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Motivated by the remarkable properties of superfluid edge dislocations in 4He, we discuss a broad class
of quantum systems—boundaries in phase-separated lattice states, magnetic domain walls, and ensembles of
Luttinger liquids—that can be classified as transverse quantum fluids (TQFs). After introducing the general
idea of a TQF, we focus on a coupled array of Luttinger liquids forming an incoherent TQF. This state is a
long-range ordered quasi-one-dimensional superfluid, topologically protected against quantum phase slips by the
tight binding of instanton dipoles, that has no coherent quasiparticle excitations at low energies. An incoherent
TQF is a striking example of the irrelevance of the Landau quasiparticle criterion for superfluidity in systems
that lack Galilean invariance. We detail its phenomenology, to motivate a number of experimental studies in
condensed matter and cold atomic systems.
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Introduction and motivation. In the last two decades, there
has been much attention on systems where nontrivial gapless
physics is confined to a surface of a bulk material, with
such prominent examples as topological insulators [1] and
their symmetry-protected topological generalizations [2]. In
a broader sense, these are examples of a large class of low-
dimensional systems in which the surrounding bulk host is
fundamentally important for understanding their properties.
Such systems include randomly pinned surface Goldstone
modes [3,4], an edge state of a confinement-free quantum Hall
droplet [5], a superfluid interface between two checkerboard-
solid domains [6], as well as open spin/particle chains
coupled to a dissipative bath [7–16].

A particularly interesting system studied recently is an
edge dislocation with a superfluid core [17–19] in solid 4He
where the low-temperature motion of the dislocation trans-
verse to its core and Burgers vector (the so-called climb)
requires boson number flow onto the core. The corresponding
superfluid state of the edge dislocation has been dubbed as a
transverse quantum fluid (TQF), a new one-dimensional state
of bosons qualitatively distinct from a Luttinger liquid (LL)
with (i) a quadratic spectrum of excitations, (ii) off-diagonal
long-range order at T = 0, (iii) exponential dependence of the
phase slip probability on the inverse flow velocity, and (iv)
nonapplicability of the Landau criterion. The key ingredient
responsible for all these features is the translational invariance
with respect to the core motion in the climb direction, neces-
sarily accompanied by atom transfer to the 4He crystal bulk.
Most importantly, this implies infinite compressibility, which
is solely responsible for properties (i)–(iii).

In this Letter, we argue that similar—infinite-
compressibility-driven—phenomenology emerges in other
interesting examples and discuss four specific systems that
we predict to host a TQF. These are (A) a self-bound droplet
of hard-core bosons on a two-dimensional (2D) lattice, (B) a

Bloch domain wall in an easy-axis ferromagnet, (C) a phase
separated state of two-component bosonic Mott insulators
with the boundary in the countersuperfluid phase [20] (or in
a phase of a two-component superfluid) on a 2D lattice, as
illustrated in Fig. 1, and (D) a 1D bosonic liquid, Josephson
coupled to a collection of transverse LLs, which are otherwise
decoupled from each other—a setup in Fig. 2, similar to
the one considered in Ref. [13], and also related closely
to a number of other setups and models discussed in the
past [8–11]. While A, B, and C are naturally forming edge
systems that share the same low-energy description with
the superclimbing dislocation [17,18], system D is rather an
“engineered” state with infinite compressibility distinguished
by its lack of well-defined elementary excitations altogether;
yet, it is a superfluid by other hallmark properties—(ii), (iii),
and (iv) above.

In the context of these TQF systems, we note that histori-
cally the stability of a homogeneous superflow with velocity
v was linked to the Landau criterion v < min ε(k)/k, where
ε(k) is the dispersion of elementary quasiparticle excitations.
In the absence of Galilean invariance, this criterion can be
strongly violated and, in particular, does not apply to models
A, B, and C, which feature ε(k) ∝ k2. This observation is
even more striking for model D lacking well-defined elemen-
tary excitations, precluding the applicability of the Landau
criterion.

We begin by introducing the TQF in the A, B, and C
systems as sketched in Fig. 1. At the level of low-energy
description, these three systems are equivalent. The boundary
of a bulk Mott insulator (model A) can be superfluid, provided
the bulk is close to the superfluid transition. A domain wall in
a magnet (model B) formed between domains with opposite
easy-axis magnetization, can undergo a transition from the
Ising type to the Bloch type characterized by the easy-plane
magnetization, free to choose any direction. The description
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FIG. 1. A sketch of models A, B, C, where the domain line
(green) is proposed to realize a TQF. In cases A and C, the solid
(red) circles represent bosons forming a Mott insulating phase, while
the rest of the sites shown by patterned circles remain empty (model
A), or represent particles of the second bosonic component also
forming a Mott insulating phase when the mixture is immiscible
(model C). Particle motion by exchange along the phase separation
(green) line—the domain wall—corresponds to the deformation of
the domain wall in direct analogy with atom redistribution along the
edge dislocation core under its climb. For model B, different circles
represent opposite orientations of magnetization across the Bloch
domain wall [21].

of the classical transition between these two phases in a
3D ferromagnet was introduced more than 60 years ago in
Ref. [21]. The Bloch-type domain walls also occur in the
liquid 3He-A phase [22].

Model C maps onto a ferromagnet, as described in
Refs. [20,23], thus making its domain wall equivalent to that
in model B. At the microscopic level, the easy-axis magneti-
zation in model C describes counterflow superfluidity of the
components. For each of these proposed realizations of TQF
the domain line must be in the quantum-rough state. This state
occurs naturally in the vicinity of the phase separation transi-
tion or close to the transition from the Ising- to the Bloch-type
domain wall. Conversely, if the domain line is even weakly
pinned to be quantum smooth, at sufficiently long scales, the
TQF crosses over to a conventional LL state.

The regime of the self-pinned lines has been studied in
numerous publications (see Refs. [24–26] and references
therein). In contrast, a quantum-rough Bloch domain wall is a
1D quantum fluid that is qualitatively distinct from a LL, with
a low-energy description given by a TQF Hamiltonian [18]

H[φ, n] =
∫ [χ

2
(∂xn)2 + ns

2
(∂xφ)2

]
dx, (1)

expressed in terms of the superfluid phase (or, equivalently,
the angular orientation of the easy-axis magnetization) φ(x)
and the canonically conjugate 1D projected density n(x), pro-
portional to the domain wall transverse (vertical, y in Fig. 1)
displacement. In (1), ns is the superfluid/spin stiffness, and χ

is the domain wall line tension (energy per unit length). For
edge dislocations, χ is fixed by the lattice shear modulus; for
a domain wall in models A, B, and C, the χ stiffness can be

FIG. 2. A proposed realization of the incoherent TQF in a
bosonic system on a square lattice, where vertical “bath” LLs are
coupled to the horizontal “system” LL at y = 0, but are otherwise
decoupled. The setup is similar to the one proposed in Ref. [13] and
can also be viewed as a coupled chain of Kane-Fisher dots [28].

tuned by proximity of the bulk material to the corresponding
critical point. The key feature distinguishing TQF from LL
is its divergent compressibility, i.e., absence of the leading
interaction term ∼n2 in (1). This leads to (i) a quadratic
dispersion, εk = √

χns k2, for elementary excitations with lin-
ear momentum k, (ii) off-diagonal long-range order, and (iii)
exponential suppression of the phase slip events [18].

An intriguing aspect of a 1D superfluid interface between
two insulating ground states is the emergent link between two
seemingly unrelated properties—superfluidity and roughness.
Depending on the type of insulating state(s), superfluid-
ity and roughness can be mutually exclusive or inevitably
linked. The latter situation takes place in the vicinity of the
superfluid-checkerboard solid quantum critical point when
the deconfinement of spinons converts the smooth insulating
domain wall into a rough superfluid [6].

Finite compressibility κ may be induced in TQF (and
thus transforming it into LL) either by an external poten-
tial or through lattice pinning, as discussed in Ref. [18]. In
the presence of thereby generated interaction energy κ−1n2

in (1), on a length scale beyond ξ = √
χκ the system ex-

hibits a TQF-to-LL crossover, with the familiar low-energy
linear spectrum and algebraically decaying off-diagonal cor-
relations. This crossover can be suppressed if the domain wall
is incommensurately tilted (by pinning the end points) and has
a finite concentration of kinks larger than ξ−1, as discussed in
Ref. [27].

Incoherent superfluid. We now focus on a qualitatively
distinct and most interesting model D—a particularly sim-
ple microscopic representative of a family of long-ranged
ordered dissipative models [8–11]—where infinite compress-
ibility and TQF properties emerge due to Josephson coupling
to the “transverse” bulk array of LLs, rather than transverse
domain wall fluctuations. As illustrated in Fig. 2, this model
can be realized either with cold atoms or superconducting
wires, and consists of a “system” LL (running along x), with
strong Josephson links to a transverse array of identical and
independent “bath” LLs labeled by index i. All LLs are taken
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to be in a superfluid regime, characterized by a Luttinger
parameter K > 1. Coupling between the bath LL must be
negligible to avoid a global superfluid phase or gapped bulk
insulator. (This setup was proposed and numerically simu-
lated in Ref. [13], where, however, the TQF superfluidity of
the system along the x direction was neither recognized nor
explored.)

For model D, the Euclidean action,

S[φ(τ, x), ϕi(τ, y)] =
∫

dτdx(Ls + Lint ) +
∫

dτdyLb,

is based on three Lagrangian densities,

Ls = κs

2
(∂τφ)2 + ns

2
(∂xφ)2, (2)

Lint = g

2

∑
i

[φ(x) − ϕi(y = 0)]2δ(x − xi ), (3)

Lb =
∑

i

[κb

2
(∂τϕi )

2 + nb

2
(∂yϕi )

2
]
, (4)

where φ ≡ φ(x, τ ) and ϕi ≡ ϕi(y, τ ) are the local super-
fluid phases of the system and bath LLs, respectively, g >

0, and κs, κb and ns, nb are, respectively, compressibilities
and superfluid stiffnesses. In (3) the Josephson coupling
−gcos[φ(x, τ ) − ϕi(y = 0, τ )] has been approximated by the
quadratic form, valid for strong coupling g in the LLs’ super-
fluid regime, K > 1, where g flows to infinity [28]. Since we
are interested in the long-wavelength limit, we go to the con-
tinuum by replacing

∑
i with

∫
dx/a and ϕi(y) with ϕ(x, y),

and take the lattice constant a as the unit of length, or, equiv-
alently absorbing it into the definition of model parameters.

The bath phase ϕ can be straightforwardly integrated out of
the quadratic Lagrangian, decoupled in the momentum space,

S = 1

2

∑
ω,kx

[(
κsω

2 + nsk
2
x

)∣∣φω,kx

∣∣2 + g
∣∣φω,kx − ϕ̃ω,kx

∣∣2] + Sb,

(5)

Sb = 1

2

∑
ω,kx,ky

[
κbω

2 + nbk2
y

]∣∣ϕω,kx,ky

∣∣2
, (6)

with ϕ̃ω,kx = L−1/2
y

∑
ky

ϕω,kx,ky . We thereby get the effective
1D system action

S = 1

2

∑
ω,kx

[(
κsω

2 + nsk
2
x

) + gKb|ω|
g + Kb|ω|

]
|φω,kx |2, (7)

with Kb ≡ 2
√

nbκb and g → ∞. We dub the low-energy long-
wavelength limit of this action as the “incoherent TQF”
(iTQF),

SiTQF = 1

2

∑
ω,kx

[
Kb|ω| + nsk

2
x

]∣∣φω,kx

∣∣2
, (8)

where ω � ωb = Kb/κs. With Wick’s rotation to the real
time/frequency this action describes the diffusive dynamics
of the system’s superfluid phase, with ω = −iDk2

x with D =
ns/Kb. The corresponding real-time action can be equivalently
obtained using Feynman-Vernon and Schwinger-Keldysh
double-time contour methods [29–31].

Next, we show that despite lacking well-defined ele-
mentary excitations and being characterized by diffusive

dynamics, iTQF exhibits a 1D off-diagonal long-range order
and exponentially suppressed probability of the phase slip at a
small superflow velocity v, i.e., it is a robust superfluid. This
contrasts qualitatively with the ideal Bose gas and the 1D LL,
that are, respectively unconditionally and power-law unstable
at nonzero v.

Off-diagonal long-range order. The single-particle density
matrix at T = 0 can be straightforwardly evaluated for the
Gaussian action (8) as

〈eiφ(x,0)e−iφ(0,0)〉 = exp

[
−

∫
dωdkx

(2π )2

1 − cos(kxx)

Kb|ω| + nsk2
x

]
. (9)

The integral in the exponent saturates to a constant at large
separations x, i.e., the system is phase ordered and exhibits a
nonzero condensate fraction. In contrast, at nonzero tempera-
ture T the integral over frequency is replaced with a discrete
Matsubara sum T

∑
ωn

and ω → ωn = 2πT n, controlled by
ωn = 0 classical contribution, thereby leading to the asymp-
totic exponential decay of the density matrix with exponent
∝ − (T/2ns)x. This law is generic to equilibrium classical
phase fluctuations associated with 1D classical Hamilto-
nian density (∂φ/∂x)2, insensitive to the nature of quantum
dynamics.

Quantum phase slips (instantons). The superflow at zero
temperature decays by quantum phase slips [32]. Within the
leading exponential approximation, the probability of this
tunneling process can be estimated via the Euclidean action
associated with the unbinding of instantons carrying opposite
topological “charges,” ±q (integer multiples of 2π ), which
measure the phase winding around singular points in space
and imaginary time. In conventional superfluid LLs biased
by a chemical potential difference δμ, phase slips lead to the
power-law dependence (current-voltage, I-V , characteristic),
δμ ∼ |v|α with α = 2K − 1, universally determined by the
Luttinger parameter K [33].

Quantum phase slips in the TQF are qualitatively different
from those in the LL because the instanton pairs in TQF are
tightly confined. This leads to the exponential dependence of
the bias δμ on the inverse of superflow velocity v. Despite
the fact that TQF and iTQF are distinct phases, at the level of
phase fluctuations [see Eqs. (1) and (8)], the dependence of
the instanton action on v turns out to be the same, as we now
demonstrate.

To derive the dissipation via instantons we follow the
path outlined in Ref. [18] and introduce the velocity field
vμ = ∂μφ in the (1 + 1)-dimensional space-time xμ = (x, τ ).
As described above, instantons have the form of point-vortex
singularities in the otherwise regular field vμ,

∂ × v = q(xμ) =
∑

j

q j δ
2(xμ − xμ, j ), (10)

where ∂ × v ≡ εμν∂μvν is a shorthand notation for the (1 +
1)D space-time curl of vμ and xμ, j is the space-time position
of the jth instanton. The instanton contribution to the action
(8) is given by

S = 1

2

∑
ω,kx

[
Kb|vτ |2

|ω| + ns|vx|2 − iλ(ikxvτ − iωvx − q)

]
,

(11)
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where λ is an auxiliary field enforcing the vorticity constraint
(10) (for |ω| � ωb). The probability to find a set of instantons
with charges {qi} at locations {xi} is given by the integral

P =
∫

[dvμ][dλ]e−S. (12)

The Gaussian integration in the leading exponential approxi-
mation results in

P ∝ e− 1
2

∑
j �=i V (xμ,i−xμ, j )qiq j , (13)

where

V (x, τ ) =
∫

dωdkx

(2π )2

nsKb

|ω|(Kb|ω| + nsk2
x

) [ei(ωτ+kxx) − 1] (14)

is the instanton interaction potential. This interaction leads to
confinement in space, V (x, τ = 0) ∼ |x| ln |x| at a large sepa-
ration of two instantons with opposite “charges,” and weaker
confinement in time, V (x = 0, τ ) ≈ −√

2Kbnsτ/π . Apart
from the additional ln |x| with spatial separation, this behavior
is similar to that of TQF instantons found in Ref. [18].

An imposed superflow v drives instantons apart, work-
ing against V (x, τ ) via an additional contribution 2πnsvτ

to the instanton-pair action. Now the corresponding action
S = −(2π )2 V (x = 0, τ ) − 2πns|v|τ features an extremum
at

√
τ = √

πKbns/2/v, leading to the phase slip probability
P ∝ e−v1/v with v1 = π2Kb and predicting exponentially sup-
pressed I-V ,

δμ ∼ e−v1/v, (15)

contrasting qualitatively with the power-law LL I-V . This pre-
diction holds in the asymptotic limit v1/|v|  1. However, the
optimal solution τ ∼ 1/v2 breaks down at short timescales,
for τ ≈ 1/ωb = κs/Kb, corresponding to a characteristic ve-
locity vc ≈ v1/

√
2πKs, where Ks = π

√
nsκs is the effective

Luttinger parameter of the system. For Ks  1, this velocity
vc � v1, and we expect the TQF I-V (15) to cross over to the
power-law characteristic of the LL at |v| > vc.

Discussion and conclusion. While the history of supersolid
experiments in 4He following Ref. [34] is rather controversial,
some of the ideas and concepts generated to understand the
phenomenon have proved to be quite generic and apply to
a broad class of physical systems. In addition to the TQF
state of an edge dislocation, similar TQF physics appears in a
variety of systems: superfluidity along the boundary between
two-dimensional insulating droplets, domain boundaries in
an easy-axis ferromagnet, and in immiscible two-component
Mott insulators. The case of iTQF is more exotic and requires
a special setup illustrated in Fig. 2 and discussed in Ref. [13].
However, Ref. [13] and numerous studies of magnetic domain
walls (see Refs. [24–26] and references therein) failed to
identify the iTQF and TQF properties of these systems.

The key ingredient defining the class of TQF and iTQF
states along with their unusual properties is infinite compress-
ibility encoded by the effective one-dimensional field theory
that we derived,

σ = lim
ω→0

1

ω2
lim

kx→0

δ2S[φω,kx , φ
∗
ω,kx

]

δφω,kx δφ
∗
ω,kx

= ∞. (16)

This property is sufficient to ensure superfluid long-range
order and tight binding of instantons irrespective of other

system details such as gapped or gapless bulk excitations, the
spectrum, or the very existence of elementary excitations. The
condition σ = ∞ is not only sufficient but also necessary: At
σ �= ∞, the low-energy physics of the system would corre-
spond to that of Luttinger liquid.

To the best of our knowledge, the unusual quasi-1D super-
fluidity in the domain boundaries between (and surfaces of)
2D bulk-insulating phases was discussed only in the context of
quantum Hall states in Ref. [5]. However, chiral, time-reversal
breaking boundaries in this system—while featuring similar
to TQF quadratic effective field theory and thus nonacoustic
dispersion of elementary excitations—are qualitatively dis-
tinct at the fundamental (nonlinear) level. The hallmark of
TQF—be it a “canonical” case captured by superclimbing
dislocations [18] or by models A, B, and C in Fig. 1, or the
special iTQF case—is the tight confinement of instantons with
opposite charges and the resulting protection against the quan-
tum phase slips. This aspect is absent in the chiral quantum
Hall edge states, instead protected by the gapped bulk. Qual-
itatively, this situation is most close to the surface currents
in 2D superconductors. Despite their 1D character—enforced
by the Meissner effect—the currents are protected from phase
slips by the bulk order. Moreover, it is the physics of instan-
tons that justifies the “quantum” characterization of the TQF
and iTQF states. Otherwise, the parabolic dispersion of TQF
and the diffusive iTQF dynamics are perfectly well captured
by the corresponding classical-field theories—similar to that
of the edge currents in the quantum Hall and superconducting
systems.

Finally, we emphasize that from the conceptual point of
view, the iTQF state is a striking demonstration of the condi-
tional character of many dogmas associated with superfluidity,
such as the necessity of elementary excitations, in general, and
the ones obeying the Landau criterion in particular, as well as
the absence of long-range order in one-dimensional quantum
superfluids. Experimental and numerical implementation of
TQF and iTQF models is the crucial next step in the explo-
ration of this interesting physics.

Note added. Recently, the authors (together with L.
Pollet) performed a numerically exact simulation of the
lattice realization of model D [35]. The results are in perfect
agreement with the effective field theory of the present Letter.
This, together with the potential experimental realizability
and interest from a number of leading atomic, molecular, and
optical (AMO) groups in simulating model D experimentally,
provides significant motivation to our study.
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