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Exploration of exotic quantum physics in magnetic systems of reduced dimensionality is among the central
themes of condensed matter physics. Here we investigate the nature of magnetic couplings, topological exci-
tations, and critical phenomena in monolayer MnPSe3, a representative two-dimensional antiferromagnet. We
first establish, based on first-principles calculations, that the S = 5/2 Mn2+ ions possess single-ion anisotropy,
favoring in-plane magnetization, and exhibit isotropic antiferromagnetic pairwise couplings. Next, our atomistic
magnetics simulations identify antiferromagnetically coupled meron pairs to be the characteristic topological
excitations, whose size, polarity, and dynamics can be delicately tuned by an external magnetic field. Signif-
icantly, a critical temperature of ∼30 K is indicated in both the susceptibility and specific heat, and detailed
scaling analyses on the spin correlations and stiffness unambiguously attribute the critical behavior to the
Berezinskii-Kosterlitz-Thouless universality class. Our findings thereby provide an ideal candidate antiferro-
magnetic counterpart of the recently identified monolayer XY ferromagnet of CrCl3, the former may harbor
distinct topological excitations and multicriticality.
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Introduction. The discovery of two-dimensional (2D) crys-
tals [1] opens the era of exploring novel quantum physics
and critical phenomena in solid-state systems under reduced
dimensionality, wherein the effects of different types of fluc-
tuations become crucial [2–4]. Among these developments,
the rise of monolayer magnetic materials provides fertile plat-
forms for investigation of quantum magnetism in genuine
2D spin lattices. In monolayer ferromagnets, the develop-
ment of long-range order [5–8] vitally relies on anisotropy
in easy-axis magnetization. It has been further recognized
that, with easy in-plane magnetization, topological defects
in the form of vortex-antivortex pairs can be excited, which
is the microscopic foundation for the celebrated Berezinskii-
Kosterlitz-Thouless (BKT) phase transition [9–12] beyond the
Landau scenario. As counterparts, antiferromagnets have also
been thinned to the monolayer regime, with the transition-
metal phosphorus trichalcogenides of T MPX3 (T M = Cr,
Mn, Fe, Co, Ni, and X = S, Se) [13–16] as the most ex-
tensively explored class [17]. This family of layer materials
shares the commonality of hosting intralayer antiferromag-
netism, favoring either the Néel or zigzag phase within the
honeycomb lattice. These systems may provide not only ideal
platforms for probing 2D antiferromagnetic (AFM) criticality
and dynamics under various external fields [14,18–20], but
also innovative technology potentials rooted in their inher-
ent fast responses and non-stray-field characteristics [21,22].
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The AFM coupling usually induces strong magnetic frustra-
tion and fluctuation to the system, capable of exciting or
stabilizing various topological quasiparticles such as AFM
skyrmions, in the presence [23–25] or even absence [26,27]
of Dzyaloshinskii-Moriya (DM) interaction [28–30].

As compelling examples of novel physical phenomena
harbored in the layer T MPX3 compounds, a line of exotic
observations has been reported as the systems reduce their
thickness towards the monolayer limit. In particular, some
monolayer systems exhibit clear signature of suppressed long-
range AFM order [15], and may thus serve as candidate
arenas to exhibit BKT criticality. Here, the systems inher-
ently possess internal sublattice degrees of freedom beyond
their ferromagnetic (FM) counterparts [31–34], potentially
enabling richer variety and greater tunability of the local topo-
logical excitations with external fields.

In this work, we perform a comprehensive multiscale sim-
ulation study of the nature of magnetic couplings, topological
excitations, and critical phenomena in monolayer MnPSe3,
which has been experimentally realized [14]. Based on first-
principles calculations, we establish that the S = 5/2 Mn2+
ions possess single-ion anisotropy, favoring in-plane mag-
netization, and exhibit isotropic antiferromagnetic pairwise
couplings. Next, our detailed atomistic magnetics simulations
allow us to identify antiferromagnetically coupled meron pairs
to be the characteristic topological excitations, whose size,
polarity, and dynamics can be delicately tuned by an ex-
ternal magnetic field. Significantly, a critical temperature of
∼30 K is indicated in both the susceptibility and specific heat,
and detailed scaling analyses on the spin correlations and
stiffness unambiguously attribute the critical behavior to the
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FIG. 1. (a) Top and side views of atomic structure of the MnPSe3 monolayer. In the top view, the exemplified first, second, and third
Mn-Mn pairs are respectively denoted by red, cyan, and blue dual-headed arrows. (b) MAE upon rotating the Néel vector of the AFM state
from the in-plane (0◦) to out-of-plane (90◦) direction. The curve is a parabolic fitting using sinθ . The inset shows the MAE evolution (green
circle) upon rotating the Néel vector within the xy plane. (c) The gapped and gapless spin excitation spectra calculated from an in-plane Néel
configuration.

Berezinskii-Kosterlitz-Thouless universality class. Further-
more, by elevating the strength of the out-of-plane magnetic
field, we can convert the AFM meron pairs into a new type of
topological quasiparticles with FM-coupled core and AFM-
coupled in-plane vorticity, with uncompensated topological
charge. Collectively, our results provide valuable atomic-scale
insights into the AFM-BKT physics harbored by the easy-
plane T MPX3 monolayers.

First-principles establishment of the spin Hamiltonian.
Figure 1(a) schematically shows the crystal structure of mono-
layer MnPSe3, composed of a honeycomb lattice formed by
edge-sharing MnSe6 octahedra and P dimers at the hollow
sites. It is noted that recently monolayer MnPSe3 has been
experimentally synthesized, with its Néel vector and univer-
sality class demonstrated to be switchable to the Ising-type
via in-plane strain [14]. We here focus on the equilibrium case
subject to the XY regime, which has not yet been explicitly
characterized in the monolayer limit.

We perform first-principles calculations [35] (see also
Refs. [29,36–53] in the Supplemental Material) to obtain
the equilibrium lattice structure and predominant exchange
couplings of the MnPSe3 monolayer. The rotationally in-
variant DFT+U approach [39] is applied to account for
the strong onsite Coulomb repulsion of Mn-3d electrons,
and spin-orbit coupling is included to resolve the magnetic
anisotropy. The magnetic ground state within the collinear
regime is verified to be Néel-type AFM, energetically more
favorable than the FM, stripy-AFM, and zigzag-AFM phases
by 66.0, 33.2, and 24.2 meV/Mn respectively, consistent
with previous studies [54,55]. Figure 1(b) shows the magne-
tocrystalline anisotropy energy (MAE) upon rotating the Néel
vector from in-plane to out-of-plane directions. The calculated
MAE is 0.15 meV/Mn preferring in-plane magnetization,
suggesting that the monolayer system is an intrinsic XY-like
magnet.

Given the highly localized nature of Mn-3d electrons, the
magnetic interactions within the MnPSe3 monolayer can be
described by a generic bilinear Hamiltonian

H = −
∑

i

SiAiSi −
∑

i< j

SiJi jS j (1)

where Si is the spin operator of the ith Mn2+ ion with |Si| =
5/2, Ai and Ji j are 3 × 3 tensors quantifying the single-ion
anisotropy (SIA) and two-ion exchange couplings up to the
third-nearest-neighbor pairs, respectively. The threefold ro-
tational symmetry reduces Ai to a scalar Ai = Ai,zz−Ai,xx,
whose positive (negative) value favors out-of-plane (in-plane)
magnetization. The inversion symmetry prohibits the exis-
tence of DM interactions [28,29] between the first- (1NN)
and third-nearest-neighbor (3NN) pairs because the bisect-
ing points of these pairs are located right at the inversion
centers of the monolayer, while the second-nearest-neighbor
(2NN) pair allow finite DMI with the DM vector perpendicu-
lar to the twofold rotation axis bisecting the bond, following
Moriya’s rule [29,30]. Other symmetry-allowed components
of SIA and exchange couplings can be computed by using
the well-developed four-state method [41–45]. By mapping
the DFT+U total energies of a series of noncollinear mag-
netic configurations [46] to the spin Hamiltonian in Eq. (1),
this approach enables a full anatomy of bilinear exchanges
including non-Heisenberg terms that might influence the spin
ground state or dynamics [56,57]. For the antisymmetric part
of exchange couplings (DM interactions), the magnitude for
the symmetry-allowed 2NN pairs is |D| = 8.28μeV, rather
small and should have negligible effect on the spin dynam-
ics; the 1NN and 3NN DM interactions are even smaller
by one order of magnitude and can be viewed as numerical
zero as required by symmetry (bond center at the inversion
center of the monolayer). More details can be found in the
Supplemental Material [35]. For the symmetric parts, all off-
diagonal components of Ji j are calculated to be smaller than
1 µeV, while the diagonal components have strengths larger
by several orders of magnitude (Table I), and are all AFM

TABLE I. Exchange couplings of the monolayer MnPSe3 (in
meV).

Exchange pair Jxx Jyy Jzz

1NN –0.582 –0.586 –0.586
2NN –0.059 –0.058 –0.062
3NN –0.332 –0.332 –0.332
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FIG. 2. Snapshots from an LLG simulation (L = 120) at 0.5 K, showing (a) magnetization of the antiferromagnetically coupled sublattices
containing topological excitations, and (b) topological charge distribution on one sublattice. The insets are zoomed-in views of a meronic
vortex/antivortex pair. The color coded nz and dQ, respectively, represent the out-of-plane component of the spin vectors and the topological
charge.

exhibiting negligible exchange anisotropy. Interestingly, the
coupling strengths of the 2NN pairs are even smaller than
those of 3NN, mainly due to the weaker hybridization with
anion p orbitals on the corresponding superexchange paths, as
has been elucidated based on collinear magnetic calculations
[54]. The only nonvanishing SIA parameter is calculated to be
Ai = −0.035 meV preferring in-plane magnetization, which
accounts for the microscopic origin of MAE. As a running
summary, our calculations characterize monolayer MnPSe3 as
an XY-type antiferromagnet, whose spin Hamiltonian can be
effectively reduced to the form of an easy-plane SIA term plus
AFM Heisenberg exchange couplings,

H = −
∑

i

AiS
2
i,z −

∑

i< j

Ji jSi · S j . (2)

Based on Eq. (2) parameterized as Table I, we can calculate
the magnon spectrum of monolayer MnPSe3 with an in-plane
Néel ordered state, invoking the linear spin wave theory [58].
As presented in Fig. 1(c), the SIA lifts the degeneracy of
the two branches, with the splitting more pronounced near
the Г point. The gapless lower mode indicates the absence
of finite-temperature long-range order in monolayer MnPSe3,
consistent with 2D easy-plane anisotropy. In the language of
symmetry breaking, this gapless magnon, with linear disper-
sion near the Г point, signals the Goldstone mode associated
with the broken U(1) symmetry. Such Goldstone mode is
typically destructive to finite-temperature long-range order
because it can introduce long-wavelength fluctuations to the
system without energy cost.

BKT physics revealed by atomistic spin dynamics simula-
tions. We now proceed to study the magnetic properties of
monolayer MnPSe3 based on the established spin Hamilto-
nian. The large magnetic moments of Mn2+ ions (5 μB) far
away from the quantum limit can be treated eligibly as classi-
cal spins, and their dynamics are investigated by numerically
integrating [52] the Landau-Lifshitz-Gilbert (LLG) equation
[49,50] (see Supplemental Material, Note S1 [35] for details).
The system, simulated by an L×L supercell, is cooled down
from the paramagnetic state to various target temperatures and
then equilibrated for subsequent analyses.

A representative snapshot, taken at t = 30 ps from a sim-
ulated cooling process lasting for 200 ps with L = 120, is
shown in Fig. 2(a), revealing the emergence of antiferro-
magnetically coupled vortex/antivortex pairs. Indeed, such
topological defects can be observed at the very beginning

of the cooling process from a paramagnetic initial state
(t ∼ 2 ps), and all annihilate after t > 125 ps, leaving the
system with zero topological charge while still presenting spin
superfluidity behavior. Different from the archetypal 2D XY
model [9,10] wherein spins near the vortex/antivortex cores
have energetically unfavored large swirling angles, here the
three-component spins of Heisenberg feature can accommo-
date out-of-plane vortex/antivortex cores, efficiently lowering
the energy cost to excite topological defects [31]. In our simu-
lations under fixed temperature of 0.5 K, the energy difference
between a configuration containing 20 pairs of merons and
another configuration with all merons annihilated is 0.223
meV/site. The topological charges of the emerging AFM
vortices/antivortices can be calculated separately within the
two sublattices [59] and should yield opposite values. As
spatially resolved in Fig. 2(b) within one of the two sub-
lattices, the topological charges peak at the core region of
vortex/antivortex, and their integration over a single topolog-
ical defect yields −1/2 (1/2), characterizing the excitations as
merons (antimerons) commensurate with the in-plane magne-
tized background. A meron can be viewed as half a skyrmion,
a more celebrated topological defect living in the out-of-plane
magnetization background [60]. A pair of merons (insets of
Fig. 2) restores the integer topological charge of ±1, forming
a bimeron. Being the characteristic topological excitations in
BKT phase [61,62], merons in various systems can exhibit
distinct dynamics and decaying rate. As ubiquitously seen
in BKT systems, the vortexlike and antivortexlike meronic
quasiparticles with opposite vorticity experience an attractive
force, governing their motion towards each other and collapse
even at low temperature. Consequently, the lifetime of vortex
pairs in our simulated AFM system is typically no longer
than 125 ps, as estimated by our topological charge analysis
and statistics on consecutive snapshots extracted from atom-
istic spin dynamics simulations. The faster dynamics of AFM
bimerons compared to their FM counterparts [63–65] is akin
to skyrmionic systems [59].

Going beyond the real-space visualization of topological
defects, we carry out systematic analysis of the thermody-
namic properties in the spirit of ensemble average to gain
further insights into the criticality of the AFM monolayer.
Simulations are performed with a much longer time scale
of ∼105 ps at each target temperature to gather substan-
tial equilibrium snapshot configurations for statistics. By
varying the target temperature, we trace the evolution of ther-
modynamic observables including the normalized staggered
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FIG. 3. Thermodynamic properties and scaling analyses of a
monolayer MnPSe3. Temperature dependence of (a) staggered mag-
netization, (b) susceptibility, and (c) specific heat obtained from
LLG simulations (L = 60). (d) In-plane spin correlations between
two most distant sites within the supercell, multiplied by L1/4 for
finite-size scaling analysis. (e) Correlation length as a function of
temperature, fitted by Eq. (4). Inset: in-plane spin correlation at
T ∼ 31.2 K, fitted by the power-law decay A(r/a)−1/4 (a being the
lattice constant). (f) Spin stiffness as a function of temperature. For a
given simulation size L, the crossing point between the correspond-
ing curve and the purple dashed line defined by the BKT universality
relation ρs = 2kBT/π yields a transition temperature T ∗(L). Inset:
linear fitting using Eq. (5).

magnetization and its susceptibility, as well as the specific
heat. As shown in Figs. 3(a)–3(c), these quantities coherently
demonstrate that the system undergoes a magnetic transition
at ∼33 K. Due to easy-plane anisotropy, Mz is quenched to
zero at all temperatures. The broad peak of susceptibility
characterizes the 2D XY behavior, with a slowly decaying
tail below the critical temperature distinct from the vanishing
susceptibility commonly observed in prototypical Ising phase
transitions.

It has long been established, based on renormalization
group analysis [66] or quantum Monte Carlo simulations
[67] in some simplified models with nearest-neighbor cou-
plings, that even very weak easy-plane anisotropy can enable a
Heisenberg spin system to present BKT criticality. However,

for models associated with realistic materials, the interplay
between multiple exchange couplings might mediate non-
colinear long-range orders competing the BKT phase [68].
Even in the BKT regime, recent studies [69] elucidate that
the involvements of long-range couplings can subtly alter the
criticality. Analyses of the critical behavior based on the sta-
tistical results thus require extra caution. Typically, the TBKT

value estimated from specific heat and magnetic susceptibility
may suffer from some quantitative uncertainty due to finite-
size effect [70–72]. To access the true thermodynamic limit,
reliably characterize BKT phase transition, and determine
TBKT, scaling analysis on the finite-size simulation results is
necessary. Considering the in-plane spin components, for sys-
tems subject to the 2D XY universality class, the correlation
function at T = TBKT satisfies

〈S+
i S−

j 〉 ∼ L−1/4, (3)

with Si and S j being a pair of most distant spins within the
supercell in size of L, and S±

i = Sx
i ± iS

y
i . Given this scaling

law, we can define a new scaling function 〈S+
i S−

j 〉L1/4, which
should predict the transition temperature independent of the
supercell size. Figure 3(d) shows its temperature dependence,
wherein the four curves corresponding to different L cross at
the same transition temperature of 30.2 K, laying a slight cor-
rection on the value obtained from susceptibility and specific
heat analyses.

Elevating the temperature across TBKT, the spatial decay
behavior of in-plane spin correlations switches from ¼ power
law to exponential. At the critical temperature, the correlation
length ξ diverges. This universal property provides an alter-
native way to confirm the BKT nature of the phase transition
by fitting the high-temperature sector of the ξ -T curve, which
satisfies

ξ ∼ exp
[
b(T − TBKT)−1/2

]
(4)

with b a system-specific parameter. Figure 3(e) shows such
exponential fitting from which we attain TBKT ∼ 31.2 K in
nice consistence with scaling analysis. As a crosscheck from
the low-temperature side, our power-law fitting of the in-plane
spin correlation at T = 31.2 K [inset of Fig. 3(e)] attests it as
the lower bound of transition temperature.

From the viewpoint of energetics, another quantity eligible
for scaling analysis is the spin stiffness ρs. As a temperature-
dependent thermodynamic quantity, ρs measures the free
energy cost to achieve an infinitesimal phase twist, or gradient,
to the spin system, which can characterize the whirling energy
of thermally excited topological defects. The spin stiffness is
finite at the low-temperature BKT phase, and vanishes above
the transition temperature; critically, at T = TBKT, it follows
a universal relationship, ρs = 2kBT/π [73]. In practice, the
logarithmic finite-size correction to TBKT has to be considered
in the simulations, which reads [74]

T ∗(L) = TBKT + C(ln L)−2. (5)

T ∗(L) is extracted from the crossing between the line repre-
senting the universal ρs = 2kBT/π relationship and the ρs(T)
curves from finite-size simulations, and C is a system-specific
constant. Figure 3(f) presents such scaling analysis of ρs,
from which we extrapolate the linearly fitted T ∗−(lnL)−2

correlation to the thermodynamic limit and estimate that

L100403-4



TUNABLE MERON PAIR EXCITATIONS AND … PHYSICAL REVIEW B 109, L100403 (2024)

FIG. 4. (a) Schematic phase diagram of a monolayer MnPSe3 under an in-plane magnetic field along x, Bx . Panels on the left sketch the
corresponding short-range spin alignments in the identified phases color highlighted in the diagram. (b) Magnetization along x as a function
of Bx and temperature. The curves are vertically shifted for clarity, with the zeros indicated by the corresponding horizontal dashed lines. The
upturning points denoted by the vertical bars determine the temperature-dependent Bc1 marked in (a). (c) Evolution of the normalized meron
density upon cooling the system to T = 0.5 K without and with Bx .

TBKT ∼ 31 K, again in good accordance with previous
analyses.

We have thus far confirmed intrinsic Néel-type AFM-BKT
physics in monolayer MnPSe3, the underlying mechanism
of which can be understood via analyzing the interplay be-
tween exchange couplings, single-ion anisotropy, and lattice
geometry. In the J1-J2-J3-A model, All Ji’s are isotropic
and negative, but due to the honeycomb geometry, J1

and J3 favor intersublattice AFM coupling, while J2 fa-
vors intrasublattice AFM coupling. The calculated J1 and
J3 overwhelm J2 in magnitude, thus the Néel correla-
tion prevails in the honeycomb lattice, coupling the two
sublattice antiferromagnetically. The SIA term A, which fa-
vors in-plane magnetization and is isotropic within the XY
plane, constitutes the only interaction to induce magnetic
anisotropy and drives the system to the AFM-BKT regime
with quasi-long-range order and meronic excitations at low
temperature.

Field-tunable phases and meron pairs. Unlike ferro-
magnets, AFM systems encompassing staggered magnetized
sublattices respond to external magnetic fields in a macro-
scopically less sensitive manner. Microscopically, the com-
petition between the Zeeman interaction and AFM exchange
couplings can be regarded as magnetic frustration, which
might mediate richer physics in topological excitations and
vortex dynamics. For uniaxially anisotropic Heisenberg an-
tiferromagnets, applying a uniform magnetic field along the
easy axis can switch it from the long-range AFM order to the
spin-flop (SF) phase [75–77], the latter featuring FM (AFM)
alignment of magnetic moments along (perpendicular) to the
easy axis. It would be intriguing to exploit relevant physics
in BKT systems with quasi-long-range order and topological
excitations.

Given the easy-plane anisotropy, we first tackle the case
of applying an in-plane field along the x axis (Bx), which
breaks the planar rotational symmetry of the Hamiltonian.
By performing LLG simulations and tracking proper order
parameters, we identify three distinct phases in addition to
the trivial paramagnetic state. The corresponding short-range
spin alignments and Bx-T phase diagram are illustrated in

Fig. 4(a). The magnetization along x is invoked as the order
parameter to trace the phase evolution. As shown in Fig. 4(b),
the curves appear flat when Bx is small, and upturn after Bx

exceeds a temperature-dependent critical field Bc1, signaling
a field-induced transition from the AFM-BKT to SF phase,
which persists up to the critical temperature (Fig. S1). Inter-
estingly, the transition temperature from the AFM-BKT/SF
phase to the paramagnetic state exhibits weak dependence
on Bx [Figs. S2(a) and S2(b)]. Our scaling analyses on the
squared staggered magnetization and spin stiffness coherently
suggest that the BKT physics is fully suppressed at Bx = 20T,
and the transition becomes Ising-type [Figs. S3(a) and S3(c)].
When Bx is further raised to surpass a temperature-dependent
critical value of Bc2, the system enters a field-polarized phase
[Fig. 4(a)], namely, all spins align with the field, and the
staggered magnetization vanishes [Fig. S4(a)].

The topological defects provide a real-space signature to
further distinguish the SF phase from the low-field AFM-BKT
regime. Our simulations indicate that the meron excitation
and dynamics below Bc1 resemble the field-free case. On the
contrary, in the SF phase under Bx > Bc1, the major spin
components remain antiferromagnetically aligned, favoring
two energetically degenerate directions perpendicular to the
field (±y in the present case). Such in-plane anisotropy leads
to formation of multidomain configurations and domain-wall-
enriched meron dynamics. At Bx = 7T, the meron pairs are
bounded to the Bloch-line-shaped domain and exhibit Néel-
type geometry [Fig. S6(a)]. Compared to the field-free case,
these domain-wall merons possess a substantially decreased
mobility, and accordingly elongated lifetime. Figure 4(c)
contrasts the temporal evolution of meron density in the AFM-
BKT and the spin-flop regimes. In the zero-field case, all
merons collapse within 125 ps, while the applied field Bx =
7T significantly increases the lifetime of a portion of merons
pining to the domain walls up to 500 ps. Such enhanced
topological stability and frozen meron dynamics implies the
formation of a meron glass state [78], which is observed
in our simulations when Bx is in the interval from 5–10 T,
thereby could be verified by the recently developed imaging
technique [79]. Further increasing Bx to 20 T leads to severe
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FIG. 5. Field-induced conversion of an AFM meron into a new
type of FM-AFM hybrid meron. Snapshots from LLG simulations
under an out-of-plane magnetic field (a), (c), (e) Bz = 5T and (b),
(d), (f) Bz = 50T, corresponding to a typical AFM meron and a new
FM-AFM hybrid meron, respectively. Color coding follows Fig. 2.

elongative distortion and eventual disappearance of the
domain-wall merons [Fig. S6(b)].

Exertion of an out-of-plane magnetic field (Bz) induces
a more laconic physics. Because the rotational symmetry of
the Hamiltonian is preserved, the transition temperature and
critical behavior in such Bz induced spin-flop phase [Figs.
S2(c) and S2(d); Figs. S3(b) and S3(d)] do not exhibit obvious
difference from the field-free case. The in-plane staggered
magnetization is gradually suppressed when Bz is increased,
before vanishing to zero at Bz ∼ 120 T [Fig. S4(b)]. Figure S5
presents the phase diagram in the presence of Bz, illustrating
the AFM phase falls into the spin-flop phase with arbitrary
small Bz. Microscopically, the topological excitations in this
circumstance are still merons presenting pairing behavior,
but with shrinking core upon increasing Bz (Figs. S7 and
S8). More importantly, a substantially large Bz can flip the
out-of-plane polarizations of the meron cores within the two
sublattices, from opposite [Fig. 5(a)] to aligned [Fig. 5(b)];
meanwhile, the in-plane whirling pattern remains intact al-
beit with smaller components under high field. Consequently,
a drastic change to the topological charge distribution is

induced as compared to the low-field case [Figs. 5(c), 5(e)
vs. 5(d), 5(f)]. The vortices in such spin-flop BKT phase, with
field-modulated polarization and uncompensated topological
charge, can be viewed as an intermediate regime between the
pure AFM-BKT phase discussed above and the well-studied
FM-BKT systems [31–34]. It would be intriguing to explore
possible additional criticality associated with the meron core
flipping, which is the subject of future works.

Discussion and summary. Since its conceptualization, the
BKT phase transition as a profound framework to unify abun-
dant critical phenomena by topology has been observed in
a plethora of condensed matters in two dimensions, includ-
ing superfluid [80], superconducting [81], and ultracold atom
systems [82]. For decades, efforts to realize BKT transitions
in magnetic systems have mainly focused on quasi-2D layer
XY-type magnets [83–90], wherein the unavoidable interlayer
couplings may mediate 3D long-range magnetic order that
competes or even suppresses the BKT phase. The topological
excitations revealed here in monolayer MnPSe3 suggest it
as a promising candidate to probe magnetic BKT criticality
and study the field-tunable AFM vortex dynamics. Exempted
from the complexity of interlayer coupling encountered in
multilayer magnets [83–90], characterization of the intrinsic
BKT order in monolayer systems are likely more transparent
and definitive [31–34]. Here we note that, given the ultra-
thin nature of monolayer antiferromagnets, neutron scattering
or nuclear magnetic resonance widely utilized for detecting
BKT physics in multilayer magnets [87–89] might become
inapplicable. Promising approaches for verifying the AFM-
BKT criticality and visualizing the topological excitations
may include the polarized Raman spectroscopy [15] and some
real-space imaging techniques [14,16,79].

Summarizing, our work provides a comprehensive charac-
terization of the anisotropic magnetic interactions, the type
and dynamics of the AFM topological excitations, and tun-
ability of the criticality in the monolayer MnPSe3. The
insights from the present study can have broader implications
beyond characterizing an intrinsic AFM-BKT order. The es-
tablished phase diagram, the vortex dynamics harnessed by
sub-Tesla Bx, and the newly identified meronic quasiparti-
cles with flipped cores under Bz, collectively highlight the
delicate interplay between the magnetic field and AFM cou-
pling. Prospectively, it would also be intriguing to investigate
how these fundamentally important responses evolve when
chiral Dzyaloshinskii-Moriya interactions [91] are further in-
troduced via proper symmetry reduction [92].
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