) or, if V > 3U , density-wave
patterns with fourfold occupied sites (not shown).

interact with each other with strength Ua and Ub in the same
sites and Va and Vb in the neighboring sites. The interplay of
the bands is controlled by on-site Uab and nearest-neighbor
Vab interactions between two bands. We suppress a possible
band-gap term which, at a fixed band polarization, reduces to
a constant.

Unpolarized system. Particle number and band polariza-
tion are conserved quantities of the Hamiltonian, and we
first analyze unpolarized configurations at filling one, e.g.,
Na(b) = ∑L

i=1 n̂a(b)
i are the populations of the bands and L

is the number of sites. For the sake of simplicity, we start
by considering the small hopping limit Ja, Jb → 0. In this
case, the ground state is determined only by the competition
between interactions, and this restriction gives us an intuitive
understanding of the individual role of each interaction in our
model. In the absence of interband interactions, each band can
either form a Mott insulator with one particle per site, if the
on-site repulsion U is dominant in this band, or a density-wave
(DW) phase of alternating doubly occupied and empty sites,
if nearest-neighbor interactions are dominant, V > U/2. Five
possible combinations of these phases for two-band systems
are illustrated in Fig. 1. Which of these possibilities is chosen
is governed by the interband interactions. For instance, if each
of the bands favors DW order, the two bands can still be
combined to a configuration with uniform total density if the
DWs are shifted relative to each other. We note that never-
theless, translational invariance is broken through the band
ordering. If interband nearest-neighbor interactions become
strong (Vab > Uab/2), symmetry breaking is also seen in the
total density, as a configuration of alternating empty sites
and fourfold occupied sites will be chosen. When interband
interactions become strong compared to intraband interac-
tions, phase-separated states tend to become favorable, e.g.,
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FIG. 2. The ground-state phase diagram of an unpolarized system (L = 40) at unit filling with Ua = 5,Va = 4 and Ub = 1,Vb = 0.5, with
Ja = Jb = 1 being the unit of energy. With this choice, band A is in the DW regime, whereas band B is SF. As a function of interband
interactions Vab and Uab, we identify different phases due to the interplay of the inequivalent bands. Specifically, the plots show the DW
order parameter (color plot), as well as the decay behavior of the superfluid correlation function (blue or red circles, for exponential or
algebraic decay, respectively). We separately consider band A (left panel) and band B (middle panel), as well as the entire system jointly (right
panel). White regions (with the sky-blue line as a guide for the eye), distinguished by inspecting particle number profiles, are identified as
phase-separated regimes, whereas the colored regimes exhibit DW and SF, but also supersolid (SS) phases with coexisting SF and DW orders.

a splitting of the system in two Mott phases of two identical
particles per site.

For a quantitative characterization of DW order, we in-
troduce normalized correlation functions probing the density
order modulated at wave vector q = π for each band α = a, b
individually, as well as for both bands jointly:

Cα
DW (r) = (−1)r

(n̄α )2

〈
δn̂α

i δn̂α
i+r

〉
, (2)

Cab
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〈(
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i

)(
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i+r

)〉
, (3)

where δn̂α
i is the deviation of the number of particles at site

i from the average particle number in the band, n̄α . The DW
order parameter is then taken to be the correlation function
at the largest distance, which in the case of calculations in a
finite chain of length L is Oα

DW = Cα
DW (r = L/2).

It is known that finite hopping can modify or destroy
the insulating states, giving rise to the Haldane insulating
phase characterized by topological string order in a one-band
Bose Hubbard model, or the superfluid phase with long-range
phase coherence. In this Letter, we are primarily interested
in the interplay of density waves and superfluids. To charac-
terize the latter, we introduce the superfluid (SF) correlation
function defined as

Ca
SF (r) = 〈â†

i âi+r〉, Cb
SF (r) = 〈b̂†

i b̂i+r〉, (4)

and evaluate them using the procedure outlined above for
the DW correlation functions (see the Supplemental Material
[46] for more details). The superfluid phase in one dimension
exhibits only quasi-long-range order and is characterized by
a power-law decay of the correlation function with distance.
On the other hand, CSF decays exponentially in the insulating
phases. If the ratio between kinetic energy and interaction
energy is sufficiently different between the two bands, we
may obtain an interesting scenario where the strongly inter-
acting band supports insulating behavior, whereas the weakly
interacting band favors a SF state. Specifically, we are inter-
ested in the case where strong nearest-neighbor interactions
(V > U/2) produce the DW order of the insulating state.

We have studied this case using the DMRG method to cal-
culate the ground state [47]. Although DMRG works most
efficiently under open boundary conditions, we have used
periodic boundary conditions in the following calculations,
since in the DW phase open boundary conditions require an
artificial potential to break the degeneracy. The phases are
identified by evaluating the DW order parameter and the SF
correlation function for the two bands separately, as well as for
the entire system as a whole. For a broad range of interband
interaction parameters Uab and Vab, our results are illustrated
and summarized in Fig. 2 for a fixed choice of intraband
parameters. The color bar shows the value of the density-wave
order parameter. The red or blue circles indicate the qualitative
behavior of the SF correlations; blue circles correspond to
exponential decay (no SF), whereas red circles correspond
to algebraic decay (SF). If any of the interband interactions
Uab or Vab becomes large, the interactions separate the system
into two different phases. In the diagram of Fig. 2, the phase
separation is distinguished by the particle number profiles and
assigned to the white region.

Concentrating on the interesting non-phase-separated
regime (colored regions in Fig. 2), we first analyze the two
bands separately. We find that the strongly interacting band
(band A) exhibits DW order and no SF order (left panel). The
behavior of band B (middle panel) is more diverse: Unless Uab

or Vab get very large, this band exhibits SF order, as indicated
by the algebraic decay of SF correlators. Since the repulsive
Uab (Vab) has a tendency of correlating (anticorrelating) the
density of band B with the DW-ordered density of band A,
both types of interband interactions have a tendency of pro-
ducing DW order in band B, unless both Uab and Vab get
so strong that phase separation is reached. The simultaneous
presence of SF and DW order establishes supersolid (SS)
behavior of band B. However, if one of the interband interac-
tions becomes very strong, band B becomes insulating, with
exponentially decaying SF correlators and finite DW order.
As already explained in Fig. 1, the two interband interactions
Uab and Vab lead to a different combination of two DW pat-
terns. Hence, in an intermediate regime, Uab ≈ 2Vab, the two

L100507-3



YUMA WATANABE et al. PHYSICAL REVIEW B 109, L100507 (2024)

FIG. 3. The dependence of the density-wave order parameter and
the superfluid correlation function on the particle population in the
SS1 regime Uab = 3.2, Vab = 0. The circle lines show the density-
wave order parameter in the lower (red), higher (light-blue), and
entire (black) band. The red and blue rectangles (circles) show the
algebraic and exponential decay of the superfluid correlation function
in the lower (upper) band, respectively.

opposite effects cancel each other and band B remains with
uniform density. The different effect of the two interaction
types is best seen when considering both bands together (right
panel): We note that in the regime in which Uab dominates
and the densities of bands A and B are anticorrelated (denoted
SS1 and DW1 in the middle panel), the overall density is
homogeneous. On the other hand, the regime with correlated
densities (SS2 and DW2) exhibits density modulations in the
entire system. We emphasize that whether the overall density
is homogeneous or modulated, the simultaneous occurrence
of SF order and spatial symmetry breaking establishes some
sort of SS behavior.

Polarization dependence of the phase. While synthetic
systems such as cold-atomic setups may allow one to freely
choose the band polarization, in other systems the occupa-
tion of the bands is governed by the temperature and the
energy gap between the bands. This includes the relevant case
of excitons in synthetic lattices, where finite temperature, a
tunable band gap, and strong interactions can result in the
sizable occupation of excited bands [43]. Due to the more
delocalized nature of excited Wannier states, the excited band
has a significantly larger hopping parameter. This provides
strong motivation for studying the interplay of an interaction-
dominated DW band and a tunneling-dominated SF band
beyond the unpolarized case. Therefore, in the remainder of
this Letter, we ask the question whether the recipe of generat-
ing SS order through the interplay of such bands is generic or
whether it is limited to the unpolarized case.

To answer this question, we concentrate on a fixed point
in the parameter space (chosen either from the SS1 or SS2
regime determined in Fig. 2), and analyze the ground states in
the different polarization sectors from (Na = 0, Nb = 2L) to
(Na = 2L, Nb = 0). The results are exemplified in Fig. 3 for
a data point from the SS1 regime. In the figure, we plot the
DW order parameter as a function of the population Na. In

FIG. 4. Schematic representation for the implementation of the
extended Bose-Hubbard model. Bands A and B are associated to
different layers of the optical lattice. Ua/b terms correspond to on-site
atomic interactions, and extended forces Va/b, Uab, Vab are induced
by dipolar interactions between sites separated along the horizontal,
vertical, and diagonal directions, respectively.

order to establish DW order, band A needs to be at least half
filled (Na � L/2). Under this condition, band B is also found
to establish DW order. Interestingly, for larger Na, the DW
behavior is seen both separately in each band as well as in the
total density of both bands together, whose behavior originates
from the anticorrelation of the two in general unequal DWs
which are shifted with respect to each other by one site.

In the lower part of the plot in Fig. 3, we also indicate
the decay behavior of the SF correlators in the two bands
by the red and blue dots. Algebraic decay (red dots) is
found to be the prevalent behavior in both bands unless their
population drops to very small values. However, in the vicinity
of special fillings (specifically, Na/L = 1/2, 1, and 3/2), the
insulating DW configuration is stabilized. The enhanced DW
order is also seen in small cusps of OA

DW . At these fillings, the
DW order prevents the system from establishing SF order in
band A. For Na/L = 3/2, the suppression of SF order also
affects band B.

We mention that a similar behavior has been observed in
the SS2 regime for Na > L/2. As expected for this regime,
the DW order of the two bands interferes constructively. For
small Na < L/2, the appearance of phase separation in the
SS2 regime constitutes a major difference from the SS1 case.

Implementation with cold atoms. A highly flexible can-
didate for the experimental realization of the Bose-Hubbard
model in Eq. (1) is cold atoms in a double-ladder optical lat-
tice. One can map the occupation of each band to the presence
of a bosonic atom on each of the ladders of a double-ladder
optical lattice. Hopping Ja(b) is thus associated to atomic
tunneling along the horizontal (vertical) axis and Ua(b) cor-
responds to contact interactions, which can be independently
tuned by choosing a different trap depth for each ladder,
as occurs in bipartite lattices created by the combination of
two laser frequencies along the vertical direction [48,49].
This also allows one to induce an energy offset � between
the two ladders. Terms Uab, Va(b), and Vab describe repulsive
interactions along the nearest-neighbor vertical, horizontal,
and diagonal directions, respectively (see Fig. 4). Engineering
such nonlocal terms can benefit from recent experimental
achievement with magnetic atoms such as erbium [38,50],
where a lattice spacing of the order of 250 nm translates
into strong dipolar interactions that are comparable to the
tunneling frequency (see the Supplemental Material [46] and
the references [51–54] therein). Dipolar forces highly depend
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on the atomic separation and the relative polar angle of the
dipole. This allows one to highly engineer the density-density
terms by appropriately choosing the lattice spacing and atomic
quantization axis, while longer-range interactions decay poly-
nomially. Thanks to current advances with accordion lattices
[38], an atomic gas microscope can resolve the position of
each individual atom, confirming the polarization of the sys-
tem and measuring the DW correlation functions in Eqs. (2)
and (3) through fluorescence measurements. Time-of-flight
measurements can also discriminate between superfluid and
insulating phases [5].

Summary. Our findings establish the existence of SF, SS,
and DW insulating phases, as well as phase separation in two-
band extended Bose-Hubbard models. These different phases
can be selected by tuning the interband interaction parameters,
as we have explicitly shown for an unpolarized system at
filling one, but also at fixed system parameters by varying the
band polarization. Our results provide a recipe for achieving
supersolidity by combining a band with SF properties and a
band with DW properties, e.g., by thermally exciting a second
band. Interestingly, no matter which band provides the major-
ity of particles, the combination of the two unequal bands can
result in SS order.

We emphasize that our study of a two-band extended Bose-
Hubbard chain does not exhaust the rich opportunities which
arise from the combination of orbital degrees of freedom
and long-range interactions. For instance, the combination of
two superfluid bands may also lead to twisted multiorbital
superfluidity, similar to the one studied in Refs. [55,56], or
topological superfluidity [14,57]. Another interesting possi-
bility would be to look at effective higher-body interactions if
interactions beyond the density-density interaction produce a
virtual occupation of one band [58,59].
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O. Marković, and M. Greiner, Dipolar quantum solids emerging
in a Hubbard quantum simulator, Nature (London) 622, 724
(2023).

[39] J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J.-y. Choi, T. Pohl, I.
Bloch, and C. Gross, Many-body interferometry of a Rydberg-
dressed spin lattice, Nat. Phys. 12, 1095 (2016).

[40] A. Browaeys and T. Lahaye, Many-body physics with individu-
ally controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).

[41] C. Lagoin, S. Suffit, K. Baldwin, L. Pfeiffer, and F. Dubin, Mott
insulator of strongly interacting two-dimensional semiconduc-
tor excitons, Nat. Phys. 18, 149 (2022).

[42] H. Park, J. Zhu, X. Wang, Y. Wang, W. Holtzmann, T.
Taniguchi, K. Watanabe, J. Yan, L. Fu, T. Cao, D. Xiao, D. R.
Gamelin, H. Yu, W. Yao, and X. Xu, Dipole ladders with large
Hubbard interaction in a moiré exciton lattice, Nat. Phys. 19,
1286 (2023).

[43] C. Lagoin, U. Bhattacharya, T. Grass, R. W. Chhajlany,
T. Salamon, K. Baldwin, L. Pfeiffer, M. Lewenstein, M.
Holzmann, and F. Dubin, Extended Bose-Hubbard model with
dipolar excitons, Nature (London) 609, 485 (2022).

[44] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. 326, 96
(2011).

L100507-6

https://doi.org/10.1103/PhysRevA.79.033603
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1103/PhysRevA.94.031601
https://doi.org/10.1088/0034-4885/79/11/116401
https://doi.org/10.1103/PhysRevB.103.205144
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/s41586-021-03702-0
https://doi.org/10.1038/s41567-021-01476-w
https://doi.org/10.1103/PhysRevLett.88.170406
https://doi.org/10.1103/PhysRevLett.90.110401
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.97.087209
https://doi.org/10.1103/PhysRevLett.97.260401
https://doi.org/10.1103/PhysRevLett.98.235301
https://doi.org/10.1103/PhysRevA.78.043604
https://doi.org/10.1103/PhysRevA.80.043614
https://doi.org/10.1103/PhysRevLett.103.035304
https://doi.org/10.1088/1367-2630/12/11/113037
https://doi.org/10.1103/PhysRevLett.104.125301
https://doi.org/10.1088/0953-4075/44/19/193001
https://doi.org/10.1103/PhysRevB.83.155110
https://doi.org/10.1103/PhysRevLett.108.115301
https://doi.org/10.1088/1367-2630/14/11/113006
https://doi.org/10.1088/1367-2630/14/6/065012
https://doi.org/10.1103/PhysRevB.86.054520
https://doi.org/10.1103/PhysRevLett.110.265303
https://doi.org/10.1103/PhysRevB.90.205123
https://arxiv.org/abs/2307.15310
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1038/s41567-020-01100-3
https://doi.org/10.1038/s41586-023-06614-3
https://doi.org/10.1038/nphys3835
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/s41567-021-01440-8
https://doi.org/10.1038/s41567-023-02077-5
https://doi.org/10.1038/s41586-022-05123-z
https://doi.org/10.1016/j.aop.2010.09.012


COMPETING ORDER IN TWO-BAND BOSE-HUBBARD … PHYSICAL REVIEW B 109, L100507 (2024)

[45] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor
software library for tensor network calculations, SciPost Phys.
Codebases, 4 (2022).

[46] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L100507 for further details of the scal-
ing of observables and the experimental implementation.

[47] In our DMRG calculation, the maximum bond dimension is set
to 800. As a criterion for convergence, the discrepancy between
subsequent iterations shall be below 10−8 for energy and 10−5

for entropy.
[48] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,

and I. Bloch, A Thouless quantum pump with ultracold
bosonic atoms in an optical superlattice, Nat. Phys. 12, 350
(2016).

[49] M. Modugno and G. Pettini, Maximally localized
Wannier functions for ultracold atoms in one-dimensional
double-well periodic potentials, New J. Phys. 14, 055004
(2012).

[50] L. Chomaz, I. Ferrier-Barbut, F. Ferlaino, B. Laburthe-Tolra,
B. L. Lev, and T. Pfau, Dipolar physics: A review of exper-
iments with magnetic quantum gases, Rep. Prog. Phys. 86,
026401 (2023).

[51] E. Guardado-Sanchez, B. M. Spar, P. Schauss, R. Belyansky,
J. T. Young, P. Bienias, A. V. Gorshkov, T. Iadecola,
and W. S. Bakr, Quench dynamics of a Fermi gas with
strong nonlocal interactions, Phys. Rev. X 11, 021036
(2021).

[52] S. L. Cornish, M. R. Tarbutt, and K. R. A. Hazzard, Quantum
computation and quantum simulation with ultracold molecules,
arXiv:2401.05086 (2024).

[53] S. Baier, M. J. Mark, D. Petter, K. Aikawa, L. Chomaz, Z.
Cai, M. Baranov, P. Zoller, and F. Ferlaino, Extended Bose-
Hubbard models with ultracold magnetic atoms, Science 352,
201 (2016).

[54] A. Patscheider, L. Chomaz, G. Natale, D. Petter, M. J. Mark,
S. Baier, B. Yang, R. R. W. Wang, J. L. Bohn, and F. Ferlaino,
Determination of the scattering length of erbium atoms, Phys.
Rev. A 105, 063307 (2022).

[55] P. Soltan-Panahi, D. Lühmann, J. Struck, P. Windpassinger,
and K. Sengstock, Quantum phase transition to unconventional
multi-orbital superfluidity in optical lattices, Nat. Phys. 8, 71
(2012).

[56] O. Jürgensen, K. Sengstock, and D. Lühmann, Twisted complex
superfluids in optical lattices, Sci. Rep. 5, 12912 (2015).

[57] J.-P. Lv and Z. D. Wang, Exotic Haldane superfluid phase of
soft-core bosons in optical lattices, Phys. Rev. B 93, 174507
(2016).

[58] I. E. Mazets, T. Schumm, and J. Schmiedmayer, Breakdown
of integrability in a quasi-1D ultracold bosonic gas, Phys. Rev.
Lett. 100, 210403 (2008).

[59] S. Will, T. Best, U. Schneider, L. Hackermüller, D. Lühmann,
and I. Bloch, Time-resolved observation of coherent multi-body
interactions in quantum phase revivals, Nature (London) 465,
197 (2010).

L100507-7

https://doi.org/10.21468/SciPostPhysCodeb.4
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L100507
https://doi.org/10.1038/nphys3584
https://doi.org/10.1088/1367-2630/14/5/055004
https://doi.org/10.1088/1361-6633/aca814
https://doi.org/10.1103/PhysRevX.11.021036
https://arxiv.org/abs/2401.05086
https://doi.org/10.1126/science.aac9812
https://doi.org/10.1103/PhysRevA.105.063307
https://doi.org/10.1038/nphys2128
https://doi.org/10.1038/srep12912
https://doi.org/10.1103/PhysRevB.93.174507
https://doi.org/10.1103/PhysRevLett.100.210403
https://doi.org/10.1038/nature09036

