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I consider relaxation of the pairing amplitude in a disordered Bardeen-Cooper-Schrieffer (BCS) superconduc-
tor in the absence of the two-particle collisions. My main assumption is that nonmagnetic and magnetic disorder
scattering rates are much smaller than the value of the superconducting pairing gap �0. I derive a system of
nonlinear equations which describe the collisionless relaxation of the pairing amplitude following a quench of
the pairing strength. I find that in a superconductor in which scattering on paramagnetic impurities is dominant,
the pairing amplitude in a steady state varies periodically with time even for small deviations from equilibrium. It
is shown that such a steady state emerges due to scattering on paramagnetic impurities which leads to a decrease
in the value of the resonant frequency of the amplitude mode below 2�0.

DOI: 10.1103/PhysRevB.109.L100503

Introduction. Almost five decades ago, Volkov and Kogan
published a theory of collisionless relaxation of the pairing
gap in s-wave superconductors [1]. The latter refers to a
regime when the relevant time scale for the dynamics far
exceeds order parameter relaxation time τ� = h̄/�0, but is
much smaller than the relaxation time due to electron-electron
collisions τee ≈ h̄εF /�2

0 (εF is the Fermi energy). They have
considered a model in which the Cooper pairing between the
conduction electrons is mediated by their interaction with the
acoustic phonons. By focusing on the time scales much longer
than inverse value of the energy gap �0 in equilibrium, as
well as Debye frequency ωD, they have derived a system of
equations describing the relaxation of an energy gap in clean
superconductors. In the linear regime when the deviations
from the equilibrium are almost negligible, the time depen-
dence of the pairing amplitude had been found analytically,
while the dynamics of the pairing amplitude for stronger de-
viations from equilibrium remained unknown [1].

A significant progress in the understanding of the colli-
sionless pairing dynamics was made only thirty years after
the work of Volkov and Kogan. The interest to this problem
has been revived in the context of superfluidity in the atomic
condensates [2]. Indeed, in these systems one can induce col-
lisionless dynamics by a sudden change of the magnetic field
controlling the optical trap, which inevitably leads to a change
of the pairing strength [3]. Soon after that it was realized that
the problem of finding the relaxation of the pairing amplitude
for an arbitrary deviations from equilibrium admits an exact
solution [4–7] (see also Ref. [8] for a comprehensive review).
In particular, for strong enough deviations from equilibrium,
it was found that the time dependence of the pairing amplitude
at long times does not asymptote to a constant value, but
remains periodic in time [2,7].

These theoretical developments have triggered the emer-
gence of experiments which aimed to observe the evolution
of the energy gap in superconducting films subject to external
electromagnetic pulses in terahertz frequency range [9–11].
Theoretical analysis of these experiments, however, typically
relies on the results of the early theoretical works [1,8,12].

Importantly, in the context of the methodology used in [1],
one usually completely neglects the effects of disorder, which
is inevitably present in the superconducting samples and may
affect the resulting nature of the steady state when the cor-
responding time scale due to disorder scattering τdis satisfies
the condition τ� � τdis � τee. It is worth mentioning, that the
effects of potential disorder has been recently studied in the
context of the pump-probe setup [13–17], however, the effects
of weak magnetic impurities on the dynamics of the amplitude
Higgs mode have never been discussed so far.

In what follows I employ the Keldysh field-theoretical
framework to derive a set of nonlinear equations for the
dynamics of disordered superconductors in the collisionless
regime for the Bardeen-Cooper-Schrieffer (BCS) model of
superconductivity [18], including both nonmagnetic and para-
magnetic disorder potentials. It is clear that dynamics can only
be induced when the initial value of the pairing amplitude is
different from the equilibrium one. One way to initiate the
dynamics is to assume that the value of the pairing strength
has been instantaneously changed [2,4,5], so that by virtue of
the self-consistency condition �(t = 0) �= �0. Without loss
of generality I will adopt this procedure here as well [12].
Furthermore, from the exact solution of the Volkov-Kogan
equations it is known that for small deviations from equi-
librium, �(t ) approaches a constant value [8] at long times
τ� � t � τdis. This behavior originates from the branch point
at ε = 2�0 [1,2,8]. On this time scale the collision integrals,
which we evaluate using the exact solution assuming that
disorder is weak, should not and, in fact they do not, affect the
dynamics. At even longer times t ∼ τdis � τee, however, it is
not a priori clear whether the disorder scattering will produce
changes to this steady state and it is precisely the question that
I will address in this paper.

In this Letter I demonstrate that in the presence of param-
agnetic impurities, the collisionless dynamics remains robust
with respect to the dephasing processes, i.e., is dissipationless.
Specifically, I find that already in the linear (Volkov-Kogan)
regime and for a weak disorder, out-of-equilibrium dynamics
of the pairing amplitude is described by a function which
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FIG. 1. Time evolution of the pairing amplitude in a conventional
superconductor contaminated with a small amount of weak magnetic
impurities following an abrupt (but small) change of the interaction
strength |δλ|/λ � 1. The scattering on magnetic impurities is de-
scribed by a relaxation time τs. On a timescale τ� � t � τs the order
parameter δ�(t ) = �(t ) − �0 oscillates with an amplitude which
decays as 1/

√
t . However, at longer times τs � t � τee the order

parameter oscillated periodically with time. The amplitude of this
oscillations is proportional to 1/(τs�0 ). On a time scale t � τee,
electron-electron scattering induces relaxation and the pairing am-
plitude reaches its new equilibrium value.

periodically oscillates with time. This is in stark contrast with
the results of the earlier studies where much stronger devia-
tions from equilibrium were required to find such type of a
steady state [8]. My result is schematically depicted in Fig. 1.

Model and basic equations. We consider a model with the
following Hamiltonian:

Ĥ =
∑
αβ

∫
d3rψα (r)[h(−i �∇ )δαβ + Uαβ (r)]ψβ (r)

− g
∫

d3rψ↑(r)ψ↓(r)ψ↓(r)ψ↑(r). (1)

Here ψσ (r) is an annihilation operator for a fermion with spin
projection σ = ±1/2, h(−i �∇ ) is a kinetic energy operator, g
is the coupling constant and the last term accounts for disorder

Uαβ (r) =
∑

j

u(r − r j )δαβ + (�S · �σαβ )
∑

l

J (r − rl ). (2)

In (2) the summation is performed over the impurity sites
and we assume that nonmagnetic and paramagnetic impurities
belong to different lattice sites and/or interstitials. The disor-
der potentials entering into this expression are described by
the following correlators 〈u(r)u(r′)〉dis = δ(r − r′)/(2πνF τu)
and S(S + 1)〈J (r)J (r′)〉dis = δ(r − r′)/(2πνF τs), where νF

is the single particle density of states at the Fermi level, S
is the spin of a paramagnetic impurity and the averaging is
performed over disorder distribution.

Equations of motion for the Green’s functions. We consider
the fermionic operators on the Keldysh contour and introduce
the correlation functions G(ab)

αβ (1, 2) = −i〈T̂tψα (1a)ψβ (2b)〉,
where ψ1 = ψ↑, ψ2 = ψ↓, and a, b = 1(2) refer to the top
(bottom) parts of the Keldysh contour. As it directly follows
from the definition of G(ab)

αβ (1, 2), only three out of four
functions (with respect to the Keldysh contour label) are

independent: indeed, as it can be directly verified Ĝ(12) +
Ĝ(21) = Ĝ(11) + Ĝ(22). Hence, we consider the retarded,
advanced, and Keldysh propagators: ĜR(1, 2) = Ĝ(11)(1, 2) −
Ĝ(12)(1, 2), ĜA(1, 2)=Ĝ(11)(1, 2)−Ĝ(21)(1, 2), and ĜK (1, 2)=
Ĝ(11)(1, 2) + Ĝ(22)(1, 2). These functions satisfy the
following relations [GR(A)

αβ ]∗ = −(−1)α+βGR(A)
αβ

, [GK
αβ]∗ =

(−1)α+βGK
αβ

, which we will use in what follows [1].
Dyson equations. The equations of motion for the functions

G(ab)
αβ (1, 2) can be derived from the equations of motion for the

fermionic operators. As a result one finds that these functions
satisfy the Dyson equations:

[Ĝ0 − �̂] ◦ Ĝ = 1̂, Ĝ ◦ [Ĝ0 − �̂] = 1̂, (3)

where Ĝ0 denotes the bare Green’s functions for a clean su-
perconductor in the mean-field approximation.

Self-energy parts. Self-energy parts �̂ in Eq. (3) can be
obtained by perturbation theory [19]. After performing aver-
aging over disorder and using the correlators for the disorder
potential (2) we found

�(i j)
σ1σ2

(1, 2) = δ(r1 − r2)

2πνF τs

(
γ̂ z

imG(mn)
σ1σ2

(1, 2)γ̂ z
n j

)
+ δ(r1 − r2)

2πνF τu
σ̂ z

σ1σ3

(
γ̂ z

imG(mn)
σ3σ4

(1, 2)γ̂ z
n j

)
σ̂ z

σ4σ2
,

(4)

where the argument of the Green’s function should be un-
derstood as (1, 2) = (x1, x2) with x = (r, t ), σ̂ z and γ̂ z as
Pauli matrices which act in Nambu and Keldysh contour
spaces correspondingly (see the Supplemental Material [20]).
As it follows directly from the definition (4), these functions
satisfy the relation �̂(11) + �̂(22) + �̂(12) + �̂(21) = 0. Conse-
quently, we introduce three independent self-energy functions
�̂R = �̂(11) + �̂(12), �̂A = �̂(11) + �̂(21), and �̂K = �̂(12) +
�̂(21).

Equations of motion for the Keldysh function. Having de-
fined the self-energy part, we are ready to write down the
equation of motion for the Keldysh function. This is done in
two steps (see the Supplemental Material [20] for details on
the derivation). First we obtain the equations of motion with
respect to time t = (t1 + t2)/2:

[i∂t − h(1) + h∗(2)]GK
11 + �(1)

[
GK

12(1, 2)
]∗

+ GK
12(1, 2)�(2) = IK

11(1, 2),

[i∂t − h(1) − h∗(2)]GK
12 + GK

11(1, 2)�(2)

− �(1)
[
GK

11(1, 2)
]∗ = IK

12(1, 2). (5)

Here we introduced the collision integrals,

IK
αβ (1, 2) =

∑
λ

(
�R

αλ ◦ GK
λβ − �K

αλ ◦ GA
λβ

+ GR
αλ ◦ �K

λβ − GK
αλ ◦ �A

λβ

)
(1, 2). (6)

The second step consists of performing the Wigner trans-
formation with respect to the relative time δt = t2 − t1 and
relative position δr = r2 − r1:

Ǧ(1, 2) =
∫

dε

2π

∫
d3p

(2π )3
Ǧ(t ; p, ε)eiε·δt−ip·δr. (7)
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We use the same transformation for the collision integrals.
Importantly, in order to compute the Wigner transform

of the convolutions C(1, 2) = (A ◦ B)(1, 2) we use

Ĉpε(t )=Âpε(t )e
i
2 (

←
∂ ε

→
∂ t −

←
∂ t

→
∂ ε )B̂pε(t )≈Âpε(t )B̂pε(t )+(i/2)(∂εÂpε

∂t B̂pε − ∂t Âpε∂εB̂pε ). We note that only terms proportional
to GK

ab in (6) will have nonvanishing gradient contributions,
since, in a steady state that we consider, the retarded and
advanced propagators do not depend on t . Higher than linear
derivatives of �R(A) with respect to ε will produce small
prefactors upon the integration over εk and for this reason
their contributions can be ignored. In passing we note that the
t-dependent contributions from �K

αβ produce an additional
small prefactor ∼t−1/2 at long times and will also be ignored.

Given the form of the Eqs. (5), it will be convenient to work
with the real functions �Sp = (Sx

p, Sy
p, Sz

p) defined as follows:

Sz
p(t ) = i

∫ ∞

−∞

dε

2π
GK

11(p, ε; t ),

Sx
p(t ) + iSy

p(t ) = i
∫ ∞

−∞

dε

2π
GK

12(p, ε; t ). (8)

These quantities bear a clear analogy with Anderson pseu-
dospins with the only exception that their norm |�Sp| is not
conserved by the evolution (see below).

We now use Eq. (5) to derive the following equations for
the components of �Sp:

∂Sx
p

∂t
− 2εpSy

p = − εp

τ�s
Ly

p(t ),

∂Sy
p

∂t
+ 2εpSx

p + 2�(t )Sz
p = − εp

τmEp
(Wp − cos θp) + 2Lz

p(t )

τs

+ εp

τ�s
Lx

p(t ),

∂Sz
p

∂t
− 2�(t )Sy

p = −2Ly
p(t )

τs
, (9)

where εp ∈ [−ωD, ωD] are the single-particle energy levels,
τ−1 = τ−1

s + τ−1
u , τ−1

m = τ−1
s − τ−1

u , Wp > 0 is a time-
independent function which has a maximum at εp = 0 and
decays to zero as εp → ±∞ (see the Supplemental Mate-
rial [20]). We have introduced the pairing function �(t ) =
−�12(1), which in its turn is determined self-consistently by

�(t ) = λ

2

∫ ωD

−ωD

Sx
p(t )dεp. (10)

Here, λ = gνF > 0 is the dimensionless coupling constant
and ωD is an ultraviolet cutoff, which reflects the retarda-
tion effects leading to the onset of superconductivity. In the
derivation of the Eq. (9), as well as in (10), we have implicitly
assumed that a superconductor is particle-hole symmetric,
i.e., we consider a system with constant density of states
ν(ε) ≈ νF . In Eq. (9) the components of �Lp(t ) describe the
solution of the equations of motion in a clean superconductor

(τ → ∞) at long times �(t � τ�) = �s:

Lx
p(t ) = �s

Ep
cos θp + εp

Ep
sin θp cos(2Ept ),

Ly
p(t ) = − sin θp sin(2Ept ),

Lz
p(t ) = − εp

Ep
cos θp + �s

Ep
sin θp cos(2Ept ), (11)

where Ep = (ε2
p + �2

s )1/2 and the components of vector �Lp

satisfy the normalization condition �L2
p = 1. The expressions

(11) follow directly from (8) if instead of GK
αβ we use the

expressions for the Keldysh propagators in the steady state
(see the Supplemental Material [20]). Given the perturbative
nature of the calculation which lead to Eq. (9), I would like
to emphasize that the value of the pairing amplitude in the
steady state �s is taken to be equal to the one for a clean
superconductor. We note that the equations of motion (9) do
not preserve the norm of �Sp due to the pair breaking processes
induced by the paramagnetic impurities. Finally, the defini-
tion of the function sin θp can be found in the Supplemental
Material [20].

Dynamics at long times. We are now ready to investigate
the collisionless dynamics following the quench of the pairing
strength in a disordered superconductor. We start with the case
when only paramagnetic impurities are present in a system,
τu → ∞. In equilibrium Sy

p = 0, while Sx
p and Sz

p can be
determined from the equations of motion for GR(A) and are
given by

Sx
p(0) = 2

π

∫ ∞

0

[Ru − ζs]
[
R3

u − 2ζs
]
du

R4
u[(Ru − ζs)2 + (εp/�0)2]

,

Sz
p(0) = − 2εp

π�0

∫ ∞

0

[
R3

u − 2ζs
]
du

R3
u[(Ru − ζs)2 + (εp/�0)2]

, (12)

where we introduced function Ru = √
1 + u2 and dimen-

sionless rate ζs = 1/2τs�0 for brevity. Furthermore, using
Eq. (9) it can be directly shown that in equilibrium
the pseudospin components must satisfy εpSx

p + �0Sz
p =

−wpεp/τs(ε2
p + �2

0)1/2, where wp is a known function of εp
and �0 is the energy gap in equilibrium computed using
the self-consistent Born approximation (see the Supplemental
Material for details [20]).

The results of the numerical solution of Eq. (9), following
small quenches of the pairing strength, are shown in Fig. 2.
We immediately observe that the steady state with the oscil-
lating �(t ) emerges at times t ∼ τs. We also notice that the
amplitude of the oscillations is proportional to ζ . These results
appear to be quite generic with respect to the magnitude and
sign of the quench (i.e., when the pairing strength is slightly
decreased) as well as initial conditions. We note that a similar
result has been recently reported, where the nondissipative
Higgs mode appears due to the presence of long-range in-
teractions in a superconductor coupled to a strongly driven
cavity [21]. Note also, that the amplitude of the oscillations is
parametrically bigger for smaller values of the pairing gap in
equilibrium, Fig. 3. The full calculation of the steady state
diagram for quenches of an arbitrary strength, as well as
strong disorder, we leave for the future studies.
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FIG. 2. Results of the numerical solution of the Eqs. (9) for
the pairing amplitude �(t ) at long times for various values of the
dimenionless parameter ζ = 1/τs�1 which quantifies the strength
of paramagnetic disorder. These results have been obtained for the
system of N = 15 024 equally spaced energy levels with the level
spacing δ. The dynamics was initiated by a sudden change of the
dimensionless coupling constant from a value corresponding to the
ground state with the pairing gap �0 to a new value corresponding to
a ground state with the pairing gap �1.

Discussion. The appearance of the periodically oscillating
solution can be understood as follows. Qualitatively, one may
interpret this result an a way similar to the interpretation
given in Ref. [22]: scattering induced by the paramagnetic
impurities pushes the frequency of the amplitude mode inside
the energy gap, so that the dephasing is fully suppressed
and the mode becomes undamped. Indeed, simple calculation
shows that for the frequency of the Higgs mode in this case
(τu → ∞) we find

ωHiggs

2�0
=

[
1 −

(
1

τs�0

)2
]1/2

. (13)

The time dependence of the pairing amplitude will now be
given by

δ�(t ) ≈ ζeiωHiggst +
∫ ∞

−∞

dω

2π
A(ω)eiωt . (14)

The last term in this expression decays as t−1/2 at long times
and so only the first terms contribute.

Equation (13) shows that contrary to our expectations, in
a superconductor with a pairing amplitude �0, it takes less
than 2�0 amount of energy to excite a Cooper pair. Let us
also recall that in a superconductor contaminated with para-
magnetic impurities, there is another energy scale �th which
represents the threshold for the single-particle excitations, i.e.,
the energy when the single particle density of states becomes
nonzero for the first time [23] and I found that ωHiggs > 2�th

(see the Supplemental Material [20]). Therefore, Eq. (13)
introduces a completely new energy scale which describes
the softening of the “mass” of the Higgs mode. It seems that
the physical processes which lead to the appearance of this
energy scale are the same as the ones responsible for the
appearance of �th.

FIG. 3. Panel (a): Solution of the equations of motion for the two
separate cases of (i) purely paramagnetic (τu → ∞) and (ii) purely
nonmagnetic (τs → ∞) disorder. In the former case ζ = 1/τs�1, the
pairing amplitude periodically oscillates with time, while in the latter
case ζ = 1/τu�1 the amplitude of the oscillations decays as t−1/2.
Panel (b): Comparison between the results of the numerical solution
for �(t ) (paramagnetic disorder only) and the phenomenological
expression �(t ) = �0 − ζ [A + B cos(2�0t + ϕ)]. We used the fol-
lowing values of the parameters: A ≈ 0.39, B ≈ 0.01, and ϕ ≈ π/4.
We would like remind the reader that these results hold on time scales
shorter than τee.

In contrast, for a system in which only potential impurities
are present (τs → ∞), for the frequency of the Higgs mode
we found

ωHiggs

2�0
=

[
1 +

(
1

τu�0

)2
]1/2

, (15)

which lies above the edge of the single particle continuum.
This means that in this case the Higgs mode will become
dissipative due to dephasing processes and, as a result, pair-
ing amplitude asymptotes to a constant, �̃s, at long times as
shown in Fig. 3(a) (see also discussion in [17]).

For the case when both nonmagnetic and magnetic disorder
is present, we find that the frequency of the amplitude mode
falls below 2�0 when τm > 0, and is above 2�0 when τm < 0.
This latter conclusion, which is based on the perturbative
calculation, implies that the Higgs mode will become over-
damped in either ballistic or dirty limits when τu � τs. As it
turns out, in general this is not the case and it can be shown
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that even in diffusive superconductors the frequency of the
resonant Higgs mode is less than 2�0.

Comparison between these two behaviors, which are gov-
erned by Eqs. (13) and (15), is illustrated in Fig. 3. In passing
we note that the Yu-Shiba-Rusinov bound states should not
affect our results for the dynamics since the wave func-
tions describing these states remain orthogonal to the wave
functions corresponding to the continuous spectrum of the
single-particle excitations. The same argument also applies to
the existence of the tail states in the single particle density
of states which are induced by the scattering on nonmagnetic
impurities [24]. However, these effects may produce a shift
in the value of ωHiggs as well as the broadening of the Higgs
resonance [25]. The detailed study of these effects, as well as
the question of whether these states affect the dynamics on the
level of the collision integrals, will be addressed separately.

Finally, I note that apart from the fact that the physics I just
described can be observed at time scales t � τee, Fig. 1, it is
also important to keep in mind that the steady state with the
periodically oscillating pairing amplitude is intrinsically un-
stable toward developing spacial inhomogeneities [26] when
the characteristic size of a sample L is much larger than the
coherence length ξ = vF /�0. Thus, for the pairing amplitude
to remain spatially inhomogeneous in a steady state with
periodic oscillations, the value of the superconducting order
parameter in equilibrium should be sufficiently small, so that
the condition ξ � L is fulfilled.

Conclusions. In this work I have considered a problem
of collisionless relaxation in a superconductor contaminated
with nonmagnetic and paramagnetic impurities. I found that
in the case when scattering on paramagnetic impurities is
dominant, for even small deviations from equilibrium the
corresponding steady state is described by the periodically
oscillating pairing amplitude, which is an unambiguous man-
ifestation of the amplitude (Higgs) mode in a superconductor.

It is well known that in a superconductor contaminated
with paramagnetic impurities with the order parameter �0, it
costs �th < �0 to create a single particle excitation [23]. The
second main result of this Letter is that in this case it also costs
ωHiggs < 2�0 amount of energy to excite a Cooper pair.

My results provide an avenue for detecting the dynam-
ics of the amplitude Higgs mode in s-wave superconductors.
Specifically, recent experimental studies of a superconductor
NbN have convincingly demonstrated that in the pump-probe
experimental setup, the intensity of the terahertz signal is
peaked at ωpeak = 2�0 [25]. Based on the results of this work,
I predict that by introducing a small to moderate amount
of paramagnetic impurities into NbN film and subjecting it
to the electromagnetic pulse in the terahertz range of fre-
quencies, one should observe the shift of the peak in the
intensity of the signal from the expected value of 2�0 to a
smaller value ωpeak < 2�0. If several samples which differ
by the amount of magnetic impurities, one should observe
the decrease in the ratio ωpeak/2�0 with an increase in the
impurity concentrations. By combining this result with the
results of the measurements which directly probe the single-
particle density of states, one then can compare the value of
ωpeak to 2�th and verify that ωpeak > 2�th. In cases when
there is an agreement between the experimental results and
my theoretical predictions, it opens up a possibility for direct
observation of the dynamics of the amplitude Higgs mode
since, as it has been demonstrated in this work, the shift in
the frequency of the Higgs mode means that its dynamics
becomes undamped on a time scale t � τee. Experimentally
it may be challenging to introduce paramagnetic impurities in
a film such that, for example, τee(T ) ∼ 10τs ∼ 100τ�. Even
though making τee(T ) large should not be challenging since it
is proportional to h̄/T due to the Al’tshuler-Aronov effect,
I am aware of the fact that the requirements for observing
the pairing amplitude dynamics are much more stringent due
to the difficulties associated with controlling the value of the
ratio of the relaxation times τs/τ� and τu/τ� experimentally.
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