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Odd-frequency pairing is an unconventional type of Cooper pairing in superconductors related to the frequency
dependence of the corresponding anomalous Green’s function. We show by a combination of analytical and
numerical methods that odd-frequency pairing is ubiquitously present in the current of Andreev-scattered
particles across a junction formed by a normal metal (N) and a superconductor (S), even if the superconducting
pairing is of conventional s-wave, spin-singlet type. We carefully analyze the conductance of NS junctions
with different pairing symmetries (s wave, p wave, d wave). In all cases, we identify a generic equal balance
of even- and odd-frequency pairing to the contributions related to Andreev reflection. This analysis shows in
retrospect that the presence of odd-frequency pairing in electric currents across NS junctions is rather the rule,
not the exception. This insight stems from an alternative approach of analyzing the transport problem of hybrid
structures. It is based on the Kubo-Greenwood formula with direct access to symmetries of the anomalous
Green’s functions characterizing the superconducting pairing. We expect that our predictions substantially enrich
the interpretation of transport data across NS junctions in many material combinations.

DOI: 10.1103/PhysRevB.109.L100505

Introduction. The symmetry of the superconducting pairing
potential (SPP) has been the central topic since its discovery.
One important (but less investigated) aspect thereof is its
frequency dependence. The frequency dependence of the SPP
is classified in two distinct ways: even- and odd-frequency
pairing. Even-frequency pairing (EFP) applies to all known
bulk superconductors to date, no matter whether their pairing
is of conventional s-wave, spin-singlet type or unconventional.
Odd-frequency pairing (OFP) is considered to be rather ex-
otic. It refers to the property that the anomalous Green’s
function (related to a particular type of pairing amplitude)
is odd under the exchange of time or frequency [1–5]. Bulk
OFP has not yet been discovered experimentally. In fact, its
stability is an interesting research topic by itself [6–10]. In
hybrid structures, such as normal metal (N)–superconductor
(S) junctions or Josephson junctions, translation symmetry
is broken. It has been soon realized that this broken sym-
metry gives rise to the emergence of odd-frequency pairing
in superconducting hybrids [11–17]. In Josephson junctions,
supplemented with magnetic materials in the weak link, a
long-range proximity effect has been considered as an in-
direct evidence of OFP [18]. More distinct features of OFP
(as compared to EFP) have also been predicted, for instance,
the paramagnetic Meissner effect, which should appear under
certain conditions [19–23]. Indirect evidence of this particu-
lar type of attraction of magnetic flux by superconductivity
has been reported in experiments based on low-energy muon
spectroscopy [24–26] and on scanning tunneling spectroscopy
(STS) [27,28].

However, it is fair to say that the present-day understanding
is that it is difficult to observe evidence for OFP in any type
of experiment involving superconductors or hybrid junctions

thereof. In this Letter, we argue that the opposite is true for
standard transport measurements across NS junctions. In such
junctions, it is impossible to observe genuine fingerprints of
conventional EFP. In fact, we show below that the transport
features related to superconductivity, i.e., Andreev reflection
in the context of NS junctions, are always equally balanced by
EFP and OFP contributions. This observation is deeply con-
nected to the underlying symmetries of retarded and advanced
Green’s functions that enter into linear response expressions
for the conductance. It has been overlooked so far, because
common methods of calculating these transport properties do
not give insight on the impact of EFP or OFP on the conduc-
tance. We benchmark our discovery by a number of examples,
where the N side is either a one-dimensional (1D) system or a
1D ladder and the S side is either a 1D or a 2D superconductor
with different pairing symmetries such as s wave, p wave, and
d wave. We expect that our predictions substantially enrich the
interpretation of transport data across NS junctions in many
material combinations.

Conductance across NS junction. We evaluate the conduc-
tance G by linear response theory employing

G = −
∫

dE
df (E )

dE
�̄e(E ), �e(x, x′, E ) = γ (G̃, G̃), (1)

γ (g1, g2) = αTr[Peg1(x, x′, E )
←→∇ ←→∇ ′g2(x′, x, E )]. (2)

The spatial average is depicted by using the symbol of
the overbar in this Letter: β̄ = 1

(L2−L1 )2

∫ L2

L1
dxdx′β(x, x′).

Here, α = −e2 h̄3π
4m2 , f (E ) is the Fermi-Dirac distribution

function, g(x)
←→∇ h(x) = [∂xg(x)]h(x) − g(x)∂xh(x),

←→∇ ′ acts
on x′, Pe = (τ̂0 + τ̂3)/2 with Pauli matrices τ̂ j=0,1,2,3 in
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particle-hole space, m is an electron mass, e is an elementary
charge, and the trace is taken for particle-hole and spin space.
G̃ is given by G̃(x, x′, E ) = 1

2π i [Ǧ
A(x, x′, E ) − ǦR(x, x′, E )]

with the advanced (retarded) Green’s function (GF) ǦA(R).
The symbol of the overtilde is used in this way throughout
this Letter. Equation (1) in combination with Eq. (2) is known
as the Kubo-Greenwood formula [29–31]. We evaluate �̄e(E )
in the N region, i.e., x and x′ are chosen in the N region.

Dividing the GFs into normal and anomalous GFs de-
scribed by ǦN and F̌ , respectively, Andreev reflection is
described by the anomalous part. Then, the retarded GF can be

expressed as ǦR(x, x′, E ) = (GR,11
N (x, x′, E ) F R,12(x, x′, E )

F R,21(x, x′, E ) GR,22
N (x, x′, E )

) with

ǦR(x, x′, E )

= −i
∫

d (t − t ′)ei(E+iη)(t−t ′ )
(t − t ′)

×
(〈{�σ (x, t ), �†

σ ′ (x′, t ′)}〉 〈{�σ (x, t ), �σ ′ (x′, t ′)}〉
〈{�†

σ (x, t ), �†
σ ′ (x′, t ′)}〉 〈{�†

σ (x, t ), �σ ′ (x′, t ′)}〉
)

,

(3)

where 
(t ) is the Heaviside step function, and ǦR
N and F̌ R

are normal and anomalous GFs: ǦR
N = (GR,11

N 0
0 GR,22

N
) and F̌ R =

( 0 F R,12

F R,21 0 ). The advanced GF is defined similarly. Here,
�σ (x, t ) is the Heisenberg representation of an annihilation
operator with spin σ , spatial position x, and time t . η is a pos-
itive infinitesimal number. �̄e(E ) can be divided into normal
transmission �̄N(E ) and Andreev reflection �̄F (E ) terms,

�̄e(E ) = �̄N(E ) + �̄F (E ), (4)

with �N(x, x′, E ) = γ (G̃N, G̃N) and �F (x, x′, E ) = γ (F̃ , F̃ ).
There are no cross terms between normal and anomalous GFs.

Even- and odd-frequency pairing contributions. In NS junc-
tions, OFP induced at the interface can penetrate into the N
region and contribute to Andreev reflection. We decompose
�F (x, x′, E ) into EFP and OFP components. The advanced
(retarded) GF can be written as the sum of even and odd
components F̌ A(R) = F̌ A(R),even + F̌ A(R),odd. Then, �F is de-
composed as �F = �ee

F + �oo
F + �eo

F with

�
ee(oo)
F (x, x′, E ) = γ

(
F̃ even(odd), F̃ even(odd)

)
, (5)

�eo
F (x, x′, E ) = γ

(
F̃ even, F̃ odd

) + γ
(
F̃ odd, F̃ even

)
. (6)

We analyze the odd-frequency contribution to �̄F (E ) for
three distinct systems illustrated in Fig. 1. Remarkably, we
demonstrate that �̄ee

F (E ) = �̄oo
F (E ) [32]. �̄eo

F (E ) is zero due
to particle-hole symmetry [proof is given in the Supplemental
Material (SM) [33]]. Hence, we do not discuss it. Figure 1(a)
shows the continuum 1D NS junction, where we analytically
prove the equal contribution of EFP and OFP to �̄F (E ). Fig-
ure 1(b) shows the 1D N/2D S junction inspired by scanning
tunneling spectroscopy. In this setup, we analyze s-, px-, and
d-wave SPPs. We demonstrate that only s-wave junctions
exhibit Andreev reflection since both EFP and OFP vanish
at the interface between 1D N and 2D S for px- and d-wave
junctions. Hence, they cannot penetrate into the 1D N. These
cancellations do not occur for the setup shown in Fig. 1(c),
where the normal metal has more spatial structure.

1D N 1D S

Uδ(x)

x
0

x
y

z

(a)

(b) (c)

j = 2

j = 1

−t̆

−t̆b
−t̆

−t̆

1D N

2D S

1D N
ladder

FIG. 1. Schematic illustration of three types of junctions.
(a) Continuum 1D N/1D S junction, (b) 1D N/2D S lattice model,
and (c) 1D N ladder/2D S lattice model.

1D N/1D S continuum model. We now present our
analytical results for the 1D N/1D S continuum model.
The Bogoliubov–de Gennes (BdG) Hamiltonian is
H (x, x′) = δ(x − x′)σ̂0τ̂3ε(x) + 
(x)
(x′)�(x, x′) with
ε(x) = − h̄2

2m
d2

dx2 − μ + Uδ(x), μ the chemical potential, U
the barrier potential at the interface, and σ̂ j=0,1,2,3 Pauli
matrices in spin space. As the SPP �(x, x′), we study s-wave
and p-wave cases: �(x, x′) = �δ(x − x′)iσ̂2iτ̂2 for s wave,

�(x, x′) = �σ̂1
∫

dk( 0 eik(x−x′ )

−e−ik(x−x′ ) 0
)sgn(k) for p wave

[see also Fig. 1(a)]. We define the dimensionless parameter

Z = 2mU
kF h̄2 with kF =

√
2mμ

h̄2 . We derive the GFs along the
lines of Refs. [34,35]. Explicit expressions are given in
the SM [33]. Employing Eqs. (1) and (2), we reproduce
the differential conductance of Blonder, Tinkham, and
Klapwijk (BTK) theory [36,37], �̄N(E ) = e2

π h̄ [1 − |b(E )|2]

and �̄F (E ) = e2

π h̄
kh
ke

|a(E )|2, where the electron (hole) wave

number is given by ke(h) =
√

2m
h̄2 [μ+(−)E ], and a(E ) and

b(E ) are hole (Andreev) and electron reflection coefficients,
respectively. We choose L1 = −∞ and L2 = 0.

The EFP and OFP contributions are

4π h̄

e2
�

ee(oo)
F (x, x′, E )

= kh

ke
|a(E )|2 + ke

kh
|a(−E )|2

− (+)
(ke + kh)2

2kekh
Re

[
a(E )a∗(−E )e−i(ke−kh )(x+x′ )]

+ (−)
(ke − kh)2

2kekh
Re

[
a(E )a(−E )e−i(ke+kh )(x+x′ )]. (7)

After averaging over x and x′, the last two terms in Eq. (7)
vanish. Then, we obtain �̄ee

F (E ) = �̄oo
F (E ) for E 
= 0 [38]

(see the SM [33] for further details). For the s-wave junc-
tion with a fully transparent barrier [Z = 0 shown Fig. 2(a)],
perfect Andreev reflection occurs, and 2π h̄

e2 �̄e(E ) ∼ 4 holds
for |E | < |�| [39]. As the value of Z increases [Z = 1 and
Z = 3 shown in Figs. 2(b) and 2(c), respectively], the shape of
�̄e(E ) approaches the U-shaped density of states reflecting the
s-wave SPP. Accordingly, the amplitude of Andreev reflection
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FIG. 2. �̄e(E ) and its components are plotted as a function of
E for several values of Z = 2mU/(kF h̄2). (a)–(c) s-wave and (d)–(f)
p-wave junctions. Z = 0 for (a) and (d), 1 for (b) and (e), and 3 for
(c) and (f). �/μ = 0.01 for all plots.

is suppressed. For any values of Z , �̄N(E ) = �̄F (E ) holds
for |E | < |�| due to the normalization of the coefficients:
kh
ke

|a(E )|2 + |b(E )|2 = 1 for |E | < |�| [36]. The presence
of Andreev reflection [�̄F (E ) 
= 0] is thus inherently con-
nected to the presence of OFP [40–45]. For p-wave junctions
[Figs. 2(d)–2(f)], �̄e(E = 0) takes a constant value due to the
presence of a Majorana state [46–48]. Half of it stems from
Andreev reflection �̄F (E = 0). Experimental conductance ex-
hibiting a zero energy peak larger than the value of the normal
state signifies the existence of Andreev reflection, a distinct
indicator of the presence of OFP. Hence, in Refs. [49–53],
signatures of OFP have been observed in retrospect.

1D N/2D S lattice model. Let us now consider the model
illustrated in Fig. 1(b). The Hamiltonian is given by

H = −t̆
∑
j>0,σ

(c†
j,σ c j+1,σ + H.c.) − μN

∑
j>0,σ

c†
j,σ c j,σ

− t̆b(c†
1,σ bj0,σ + H.c.) + H�

− t̆
∑
〈i,j〉,σ

(b†
i,σ bj,σ + H.c.) − μS

∑
j,σ

b†
j,σ bj,σ , (8)

where c j,σ (bj,σ ) is an annihilation operator in 1D N (2D
S) with the jth (jth) site and spin σ . Here, t̆ is a hopping
integral within 1D N and 2D S, t̆b is a hopping integral be-
tween 1D N and 2D S, μN(S) is a chemical potential in 1D
N (2D S), and j0 = (0, 0). We utilize �/t̆ = 0.1, t̆b/t̆ = 1,
μN/t̆ = −0.5, and μS/t̆ = −1. We impose periodic boundary
conditions in the x direction with Lx sites and an infinite
system in the y direction [54]. We consider s-, px-, and d-
wave SPPs for H� = ∑

k,σ,σ ′ b†
k,σ

�̂σ,σ ′ (k)b†
−k,σ ′ + H.c. with

momentum k, where �̂σ,σ ′ (k) is given by �iσ̂2, � sin kxσ̂3iσ̂2,
and �

2 (cos kx − cos ky)iσ̂2, respectively. Without loss of gen-
erality, we assume that � is real and positive.

For the lattice model, we use a discretized ver-
sion of Eq. (2): �e( j, j′, E ) = π h̄ Tr[P̂eĴ j

ˆ̃Gj, j′ (E )Ĵ j′
ˆ̃Gj′, j (E )]

with P̂e = diag(Pe, Pe ), Ĵ j = ( 0 Jj, j+1
Jj+1, j 0 ), Jj, j+1 = J∗

j+1, j =
et̆
ih̄ σ̂0τ̂0, and ˆ̃Gj, j′ = ( G̃ j, j′ G̃ j, j′+1

G̃ j+1, j′ G̃ j+1, j′+1
) [55,56]. Here, the trace

in �e( j, j′, E ) is taken for the spin, particle-hole, and neigh-
boring two spatial lattice sites spanned from j to j + 1. The
spatial average is defined by �̄e(E ) = 1

L2

∑L
j, j′=1 �e( j, j′, E )

FIG. 3. (a)–(c) �̄e(E ) and its components are plotted as a func-
tion of E . �̄eo

F (E ) = 0 numerically and is not plotted. (d)–(f) The
absolute value of on-site and NN retarded GF in 1D N is plotted
as a function of E . (a)–(f) Averaging length L = 500, Lx = 107,
and η/t̆ = 10−7. (g)–(i) On-site component of the anomalous GF
in Matsubara frequency representation in the 2D S close to the 1D
N is plotted as functions of jx and jy with Matsubara frequency
ωn/� = 0.1 and Lx = 2000. (a), (d), and (g) s-wave, (b), (e), and (h)
px-wave, and (c), (f), and (i) d-wave S junctions. (g) t̆ Re F onsite,even

2D,SS ,
(h) t̆ Re F onsite,odd

2D,ST , and (i) t̆ Re F onsite,even
2D,SS . The imaginary part for

(g)–(i) is zero.

with j and j′ chosen in the 1D N region. As shown in
Figs. 3(a)–3(c), only the s-wave junction has a nonzero
Andreev reflection [�̄F (E ) 
= 0]. For p-wave and d-wave
junctions, �̄e(E ) exhibits a V-shaped structure reflecting the
density of states [57–59]. Numerical equivalence of �̄ee

F and
�̄oo

F is shown in the SM [33]. The on-site ( j = 1) and nearest-
neighbor (NN) between j = 1 and j = 2 components [see
Fig. 1(b)] of the retarded anomalous GF in the 1D N are
plotted in Figs. 3(d)–3(f) [60]. In Figs. 3(d) and 3(f), s- and
d-wave junctions, respectively, the spin-singlet (SS) EFP and
OFP components are shown, and in Fig. 3(e), the px-wave
junction, and the spin-triplet (ST) EFP and OFP components
are shown [61]. In Fig. 3(d), we confirm that EFP and OFP
penetrate into 1D N [62]. For px- and d-wave cases, both EFP
and OFP do not penetrate into 1D N [Figs. 3(e) and 3(f)] [63].

Let us explain why EFP and OFP can (cannot) penetrate
into 1D N for the s-wave (px- and d-wave) junction. As an
example, the on-site components of the anomalous GF in 2D
S close to 1D N are illustrated in Figs. 3(g)–3(i) (NN pairings
are shown in the SM [33]). We define the on-site SS EFP
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(ST OFP) component of the anomalous GF with Matsubara
frequency (ωn) in 2D S as follows,

F onsite,even(odd)
2D,SS(ST) (j, iωn)

= 1

4

∑
ζ=±1

g(ζ )
[
F 12

j,j,↑,↓(ζ iωn) − (+)F 12
j,j,↓,↑(ζ iωn)

]
, (9)

with g(±1) = 1 for SS EFP and g(±1) = ±1 for ST
OFP [64]. When F onsite,even(odd)

2D,SS(ST) (j0, iωn) is nonzero, the on-site
pairing can penetrate into 1D N.

For the s-wave junction, the on-site anomalous GF (SS
EFP) does not exhibit a sign change due to the isotropy of
the s-wave SPP. Hence, this on-site pairing can penetrate into
1D N [Fig. 3(g)]. There are no cancellations for NN EFP and
OFP. Thus, they can also penetrate into 1D N [Fig. 3(d)]. For
the px-wave junction, the on-site anomalous GF (ST OFP)
[Fig. 3(h)] exhibits a sign change at jx = 0 since the px-wave
SPP changes its sign in the ±x direction. Then, OFPs cancel
each other at jx = 0 and cannot penetrate into 1D N. For
the d-wave S junction [Fig. 3(i)], the on-site anomalous GF
(SS EFP) also exhibits a sign change at jx = ± jy reflecting
d-wave symmetry. Then, the EFP contributions cancel each
other and cannot penetrate into 1D N. For px-wave and d-
wave junctions, NN EFP contributions also cancel each other
and cannot penetrate into 1D N [33]. The same argument
applies to NN OFP contributions.

1D N ladder/2D S model. From the results of the 1D
N/2D S junctions, we expect that EFP and OFP can pene-
trate into the N lead if we replace the 1D N lead with a 1D
N ladder [Fig. 1(c)]. Note that this setup mimics a double
tip in STS experiments. The 1D N ladder is connected to
( jx, jy) = (0, 0) and (1,0). We plot �̄e(E ) and its components
in Figs. 4(a)–4(c) accompanied with the on-site pairing of
anomalous GFs in Figs. 4(d)–4(f) for px-, py-, and d-wave
junctions. NN pairings are shown in the SM [33]. The SPP
for the py-wave case is given by �̂(k) = � sin kyσ̂3iσ̂2. For
p-wave junctions, depending on the orientation of SPPs (px or
py wave), EFP and OFP can penetrate into the 1D N ladder.
For the px-wave junction [Fig. 4(a)], we observe that EFP and
OFP contribute to �̄e(E ) since on-site OFPs in the x direction
do not cancel each other as shown in Fig. 4(d). However, for
the py-wave junction [Fig. 4(b)], �̄e(E ) and its components
are qualitatively the same as the ones in Fig. 3(b). Then, the
OFP contributions cancel each other [Fig. 4(e)] (NN EFPs
and NN OFPs also cancel and cannot penetrate into the 1D N
ladder [33]). For the d-wave junction, shown in Fig. 4(c), EFP

FIG. 4. (a)–(c) �̄e(E ) and its components are plotted as a func-
tion of E with L = 500, Lx = 2 × 106, and η/t̆ = 10−7. �̄eo

F (E ) = 0
numerically and is not plotted. (d)–(f) On-site component of the
anomalous GF close to the 1D N ladder is plotted as functions
of jx and jy at ωn/� = 0.1 with Lx = 2000. (a) and (d) px-wave,
(b) and (e) py-wave, and (c) and (f) d-wave S junction. (d) and (e)
t̆ Re F onsite,odd

2D,ST , (f) t̆ Re F onsite,even
2D,SS . The imaginary part for (d)–(f) is

zero.

and OFP contribute to �̄e(E ), where the EFP contributions do
not cancel each other [Fig. 4(f)].

Conclusions. We have analyzed the impact of even- and
odd-frequency pairing on the conductance across generic NS
junctions based on linear response theory. We have identified
an equal balance of even- and odd-frequency pairing con-
tributions to the conductance related to Andreev reflection.
The larger the transparency across the junction, the more
pronounced are these contributions typically. Hence, we prove
that the presence of Andreev reflection in transport across NS
junctions manifests the existence of odd-frequency pairing in
a variety of hybrid structures.
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