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The metal-insulator transition (MIT) in vanadium dioxide (VO2) due to V-V dimerization has been extensively
discussed for decades. While it is widely acknowledged that electron correlations, Peierls instabilities, and
molecular orbital formations are crucial for understanding the MIT of VO2, the primary origin of the MIT
remains controversial. In this study, we delve into the crystal structure and orbital state of VO2 through syn-
chrotron x-ray diffraction experiments. The molecular orbital formation corresponding to the V-V dimerization
is directly observed in the low-temperature insulating monoclinic phase, called the M1 phase, as indicated by the
valence electron density distribution. Moreover, diffuse scattering observed in the high-temperature metal phase
of rutile structure suggests the presence of short-range correlation of V displacements, which is not directly
attributed to the structural fluctuation of the M1 phase. The short-range order in the rutile phase will be the key
to understanding the MIT in this system.
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Introduction. Transition metal compounds with the orbital
degree of freedom are an attractive platform for realizing
molecular clusters [1]. The crystal structure and physical
properties change dramatically with the formation of molec-
ular clusters such as trimers in LiVO2 [2], tetramers in
K2Mo8O16 [3], and octamers in CuIr2S4 [4]. Vanadium diox-
ide (VO2) exhibiting a first-order metal-insulator transition
(MIT) near room temperature [5–7] is one of the most famous
materials that form such molecular clusters [8–11]. The rutile-
type tetragonal structure with the space group P42/mnm in
the metallic phase [12,13] changes to the monoclinic structure
with the space group P21/c in the insulator phase (M1 phase)
[8–11] at TMI

∼= 340 K with decreasing temperature. In the
rutile phase, the V atoms are arranged at equal intervals on
straight lines along the cr axis [Fig. 1(a)], where a V4+ ion is
located at the octahedral site surrounded by six O2− ions. In
the M1 phase, V atoms form zigzag V-V dimers [Fig. 1(b)]
to realize a nonmagnetic singlet state [6,7]. Although numer-
ous studies discuss the importance of electron correlations
[14–16], electron-lattice (Peierls) instabilities [17–19], and
molecular orbital formations [20–23] in this system, the pri-
mary origin of the MIT is still controversial.

The most direct way to address the long-standing problem
is to gain a proper understanding of the crystal structure and
orbital state of VO2. X-ray diffuse scattering (XDS) was
observed around the R and M points in the first Brillouin
zone in the rutile phase [24–26], indicating the presence of
short-range correlations of atomic displacement. Previous
extended x-ray absorption fine-structure spectroscopy found
the short and long V-V bonds in the rutile phase [27].
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However, it is not clear what kind of short-range ordered
structure is realized in the rutile phase and how it relates to
the MIT in VO2. Moreover, the short-range correlation in
the rutile phase may be related not only to another insulator
phase induced by small impurity doping, called the M2 phase
[28,29], but also to the transient disordering state induced by
photoexcitation [30–40].

In this study, we perform synchrotron x-ray diffraction
(XRD) experiments using single crystals of VO2. The valence
electron density (VED) analysis observes the molecular or-
bital formation of V 3d electrons in the M1 phase. We also
observe two-dimensional plane-shaped XDS corresponding to
the V displacement in the rutile phase, which is not ascribable
to the structural fluctuations derived from the M1 phase.

Experiments. Single crystals of VO2 were obtained by re-
ducing molten V2O5 powder at 950 ◦C in a flow of N2 gas
[41]. The MIT temperatures, TMI = 340 and 336 K during the
heating and cooling processes, were confirmed through resis-
tivity measurements (Fig. S1 [42]), which are consistent with
the previous reports [5–7]. XRD experiments were performed
on BL02B1 at the SPring-8 synchrotron facility in Japan [43].
Small and large single crystals of 45 × 40 × 30 and 140 ×
120 × 120 µm3 were used for the electron density analysis
and the XDS observation, respectively. No monoclinic twins
were present in the smaller single crystal. An N2-gas-blowing
device was employed for the measurements from 400 to
100 K, with a potential temperature error of approximately 5
K. The x-ray wavelength λ was 0.30946Å. A two-dimensional
detector CdTe PILATUS was used to record the diffraction
pattern. The intensities of Bragg reflections with the inter-
plane distance d > 0.28Å were collected by the CRYSALISPRO

program [44] using a fine slice method, in which the data
were obtained by dividing the reciprocal lattice space in an
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FIG. 1. Crystal structure of VO2 at (a) 400 K in the rutile phase
and (b) 100 K in the M1 phase. VED distributions obtained from
the CDFS analysis at (c) 400 and (d) 100 K. Yellow isodensity
surfaces show electron density levels of 1.8 and 2.6e/Å3 at 400
and 100 K, respectively. Panels (i)–(iv) are magnified top and side
views of the VED around the V site. White and black lines in (b)
and (d) correspond to V-V dimers, respectively. x, y, and z indicate
the quantization axes, which are defined as x ‖ cr , y ‖ ar − br , and
z ‖ ar + br . ar , br , and cr indicate the unit-cell axes of the rutile
phase.

increment of �ω = 0.01◦. Intensities of equivalent reflections
were averaged, and the structural parameters were refined
by using JANA2006 [45]. To extract the VED distribution
around each atomic site, a core differential Fourier synthesis
(CDFS) method was used [46,47], which has been applied to
various strongly correlated electron materials such as titanate
[47], vanadate [48], ferrate [49], and molybdate [50]. [Ar]-
and [He]-type electron configurations were regarded as core
electrons for V and O atoms, respectively. V 3d and O 2s/2p
valence electrons should remain after the subtraction of the
core electron density distribution. Crystal structure and VED
distribution are visualized by using VESTA [51].

Results and Discussion. Figures 1(a) and 1(b) show the
crystal structure at 400 K (rutile phase) and 100 K (M1
phase), respectively. Here, the unit-cell axes of each phase
have approximate relationships of aM1 ‖ cr , bM1 ‖ br , and
cM1 ‖ −ar − cr , where the subscripts r and M1 denote the
rutile and M1 phases, respectively. The V-V bond length
along the cr axis is 2.8565(3) Å in the rutile phase, whereas
the V-V short and long bond lengths in the M1 phase are
2.60546(13) and 3.16875(14) Å, respectively. The short bond
corresponds to the V-V dimer, which is tilted by 6.9450(15)◦
from the aM1 axis. These results are consistent with previous
reports [8–13]. Details of the structural parameters are sum-
marized in Tables S1–S4 and Fig. S2 in the Supplemental
Material [42].

Figures 1(c) and 1(d) show the VED distributions at 400
and 100 K, respectively. The valence electrons are observed
around the V and O sites, as shown by yellow isodensity

FIG. 2. (a) VED distribution of a V-V dimer and surrounding
oxygen atoms obtained from the CDFS analysis at 100 K in the M1
phase. (b) Schematic of molecular orbital formation in the t1

2g system.
(c) Calculated VED distributions of the σ , π , and δ orbitals.

surfaces. The isotropic VED distributions around the O site
are consistent with the 2s2 2p6 electron configuration. On the
other hand, anisotropic VED distributions are clearly observed
around the V site, which corresponds to the 3d1 electron of a
V4+ ion. The anisotropy is different between the rutile and
M1 phases, suggesting a change of the 3d orbital state with
dimerization.

To understand the VED distribution around the V site in
the M1 phase [Fig. 2(a)], we consider the molecular orbital
formation of t2g electrons. Based on the simple molecular
orbital theory [52], the triplet t2g orbitals at the two V sites
form six molecular orbitals, σ , π , δ, δ∗, π∗, and σ ∗ orbitals in
ascending order of energy [Fig. 2(b)]. Figure 2(c) shows the
calculated VED distributions when each of the σ , π , and δ or-
bitals is occupied by two electrons. The VED obtained by the
CDFS analysis has the same anisotropy as the σ type, which
is consistent with the theoretical predictions [20–23,25] and
x-ray absorption spectroscopy experiments [53]. The VED
around the V site is slightly higher in the direction where the
dimer is formed than in other directions (Fig. S3 [42]). We
succeeded in observing the molecular orbital state associated
with the V-V dimerization from the VED distribution.

In the M1 phase, the V-O bond length is shortened to
1.75983(18) Å in only one direction in which the V-V dimer
tilts (Fig. S4 [42]), while they are 1.92266(15) and 1.9352(3)
Å in the rutile phase. Such pyramidal Jahn-Teller distortion of
the VO6 octahedron is also reported in PbVO3 [54], stabiliz-
ing the dx2−y2 orbital, as shown in Fig. S4(d) [42]. Therefore,
the tilted V-V dimer arises from the molecular orbital forma-
tion and the pyramidal Jahn-Teller distortion.

Next, we focus on the VED distribution around the V site
in the rutile phase, which has an anisotropy different from that
of the M1 phase. The VED does not extend along the x-axis
direction but along the z-axis direction where oxygen atoms
exist [see (i) in Fig. 1(c)]. The VED extending toward oxygen
atoms is derived from the eg orbitals, which must be empty in
VO2. To investigate the cause of the anisotropy, we carefully
review the structural analysis results in the rutile phase.

Figure 3(a) shows the atomic displacement parameters
(ADPs) at 400 K. There is no large anisotropy in the ADP
of V [U33/U11 = 0.946(3)]. Although the atomic weight of V
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FIG. 3. (a) ADPs of VO2 at 400 K, which are shown
as ellipsoids. (b) Temperature dependence of the ADPs Ueq =
(U11 + U22 + U33)/3 and the XDS intensity Idiffuse at Q =
(4.5, 1.5, 0) in the cooling process. Below TMI, the O site splits
into the O1 and O2 sites. XRD data on the H K 0 plane at (c)
325 and (d) 335 K. (e) One-dimensional plots of XRD intensity
around Q = (4.5, 1.5, 0) along the [110] and [1̄10] directions at
335 K, shown by orange and green dots, respectively. (f) XRD data
on the H H–3 L plane at 335 K. Inset shows a schematic of the
two-dimensional XDS.

is larger than that of O, the ADP of V is larger than that of
O. This tendency is also reported by the previous structure
analysis study [13]. When investigating the temperature de-
pendence [Fig. 3(b)], the ADP of V becomes approximately
halved below TMI, whereas the ADPs of O smoothly change.
The unusually large ADP of V in the rutile phase may indicate
local structural fluctuations. Figures 3(c) and 3(d) show the
XRD data on the H K 0 plane at 325 K (M1 phase) and 335 K
(rutile phase), respectively. The streaklike XDS is observed
between Bragg peaks with h + k + l = even in the rutile
phase, whereas the XDS almost disappears in the M1 phase.
In the rutile phase, V atoms are located at the corners and the
body center of the tetragonal unit cell, contributing only to the
Bragg reflections with h + k + l = even. Therefore, the XDS
that only exists between Bragg peaks with h + k + l = even
is related to the atomic displacement of V, which is consistent
with the unusually large ADP of V.

The strong XDS is observed along the �-M (0.5, 0.5, 0)-
� lines in our study, whereas previous XRD measurements
reported the XDS around the R (0.5, 0, 0.5) point [24,25].
Although we also observe the XDS around the R point, shown
in Fig. S5(d) [42], the intensity is weaker than that around
the M point. The pink squares in Fig. 3(b) show the temper-
ature dependence of the XDS intensity at Q = (4.5, 1.5, 0)

corresponding to the M point. The XDS intensity suddenly
drops below TMI. The MIT temperature obtained from the
XDS intensity in the cooling process is TMI = 332 K, which
is 4 K lower than the result obtained from the electrical resis-
tivity measurements (Fig. S1 [42]). The temperature in XRD
experiments appears to be underestimated by about 4 K.

The anisotropy of the XDS is investigated by one-
dimensional plots along the [110] and [1̄10] axes around
Q = (4.5, 1.5, 0) [a pink square in Fig. 3(d)], as shown in
Fig. 3(e). Intensities are roughly constant along the [1̄10] axis,
whereas the [110] profile is characterized by a broad peak.
The correlation length ξ ∼ 22Å, i.e., ∼3.4 unit cells, along the
[110] direction is estimated by the peak width. The XRD data
on the H H–3 L plane at 335 K, shown in Fig. 3(f), indicates
that the XDS is distributed to form planes [inset of Fig. 3(f)]
but not one-dimensional streaks. In other words, there are
one-dimensional correlations in the V displacement perpen-
dicular to the XDS sheets. Furthermore, there is no peak
structure at the l = 0.5 positions along the [112] and [1̄1̄2]
directions, shown in Fig. S6(e) [42], indicating that no short-
range V-V dimerization order exists in the rutile phase. If local
dimers are present in the rutile phase, the effective magnetic
moment in the Curie-Weiss susceptibility should be smaller
than the anticipated value for S = 1/2, μV = 1.73µB, owing
to the formation of local singlet pairs. In fact, the effective
magnetic moment μV is estimated to be 1.58–2.30µB by mag-
netization measurements [7], ruling out the formation of local
singlet V pairs.

To understand the short-range ordered structure, the
XDS pattern is simulated by V displacements. Here,
the V displacements propagating along the [111] di-
rection are considered to reproduce the XDS corre-
sponding to the h + k + l = 2n (n is an integer) plane.
Figure 4(a) shows the rutile-type VO2 structure showing only
V atoms. Orange and green circles correspond to V1 and
V2 at the (0, 0, 0) and (1/2, 1/2, 1/2) positions, respectively.
Since the XDS streaks are absent at h + k + l = 2n + 1 on
the H K 0 [Fig. 4(b)] and H H L [Fig. 4(c)] planes, the V1
and V2 atoms have the same magnitude of displacements in
the same direction. Furthermore, there are no XDS streaks
passing through the origin, as shown in Figs. 4(b) and 4(c),
indicating that the V displacements are longitudinal shifts, not
transverse shifts, as shown in Fig. 4(a). Here, the calculated
system size is a δr = 0.5 Å. Random phases are assigned
to the displacement directions ([111] or [1̄1̄1̄]) of the one-
dimensional V chain along the [111] direction, where there
is no correlation between the chains.

Figure 4(d) shows a part of the calculated V displace-
ment on the (112̄) plane. The XDS sheets corresponding to
h + k + l = 2n are reproduced from the calculated structure.
Figures 4(e) and 4(f) show the calculated XDS patterns on
the H K 0 and H H L planes considering the four domains of
the tetragonal lattice (Fig. S7 [42]), which agree well with the
experimental results [Figs. 4(b) and 4(c)]. The XDS patterns
calculated by the longitudinal shift model are consistent with
the previous XRD data [26]. The obtained short-range ordered
structure does not correspond to the structural fluctuations de-
rived from the M1 phase. In fact, the XDS sheets in the rutile
phase are independent of the positions of newly appearing
peaks in the M1 phase (Fig. S5 [42]). This result indicates that
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FIG. 4. (a) Schematic of the VO2 structure showing only V
atoms in the rutile phase. Orange and green circles correspond to
V1 and V2 at the (0, 0, 0) and (1/2, 1/2, 1/2) positions, respectively.
Black arrows indicate the displacements in the [111] direction. XRD
data on the (b) H K 0 and (c) H H L planes at 335 K in the rutile
phase. (d) A part of the calculated V displacements. The calculated
XDS patterns on the (e) H K 0 and (f) H H L planes. Pink dotted lines
indicate the XDS streaks corresponding to the experimental results
in (b) and (c).

the phase transition in VO2 is not a simple Peierls transition
with softening of phonons.

The direction in which the VED extends around the V site
in the rutile phase [Fig. 1(c)] corresponds to the displacement
direction of V to reproduce the XDS [Fig. 4(a)]. Therefore, the
VED extending in the oxygen direction would not reflect the
3d orbital state, but rather the position of the core electrons of
V derived from the short-range order (Fig. S8 [42]).

The short-range ordered structure is not a perfect rutile
structure but a locally distorted metastable structure, which
may be related to an intermediate phase suggested by the
previous theoretical calculations [55,56]. The metastable in-
termediate phases often appear in systems exhibiting a strong
first-order transition [57], which is known as an Ostwald’s step
rule [58]. The observed metastable structure may be related to
the photoexcited transient disordering state induced [30–40]
and anharmonic phonons [25] in this system.

In summary, the t2g molecular orbital state is observed from
the VED distribution in the M1 phase of VO2. The observed
XDS suggests the short-range ordered structure derived from
the V displacement, which is different from the structural
fluctuations of the M1 phase. This metastable short-range
structure may be related to peculiar properties such as the
ultrafast transition and dynamics in this system.
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