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The claims that a copper-substituted lead apatite, denoted as CuPb9(PO4)6(OH)2, could be a room-temperature
superconductor have led to intense research activity. While other research groups did not confirm these claims,
and the hope of realizing superconductivity in this compound has all but vanished, other findings have emerged
which motivate further work on this material. In fact, density functional theory calculations indicate the presence
of two nearly flat bands near the Fermi level, which are known to host strongly correlated physics. To facilitate
the theoretical study of the intriguing physics associated with these two flat bands, we propose a minimal tight-
binding model which reproduces their main features. We then calculate the orbital magnetic susceptibility of our
two-band model and find a large diamagnetic response which arises due to the multiorbital nature of the bands
and which could provide an explanation for the strong diamagnetism reported in experiments.
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Introduction. Recently, copper-substituted lead apatite
CuPb9(PO4)6(OH)2 was proposed as a room-temperature su-
perconductor [1,2]. While superconductivity in this material
was not replicated by other groups, a density functional the-
ory (DFT) calculations recently predicted the appearance of
two nearly flat bands in this material close to the Fermi
level [3] (see also Refs. [4–9]). Since flat bands are known
to host strongly correlated physics [10–13], this motivates
additional research on CuPb9(PO4)6(OH)2. In addition, the
reported unusual magnetic properties of this material—a com-
bination of soft ferromagnetism and strong diamagnetism
[14]—provide further motivation. To study the potentially rich
physics hosted by the two flat bands, it would be beneficial to
have a minimal two-band model which reproduces their main
qualitative features. In this Letter, we propose such a minimal
model, and discuss the implications for superconductivity and
diamagnetism.

Following Ref. [3], we investigate the situation in which Pb
is substituted by Cu on one of the four Pb(1) sites of the lead
apatite structure. (Here we follow the nomenclature in Ref. [3]
for which Pb(1) sites occupy the Wyckoff 4 f positions of
space group 176 P63/m but we note that the name Pb(2)
also appears for these sites in the literature.) Reference [3]
predicts the existence close to the Fermi level of two isolated
flat bands with a small bandwidth (around 0.1 eV), which are
well-separated from all the other bands. Since these two bands
are predicted to be mostly of Cu dzx and dzy character, we
aim to write a minimal tight-binding two-orbital model. Even
though they have a small bandwidth, these two bands still
have a nonzero momentum dependence (see Fig. 4 of Ref. [3])
which should be important for the physics, and which we hope
to reproduce with our model. If we neglect the small z shift
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of their 4 f Wyckoff position, the four Pb(1) sites form two
honeycomb layers stacked along z. We thus use a simplified
structure for which the Cu sites occupy one sublattice (called
A) of a honeycomb lattice, and are stacked vertically on every
other layer (see Fig. 1).

Before moving on to the model, it is worth noting that
a multitude of DFT results [3–9] concerning this compound
have emerged with sometimes conflicting results. In partic-
ular, the question of whether LK-99 is a metal or a Mott
insulator has received conflicting answers which depend sen-
sitively on the size of the Hubbard U parameter and the
relaxation of the structure. Although metallic behavior was
reported in Ref. [3] on which our model is based, subsequent
studies have reported the opening of a gap once the structure
is fully relaxed [6]. Further work has also shown that the
way in which correlations are treated is crucial, since Ref. [8]
found the opening of a gap within quasiparticle self-consistent
GW, regardless of the relaxation stage of the structure. In
addition, Ref. [9] showed how the Perdew-Burke-Ernzerhof
(PBE) functional predicts a metallic state with two flat bands
close to the Fermi level in overall agreement with Ref. [3],
whereas PBE+U shows a charge-transfer gap gradually open-
ing as U is increased. In this context, our approach is to
build a model which can reproduce the metallic band struc-
ture before the formation of a many-body band gap due to
strong repulsion. The tight-binding model in Eq. (1) is thus
only intended to serve as the kinetic energy contribution to
a multiorbital Hubbard model which should also include a
Hubbard-U term which would most likely open a many-body
gap for relevant values of U . Since our analysis of supercon-
ductivity and magnetism assumes a metallic state, it might not
be directly relevant to LK-99 if that compound is confirmed
to be a charge-transfer or Mott insulator, but still holds value
as a theoretical study of our two-orbital model in the small U
regime.
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Model. We propose the following single-particle Hamilto-
nian H0 = ∑

k c†
k,aHa,b(k)ck,b with

Ha,b(k) = dν (k)σ ν
a,b − μδa,b, (1)

with σ ν = (1, σ x, σ y, σ z ) the Pauli matrices written in the
orbital basis indexed by a, b = {dzx, dzy}, with μ the chemical
potential and with

d0(k) = −1

2

⎛
⎝1

2

∑
i=1,2,3

cos(k · bi ) + 3

⎞
⎠ − 2tz cos(kz ), (2)

d1(k) = −
√

3

4
(− cos(k · b1) + cos(k · b2)),

d2(k) = −
√

3

4
(sin(k · b3) + sin(k · b2) + sin(k · b1)),

d3(k) = −1

2

(
cos(k · b3) − 1

2
(cos(k · b1) + cos(k · b2))

)
,

where we used the lattice vectors connecting nearest-neighbor
Cu sites: b1 = −√

3/2êx + 3/2êy, b2 = −√
3/2êx − 3/2êy,

and b3 = √
3êx. In real space, this Hamiltonian reads

H0 =
∑

r

(
−μ − 3

2

)
c†

r,acr,a

−
∑

r

∑
i=1,2,3

c†
r,a(Ti )a,bcr+bi,b + H.c.

− tz
∑

r

c†
r,acr+cẑ,a + H.c., (3)

where r is summed over Cu sites, c is the lattice spacing be-
tween copper sites along the z axis, and the hopping matrices
are given by

T1 =
(

0 −
√

3
4

0 1
4

)
, (4)

and

T2 =
(

0 0√
3

4
1
4

)
, (5)

and

T3 =
(

3
8 −

√
3

8√
3

8
−1
8

)
. (6)

The −3/2 potential term can of course be absorbed in the
chemical potential but we keep it as it makes the connection
to the honeycomb px, py honeycomb model more transparent
[15], as we show below.

This Hamiltonian contains hopping terms to the 6 nearest-
neighbors on the triangular lattice of the Copper sites (see
arrows in Fig. 1), and to the two nearest-neighbors along the z
axis [the Pb(1) sites are stacked on top of each other along the
z axis]. We calculated the orbital-dependent hopping terms by
starting from a four-band honeycomb lattice model [15] with a
dzx and dzy orbital on every site, and for which only σ -bonding
terms are included, which means there is a single hopping
term for each bond which generates a coupling between the
projection of orbitals on the bond direction. We then added a

FIG. 1. Pb(1) sites forming a hexagonal lattice in the lead apatite
structure. After substitution by copper, one sublattice is occupied
by Cu (which we call the A sublattice, in red) and the other one is
occupied by Pb (which we call the B sublattice, in blue).

strong staggered potential ε which gaps out the B sublattice,
leaving behind a two-band model for the A sublattice. (Such
a staggered potential in the four-band model was studied in
Ref. [16].) At leading order in perturbation theory in 1/ε, we
obtain the tight-binding Hamiltonian given in Eq. (1). Our
derivation of the tight-binding model is phenomenological in
nature and a more microscopic derivation which accounts for
the complex environment of the Cu atoms is left for future
work.

Compared to the two-dimensional four-band model of
Ref. [15], we have added kz dispersion by adding an orbital-
independent nearest-neighbor hopping along z. This means
the kz dispersion within our model decouples from the mul-
tiorbital physics and simply gives an overall shift of the bands
with kz. This relies on our assumption that we can neglect the
small z shift of the 4 f Wyckoff positions (z = 0.994 [17]).
Relaxing this assumption would lead to a subleading kz de-
pendence of the orbital content of the bands, which we do not
consider here for simplicity.

The dispersion relation is given by E±(k) = d0(k) ±√
|d(k)|2 and is shown in Fig. 2. The bottom band is dis-

persionless along the planar kx, ky directions, with energy
E− = −9/4 − 2tz cos(kz ). The top band is dispersive, with en-
ergy E+ = − 1

4 (3 + 2
∑

i=1,2,3 cos(k · bi )) − 2tz cos(kz ). Our

FIG. 2. Surface plot of E±(k) at kz = 0, showing the bottom flat
band and the top dispersive band.
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FIG. 3. Dispersion relation E±(k) − μ with tz = 0.25 and
μ = −1.7. Points A, L, and H are all at kz = π .

Hamiltonian is defined in arbitrary units and should be scaled
by roughly 0.05 eV to reproduce the bandwidth observed in
Ref. [3].

As shown in Fig. 3, our model reproduces the main qual-
itative features of the two flat bands (see Fig. 4 of Ref. [3]):
a top band whose planar dispersion is much larger than the
bottom band, a quadratic band touching at the Gamma point,
and a simple cos(kz )-like dispersion for both bands. (In our
case, the bottom band is perfectly dispersionless in the plane,
but adding further hopping terms would make it possible
to change that and reproduce the small dispersion seen in
Ref. [3]). We chose a value of the chemical potential μ =
−1.7 which reproduces the fact that the top band is roughly
half filled at kz = 0. Further, we found that a value of tz = 0.25
reproduces the feature that the bottom band is very close to the
Fermi level at kz = π .

The fact that the bottom band is perfectly dispersionless
in our model arises due to the presence of localized states on
the three A sites around each hexagon. This is a triangular
lattice version of the flat bands arising in the px, py model on
the honeycomb lattice [15]. In fact, for tz = 0, the bands we
find have energies which are the square of the bands found in
the px, py honeycomb model [15]. Indeed, the px, py nearest-
neighbor honeycomb model has four bands with dispersion
E1,4 = ±√

9/4 and E2,3 = ±
√

1
4 (3 + 2

∑
i=1,2,3 cos(k · bi )).

This is not surprising, since our tight-binding model can be
obtained starting from the four-band model of Ref. [15], as
explained above.

We note that our model is not the same as the px, py model
on a triangular lattice considered in Ref. [18]. The reason is
that, in our case, the underlying honeycomb lattice breaks
inversion symmetry and changes the orbital character of the
dominant hopping terms.

It is noteworthy that the dispersive band E+ has the same
dispersion relation as a single-orbital nearest-neighbor model
on a triangular lattice (see Fig. 2). However, this simple dis-
persion relation actually hides a nontrivial k dependence of the
orbital character of the bands which is, of course, absent for
the single-orbital triangular lattice model. We now discuss the
possible implications of this orbital character of the bands for
superconductivity and for the orbital magnetic susceptibility.

-

-

FIG. 4. Contour plot of �(k) ∝ d2(k) for on-site pairing, show-
ing an f -wave pattern. The Brillouin zone is shown in black.

Superconductivity. Even though the claims of supercon-
ductivity in this compound were not confirmed, it is still
interesting to study theoretically how the orbital character
of the bands in our model constrain the possible supercon-
ducting order parameters. Assuming a phonon mechanism for
superconductivity, it is natural to consider on-site pairing. We
note that the DFT calculations of Ref. [3] predict that the
flat bands are perfectly spin-polarized. Assuming that this is
indeed the case, the only on-site pairing term allowed by the
Pauli principle is an orbital singlet:

HSC = �
∑

r

(c†
r,zxc†

r,zy − c†
r,zyc†

r,zx ) + H.c. (7)

Since, in our model, only the top band crosses the Fermi
level, let us keep only intraband pairing terms on the top band
[19], leading to

HSC =
∑

k

�(k)c†
kc†

−k + H.c., (8)

with

�(k) = �(u∗
x (k)u∗

y ( − k) − u∗
y (k)u∗

x (−k)), (9)

where (ux(k), uy(k)) is the Bloch eigenvector of the top
band and where we kept the band index implicit. Using the
parametrization d = (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )),
we have (ux, uy) = (cos(θ/2), eiφ sin(θ/2)). Using the
fact that θ (k) = θ (−k) and φ(k) = −φ(−k), one finds
�(k) ∝ d2(k). As seen in Fig. 4, on-site pairing thus
generates an f -wave gap of the type �(k) ∼ kx(k2

x − 3k2
y ).

We should emphasize that this f -wave gap is on site and is
thus microscopically distinct from the non-on-site f -wave
gaps which are known to occur in the weak coupling limit
of the triangular lattice single-orbital Hubbard model [20].
We also note that interorbital pairing in noncentrosymmetric
systems was also discussed in the context of other materials
[21], including transition metal dichalocogenides [22].
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Assuming an electronic mechanism for superconductivity,
one could start from the on-site repulsive interorbital interac-
tion term (which is the only on-site interaction term within our
model if we again assume perfectly spin-polarized bands),

Hint = U
∑

r

nr,dzx nr,dzy , (10)

and calculate the effective interaction in the Cooper chan-
nel, which would favor non-on-site pairing. Since U > 0,
and based on the discussion above, on-site repulsion would
disfavor any pairing in the f -wave channel. One should thus
consider non-on-site pairing in other channels. We note that
minimal models featuring dzx and dzy orbitals have been used
to study superconductivity in a variety of materials, including
pnictides [23] Sr2RuO4 [24,25].

Magnetic susceptibility. The magnetic properties of
copper-substituted lead apatite were reported to exhibit a
combination of soft ferromagnetism and strong diamagnetism
[14]. In our model, we have included spin ferromagnetism by
fiat by using spin-polarized bands. In addition, the partially
filled top band can produce a diamagnetic signal due to orbital
effects. Motivated by this possibility, we calculate the out-
of-plane orbital magnetic susceptibility of the Hamiltonian of
Eq. (1) using the following formula [26–28]:

χ = − μ0e2

2π h̄2 Im
∫ ∞

−∞
dEnF (E )

× 1

A

∑
k

Tr

[
γxĜγyĜγxĜγyĜ

+ 1

2
(ĜγxĜγy + ĜγyĜγx )Ĝ

∂γy

∂kx

]
, (11)

where Ĝ(E , k) = (E − Hk + iη)−1, γx,y = ∂Ĥk
∂kx,y

, μ0 is the vac-
uum permeability, η is a small positive number, A is the
sample area, and nF (E ) = (e(E−μ)/T + 1)−1 is the Fermi dis-
tribution function. For the rest of the discussion, we will work
at T = 0. The results for the susceptibility are shown in Fig. 5.
Since in our 3D model [Eq. (1)], the kz dependence simply
corresponds to an overall shift of the bands with kz, one can
absorb the kz dependence into a kz-dependent chemical poten-
tial μ(kz ). This means we only need to do a two-dimensional
calculation for the orbital susceptibility [i.e., with tz = 0 in
Eq. (1)]. The value of the orbital susceptibility for a given
kz slice can be read from Fig. 5 by looking at the value of
the chemical potential which is relevant for that kz value,
following μ(kz ) = μ0 + 2tz cos(kz ), where μ0 is the actual
value of the chemical potential in the 3D model.

One notable advantage of employing Eq. (11) over the
Peierls-Landau orbital susceptibility method [29–31] is that
it accounts for contributions originating from the quantum
geometry of the Bloch wave functions, which has been shown
to play a crucial role in multiorbital models [32–34].

In this context, it is instructive to compare the susceptibility
of our model with that of a single-orbital, nearest-neighbor
triangular lattice Hamiltonian, with dispersion Es.o = − 3

4 −
1
2

∑3
i=1 cos(k · bi ). As noted before, this single-band Hamil-

tonian has exactly the same dispersion as the upper band of
our two-band model. By comparing these two models, we can

FIG. 5. Orbital susceptibility for our two-band model χ (in blue)
and for a single-orbital model χs.o (in black). The density of states
(DOS) of the top band E+ (which is the same as the the DOS of the

single-orbital model) is also shown in red. We have χ0 = μ0e2 |t |a2

h̄2 ,
with |t | the magnitude of the nearest-neighbor hopping term, and a
the lattice spacing between copper sites. The DOS is in units of 1

|t |a2 .
We used η = 0.1 to calculate the susceptibilities.

thus elucidate the specific impact of multiorbital physics on
the orbital susceptibility.

The results for the single-orbital model are easily inter-
preted: At low filling, there is a single pocket around the
gamma point and lattice effects become negligible, leading
to a negative value for χs.o, as it should to recover Landau
diamagnetism of free electrons. At larger filling, the system
goes through a van Hove singularity, at which the Fermi
surface changes topology and at which the DOS diverges. This
van Hove singularity produces a paramagnetic peak for χs.o.,
which is a well-known effect [31].

Interestingly, the susceptibility of our two-band model χ

has very different features. First, there is a paramagnetic peak
at low filling (for −2.5 < μ < −2), which is due to the pres-
ence of the bottom flat band E−. Second, there is a broad
region of diamagnetism for −1.75 < μ < −0.25, despite the
presence of a van Hove singularity close to μ = −0.25. We
note that the single-orbital model is paramagnetic in the range
−1.75 < μ < −0.25 due to the van Hove singularity, and the
diamagnetism of the two-orbital model thus has a multior-
bital origin. The diamagnetism in this region is comparatively
strong: the most negative value reached by χ for μ � −1 is
about four times larger than the one reached by χs.o at low
filling. The strong diamagnetism we observe in the two-band
model could thus provide an explanation for the one reported
in experiments [14]. However, diamagnetism could also be
explained by the presence of unintended Cu2S in the samples
[14,35] (which is a known diamagnet [36]).

In conclusion, we have proposed a minimal two-band
model which reproduces the main features of the Cu dzx and
dzy flat bands predicted to appear in a copper-substituted lead
apatite in Ref. [3]. Using this model, we have found a strong
diamagnetic response which could explain the one observed in
experiments, and whose origin lies in the multiorbital nature
of the bands.
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In this paper, we focused on reproducing the main
features of the band structure predicted by Ref. [3] for
CuPb9(PO4)6(OH)2. However, we should mention several
caveats regarding the applicability of these predictions to real
samples of LK-99. First, samples could alternatively contain
O instead of (OH)2 anions due to the existence of the the
closely related CuPb9(PO4)6O structure. Second, substitution
sites for copper could also alternate between different Pb(1)
sites, and even Pb(2) sites, leading to disorder. Studying the

impact of such disorder on flat-band physics would require
further work. Nevertheless, looking beyond its applicability
to LK-99, our two-orbital model provides an interesting toy
model to study strongly correlated and multiorbital physics.

Note added. Recently, other tight-binding models capturing
the flat bands of copper-substituted lead apatite were proposed
[17,37–40].

Acknowledgments. T.S. gratefully acknowledges discus-
sions with S. White, J. Sanchez-Yamagishi, and F. Gonzalez.
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