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Non-Hermitian systems exhibit diverse graph patterns of energy spectra under open boundary conditions.
Here, we present an algebraic framework to comprehensively characterize the spectral geometry and graph
topology of non-Bloch bands. Using a locally defined potential function, we unravel the spectral-collapse
mechanism from Bloch to non-Bloch bands, delicately placing the spectral graph at the troughs of the potential
landscape. The potential formalism deduces the non-Bloch band theory and generates the density of states via
the Poisson equation. We further investigate the Euler-graph topology by classifying spectral vertices based on
their multiplicities and projections onto the generalized Brillouin zone. Through concrete models, we identify
three elementary graph-topology transitions (UVY, PT -like, and self-crossing), accompanied by the emergence
of singularities in the generalized Brillouin zone. Lastly, we unveil how to generally account for isolated edge
states outside the spectral graph. Our work lays the cornerstone for exploring the versatile spectral geometry and
graph topology of non-Hermitian non-Bloch bands.
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Introduction. Non-Hermiticity emerges as a significant fac-
tor in a wide range of classical wave systems and open
quantum systems, giving rise to various peculiar properties
and applications [1–7]. A distinctive feature of non-Hermitian
systems is the non-Hermitian skin effect (NHSE) [8–19],
where an extensive number of eigenstates are localized at
the system boundaries [20–25]. To accommodate the presence
of skin modes, the notion of a generalized Brillouin zone
(GBZ) [8] has been introduced by extending the Bloch wave
vector to the complex domain. Depending on the boundary
conditions, the energy spectra either manifest as closed loops
with nontrivial spectral windings, representing Bloch bands
under periodic boundary conditions (PBCs), or they adopt
open arcs (i.e., non-Bloch bands) on the complex-energy
plane under open boundary conditions (OBCs).

A synopsis of earlier non-Hermitian band theory involves
symmetry classifications of eigenenergy bands based on
point or line gaps [26–30]. A homotopy perspective further
distinguishes separable bands by their eigenenergy braid-
ings [31–41]. These classifications, however, are exclusive to
Bloch bands. Under OBC, the arc-shaped non-Bloch bands
display a plethora of intricate patterns, forming planar graphs
on the complex plane [42,43] which are linked to the al-
gebraic properties of characteristic polynomials (ChPs). The
primary focuses of the non-Bloch band theory [8–11] have
been on producing the continuum of non-Bloch bands and
restoring the bulk-edge correspondence via the GBZ. Yet the
intricate connections between these two types of spectral pat-
terns (i.e., loops versus graphs), and the physical mechanism
governing their transformations remain enigmatic. Recently,
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the electrostatic analogy [44,45] has been employed to ana-
lyze non-Bloch bands, aiding in the determination of spectral
patterns and density of states (DOS). Broadly speaking, the
intriguing graph geometry goes beyond the scope of con-
ventional topological invariants such as Z,Z2 or spectral
windings [12,13,46,47]. It represents uncharted band topology
which may yield novel non-Bloch symmetries [48,49] and
spectral transitions between distinct graph patterns relevant
for anomalous responses [42,50]. To date, the non-Bloch
bands with respect to their Euler-graph morphology have
largely been unexplored, and a systematic classification of
their spectral transitions is also lacking.

In this Letter, we present an algebraic framework to
comprehensively characterize the graph geometry and topol-
ogy of one-dimensional non-Hermitian bands. Inspired by
the electrostatic analogy [44,45], we unveil the electrostatic
mechanism of spectral collapse and reproduce the non-Bloch
band theory and the GBZ by incorporating a local potential
function �(E ). Notably, the potential function is harmonic
on the complex plane, except at locations coinciding with
spectral graphs, aligning precisely with the troughs of the po-
tential landscape. Furthermore, we delve into the Euler-graph
topology and systematically classify the spectral vertices ac-
cording to their multiplicities and projections onto the GBZ.
We demonstrate three elementary graph transitions, as well as
the appearance of singularities within the GBZ, and address
the treatment of isolated edge modes that exist beyond the
continuum of non-Bloch bands.

Spectral collapse. Let us first recap the non-Bloch band
theory via the simplest Hatano-Nelson model [51]. The
Hamiltonian H = ∑

j tLc†
j c j+1 + tRc†

j+1c j consists of nearest
hoppings to the left with strength tL > 0 and to the right with
tR > 0, over a total of N lattice sites. As shown in Fig. 1(a), the
energy spectra form a closed oval under PBC while residing
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FIG. 1. (a) Top: Schematics of the Hatano-Nelson model with
asymmetric hoppings tR and tL . Bottom: Energy spectra under PBC
(blue) and OBC (black), respectively. tL = 2, tR = 0.5. Inset: loci
of the Bloch factor β = eik on the complex plane. (b) Sketch of
the electrostatic analogy. By assigning a charge of 1/N (N is the
system size) to each point on the OBC spectra (black), the Coulomb
potential �(E ) felt at E equals the electrostatic potential induced by
the charged spectral loop described by H (Reiθ ) with θ ∈ [0, 2π ]. The
factor R is chosen such that E is outside the loop.

at the line connecting the two foci of the oval under OBC,
E ∈ [−2

√
tRtL, 2

√
tRtL]. Consequently, all N eigenstates are

localized at either the left or right boundary depending on
the ratio tL/tR. In momentum space, the Hamiltonian takes
H (k) = tLeik + tRe−ik . By substituting β = eik , it is easy to
see that the eigenstates under OBC are skin modes associated
with complex Bloch vectors, i.e., βm = √

tR/tLe± i2πm
N+1 , with m

the level index. In the continuum limit N → ∞, all βm’s form
a circle of radius

√
tR/tL, which is the GBZ of the system.

The elegant spectral collapse into the oval’s central axis is
no accident. For a generic non-Hermitian Hamiltonian H (k),
the OBC energy spectra are determined by the bivariate ChP
(β = eik),

f (E , β ) = det(H (β ) − E ) =
q∑

j=−p

f j (E )β j . (1)

For a given E , we order the solutions of f (E , β ) = 0
as |β1(E )| � |β2(E )| � · · · � |βp+q(E )|. In the continuum
limit, the OBC spectra (except for a finite number of isolated
edge states, if any) reside within the PBC spectral loop and
form some Euler graph, denoted as GH . Any point on the
graph satisfies the condition |βp(E )| = |βp+1(E )|. The locus
of β on the complex plane obeying this condition gives the
GBZ and traces a closed curve enclosing the origin.

The spectral collapse from PBC to OBC necessitates
the point gap. Utilizing the so-called rescaled spectra
Sp(R) [13,52] which are the regions enclosed by the spectral
loop of H (Reiθ ) with θ ∈ [0, 2π ]. The graph emerges as the
intersection of these rescaled spectra with all feasible rescal-
ing factors R:

GH =
⋂

R∈(0,∞)

Sp(R). (2)

GH thus obtained is constituted by a collection of arcs [53,54]
and connected [55]. Algebraically, the collapse process is
captured by an electrostatic analogy [45] which assigns
a charge 1/N to each eigenvalue En (n = 1, 2, . . . , N) of
the OBC Hamiltonian. The Coulomb potential at E /∈ GH

is �(E ) = 1
N

∑
n log |En − E |. According to Szegö’s limit

theorem [56,57], the potential �(E ) in the continuum
limit equals the integral, �(E ) = 1

2π

∫ 2π

0 log | det[H (Reiθ ) −
E ]|dθ with |βp(E )| < R < |βp+1(E )|. Physically, the inte-
gral can be interpreted as the Coulomb potential due to the
charged spectral loop H (Reiθ ) with θ ∈ [0, 2π ], as sketched in
Fig. 1(b). For any point E /∈ GH , the rescaling factor R always
exists.

Spectral graphs. The potential function �(E ) is well de-
fined on the complement of the graph GH . Notably, it can be
represented in a compact form [58]:

�(E ) = log | fq(E )| +
p+q∑

j=p+1

log |β j (E )|. (3)

Thus, Eq. (3) can be straightforwardly continued to the whole
complex plane without ambiguity as long as the q roots
of the largest moduli in the sum are chosen. The potential
�(E ) is harmonic outside the graph GH , i.e., ∇2

E�(E ) = 0
for E /∈ GH . In the distributional sense, the density of states
(DOS) in the continuum limit is ρ(E ) = limN→∞ 1

N

∑
n δE ,En .

The electrostatic analogy implies that the DOS satisfies the
Poisson equation

ρ(E ) = 1

2π
∇2

E�(E ). (4)

Clearly, a nonzero DOS can only be obtained when E ∈ GH or
|βp(E )| = |βp+1(E )|, which is exactly the GBZ condition. On
the complex-energy plane, the graph GH resides at the troughs
of the potential landscape. The significant benefit of the poten-
tial formalism lies in its ability to derive the spectral graph and
DOS without solving the GBZ or large OBC Hamiltonians.

We illustrate the potential description with two simple
examples. (i) The Hatano-Nelson model: The potential is
�(E ) = 1

2 log max(|E ±
√

E2 − 4tRtL|). Figures 2(a) and 2(c)
plot respectively the potential landscape and the DOS af-
ter taking the Laplacian on the complex plane. The DOS
with respect to arc length [58] is dρ

dE = 1
π

1√
4tLtR−E2

, which

is divergent at the two endpoints. (ii) H (β ) = β2 + β−1:
The potential landscape is shown in Fig. 2(b). The OBC
spectra form a threefold symmetric fan with three branches:
GH = ∪mei 2mπ

3 [0, 3/
3
√

4] (m = 0, 1, 2), joining at the junction
point E = 0. The DOS with respect to the arc length [58]

is dρ

dE =
√

3
12π

1
C2++C2−−C+C−

( 1
4 − |E |3

27 )
−1/2

, with C± = ( − 1
2 ±√

1
4 − |E |3

27 )
1/3

, as shown in Fig. 2(d). For more complicated
cases, the potential function, spectral graph, and DOS can be
solved numerically.

Euler-graph topology. The topology of the graph GH is
specified by the number of vertices (nV ), edges (nE ), and faces
(nF ). They satisfy the Euler formula [59]

nV − nE + nF = 2. (5)

For clarity, we also label a graph by G(nV , nE ) hereafter.
Usually, the information of a finite set of points on GH , e.g.,
the endpoints and the junction points with their multiplicities,
is sufficient to determine the graph topology. These special
points can be obtained via fairly simple analytical methods.
To this end, we classify the points on the graph by their
local geometric structures. Let us take a small circle enclosing
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FIG. 2. Potential landscape on the complex plane associated with
Hamiltonian (a) H (β ) = tLβ + tRβ−1 (the Hatano-Nelson model)
and (b) H (β ) = β2 + β−1. (c), (d) The DOS ρ(E ) after taking the
Laplacian of the potential functions. Inset: dρ

dE , the DOS with respect
to the arc length of the spectral graph. In the inset of (d), the branch
on the real axis of the graph is selected. For (a) and (c), tL = 2,
tR = 1.

E ∈ GH and dub E an n-vertex if there are n arcs emanating
from it and intersecting with the circle. Thus the points on
the edges (interior of the arcs) of GH are 2-vertices and the
endpoints are 1-vertices. The junctions are n-vertices with
n � 3 [e.g., E = 0 in Fig. 2(d)]. Figure 3 plots the spec-
tral graph and its associated GBZ for Hamiltonian H (β ) =
β−3 + 0.99β−2 + 0.1β2 − 0.44β3. The graph GH = G(7, 7)
contains two 3-vertices, one 4-vertex, and four endpoints due
to the existence of a closed loop.

Different types of vertices have distinct projections onto
the GBZ. As per the potential theory, for any point E ∈ GH ,
the “middle” two solutions of the ChP share an equal modulus

FIG. 3. Euler-graph topology associated with Hamiltonian
H (β ) = β−3 + 0.99β−2 + 0.1β2 − 0.44β3. (a) The graph G(7, 7)
formed by the continuum of the non-Bloch band, with four endpoints
(red dots), one 4-vertex (blue square), and two 3-vertices (green
and cyan triangles). (b) The GBZ (black) and auxiliary GBZ curves
(gray) on the β plane. The projections of the endpoints and junction
points in (a) are displayed in the same markers/colors.

|βp(E )| = |βp+1(E )|. When one travels around the GBZ, any
arc within the graph GH must be traversed in both direc-
tions. Consequently, the projections of a normal 2-vertex onto
GBZ manifest as two separate points of the same modulus.
The endpoint corresponds to the scenario of degenerate roots
βp(E ) = βp+1(E ), obeying

fRes ≡ Resβ[β p f (E , β ), ∂β (β p f (E , β ))] = 0, (6)

with Res the resultant function [47,58,60–62] to discrimi-
nate degenerate solutions of the ChP. The junction point, or
n-vertex (n � 3), has n separate projections onto the GBZ.
Analytically, the junction point E has n successive β solutions
of the same modulus [63]. Each projection lies at the crossing
between the algebraic curves of the auxiliary GBZ (aGBZ)
[14], e.g., the projections in Fig. 3(b) of the 3- or 4-vertex.
It is important to note that there may exist some spurious
junctions on the graph arising from spectral self-crossings, as
exemplified in Fig. 4(c3). In such instances, the GBZ loop
displays self-intersections and the fake junction should be
treated as a normal 2-vertex on the spectral arc.

Graph transitions. The graph geometry enables un-
charted spectral-graph transitions without any Hermitian
analog. Unlike the band-touching-induced topological tran-
sitions responsible for the appearance of edge states, graph
transitions may occur even in single-band non-Hermitian sys-
tems. Guided by the Euler formula, these transitions involve
changes in the counts of vertices, edges, or faces adhering
to the condition δnV − δnE + δnF = 0. Given the diversity of
spectral graphs, there exists an infinite array of graph transi-
tions, which can be further broken down into more elementary
ones. In the following, we pinpoint three fundamental graph
transitions with concrete examples.

(i) UVY transition. Model: H (β ) = β + α/β + 1/β2 with
a tunable parameter α. As shown in Figs. 4(a1)–4(a3), the
number of endpoints changes by one, G(2, 1) → G(4, 3).
Initially, at α = −1.2, there is a smooth U-turn in the arc.
As α increases, the U-turn becomes narrower and sharper to
develop a cusp at α = −1. After that, a new endpoint emerges,
and the graph becomes Y shaped with three arcs joined at a
3-vertex. Figures 4(a4)–4(a6) plot the GBZ. At the transition,
two aGBZ curves touch.

(ii) PT -like transition. Model: same as above, but with
α varying from 4 to 2. As shown in Figs. 4(b1)–4(b3), the
number of vertices and edges change by δnV = δnE = 2 with
G(2, 1) → G(4, 3), accompanied by the appearance of a 3-
vertex. Note that the two new branches may also emerge from
the interior of the spectral arc [64], rather than at the endpoint.
This is a generalization of non-Bloch PT breaking, where the
spectra transition from real to complex, or vice versa. Similar
to the former case, two aGBZ curves touch at the transition
with α = 3, as depicted in Fig. 4(b5).

(iii) Self-crossing transition. Model: H (β ) = β3 + 2β2 +
αβ + 1/β, with α varying from 3.2 to 2.8. In this case, the
number of endpoints stays unchanged, but new junction points
and spectral loops emerge. As depicted in Figs. 4(c1)–4(c3),
the initial graph G(2, 1) transforms into an “airplane” graph
G(3, 3). Due to the appearance of an additional spectral loop,
δnF = 1. Note that the 4-vertex on the right side [cyan dot
in Fig. 4(c3)] is spurious as it maps onto two (rather than
four) solutions on the GBZ [Fig. 4(c6)]. Nonetheless, when
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FIG. 4. Three elementary spectral-graph transitions. (a1)–(a6)
UVY transition. (b1)–(b6) PT -like transition. (c1)–(c6) Self-
crossing transition. For each type, the first and second row denotes
the evolutions of the spectral graph and its corresponding GBZ,
respectively. The endpoints, junction points, and the spectral sin-
gularities at the transitions are marked in red, green, and blue,
respectively. In (c3), the spurious 4-vertex is marked in cyan. For
(a1)–(a6), from left to right, α = −1.2, −1, −0.8. For (b1)–(b6),
from left to right, α = 4, 3, 2. For (c1)–(c6), from left to right,
α = 3.2, 3, 2.8.

traversing the GBZ, it is passed through four times. This
spectral loop spans from the intermediate endpoint at E = −2
with α = 3. Still, the aGBZ curves touch at the transition,
resulting in the GBZ’s self-crossings afterward.

We remark that all three types of transitions involve
the emergent singularities in the GBZ. In the UVY/PT -like
transitions, the number of endpoints changes, which can be
identified by solving all the endpoints via Eq. (6), while for the
PT -like/self-crossing transitions, there exist two coincident
endpoints as shown in Figs. 4(b2) and 4(c2). Similar to the
criterion of identifying the non-Bloch PT transition [64], the
spectral transition satisfies the condition

ResE [ fRes(E , α), ∂E fRes(E , α)] = 0. (7)

Isolated edge states. In realistic systems, isolated topologi-
cal edge states may exist outside the graph. Consider a generic

m-band (m � 2) Hamiltonian H (β ) = ∑t
j=−s h jβ

j with h j

being m × m matrices and s(t ) the hopping range to the right
(left). To accommodate the edge state E /∈ GH , we define
an ms × ms matrix Medge, with its μth row and νth column
(μ, ν = 1, 2, . . . , s) an m × m block, given by

[Medge]μν = 1

2π i

∫
�

βμ−ν[H (β ) − E Im×m]−1 dβ

β
. (8)

Here, Im×m is the identity matrix. The line integral is de-
fined entrywise, tracing a counterclockwise closed curve
� which encloses the origin and the first p β solu-
tions of f (E , β ) = 0. Isolated edge modes are identi-
fied by the condition det Medge = 0 [65]. For instance, in
the nonreciprocal Su-Schrieffer-Heeger (SSH) model [8],
H (k) = (t1 + t2 cos k)σx + (t2 sin k + i γ

2 )σy, m = 2, s = p =
1. It is easy to show det Medge 	= 0 if E 	= 0. The ad-
missible edge states manifest as zero modes when |t2

1 −
γ 2/4| < t2

2 [58]. It is the topological regime indexed by a
nonzero winding number [8] over the GBZ. The edge ma-
trix is powerful in analyzing isolated edge states, including
nonzero edge modes [58] without the need of bulk-invariant
calculations.

Conclusion and discussion. To conclude, our study system-
atically delves into the geometric and topological aspects of
spectral graphs of non-Hermitian non-Bloch bands, within a
purely algebraic framework. Facilitated by the local form of
the potential function, we unveil the electrostatic mechanism
of spectral collapse, reproduce the non-Bloch band theory
as well as the GBZ, and extract the spectral graph from the
potential landscape. By analyzing the Euler-graph topology,
we further identify three elementary spectral transitions be-
yond the gap-closure paradigm and address how to account
for isolated edge states outside the continuum of non-Bloch
bands.

The local potential function plays a vital role in bridg-
ing the graph topology of non-Hermitian non-Bloch bands
with the underlying algebraic structures of the ChP. While
the spectral graph is immediately derived from the poten-
tial landscape or the intersection in Eq. (2), it can also be
obtained by locating self-crossing points on the rescaled spec-
tral loops [63], or through the auxiliary GBZ method [14].
We note that the local potential formalism can also cap-
ture the spectral properties of the critical NHSE [58,66].
In contrast to the traditional wisdom of computing energy
spectra for a given Hamiltonian, a reverse band-engineering
strategy can be employed [44] to design tailored tight-
binding Hamiltonians for a specific spectral graph. Notably,
the potential landscape in our work differs from the inverse
skin-depth landscape therein. Lastly, we remark that with the
rapid advancements in platforms such as metamaterials [20],
optics/photonics [22,24], ultracold atoms [25], and electrical
networks [21,23], it is promising to customize desired non-
Hermitian Hamiltonians and to identify the spectral graph
transitions experimentally. For instance, the non-Bloch PT
phase transition can be detected by extracting the Lyapunov
exponents from the bulk dynamics [67,68]. This method is
also applicable to some PT -like and self-crossing types of
graph transitions [58]. Additionally, we note that the spec-
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tral singularities of non-Bloch bands can be uncovered by
measuring the center of mass in wave-packet dynamics [50]
for ultracold atoms, serving as further signatures of the graph
transitions.
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