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Scattering description of edge states in Aharonov-Bohm triangle chains
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Scattering theory has been suggested as a convenient method to identify topological phases of matter, in
particular of disordered systems for which the Bloch band-theory approach is inapplicable. Here we examine
this idea, employing as a benchmark a one-dimensional triangle chain whose versatility yields a system that
“flows” in parameter space among several members of the topology classification scheme. Our results show
that the reflection amplitudes (from both ends of long chains) indicate the appearance of edge states in all
(topological and nontopological) cases. For the topological cases, the transmission has a peak at the topological
phase transition, located at the Fermi energy. A peak still exists as one moves into the nontopological regions,
where another transmission peak may occur at nonzero energy, at which an edge state appears in the isolated
chain. For finite chains, the transmission peak depends strongly on their coupling with the leads, and not on
the phase transition of the isolated chain. In any case, the appearance of a transmission peak is insufficient to
conclude that the system undergoes a topological phase transition.
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Introduction. Building on the bulk-boundary correspon-
dence, topological phases of matter are characterized by the
emergence of edge or surface states at the Fermi energy [1–3],
between the system and the vacuum. Bound states in a finite
system affect its scattering properties, suggesting [4] the use
of the scattering amplitudes to detect topological phases. This
possibility was demonstrated by Fulga et al., who showed that
the reflection matrix of a semiinfinite low-dimensional wire
obeying a highly symmetric Hamiltonian reflects its topolog-
ical quantum invariant [4,5]. Scattering theory, as opposed to
the Bloch band-structure formalism, operates in real space and
thus is particularly suitable for studying topological properties
of disordered or inhomogeneous systems [6], inaccessible in
the band-structure picture [3]. Conversely, it necessarily con-
nects a finite system to its (nontopological) surroundings [7].
We aim to examine the effectiveness of this method for pre-
dicting and detecting topological features.

In the elastic scattering-matrix formalism, the system, e.g.,
a finite one-dimensional wire, is attached on both sides to two
semiinfinite leads, usually described by tight-binding chains.
The scattering matrix of such a structure depends naturally on
the parameters of these leads, which fix the scattering energy,
and on their coupling with the system. These points were
largely avoided in previous studies, primarily because they set
the scattering energy at the Fermi level [4], adopted an approx-
imate model-independent form of the scattering matrix [8],
and focused on the reflection amplitude of a semiinfinite sys-
tem. Another complication arises from the dependence of the
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scattering amplitudes on the wire’s length. For instance, due
to the finite-size effect, the threshold for the emergence of
nontrivial edge states in a finite Su-Schrieffer-Heeger (SSH)
chain [7,9] deviates from the criterion for a topological phase-
transition [10,11]. The influence of this ubiquitous size effect
on topological features and the scattering amplitudes has not
yet attracted much attention, though the scattering formalism
seems to be the best tool for exploring the topology of disor-
dered systems.

In addition to the topologically nontrivial symmetry
classes [12,13], it has been found recently that systems
lacking quantized topological invariants, thus belonging
to topologically trivial symmetry classes, may exhibit in-
triguing phenomena. For instance, unexpected bound states
observed experimentally in photonic lattices [14], Rydberg-
atom of synthetic dimensions (i.e., engineered degrees of
freedom) [15], atomic Aharonov-Bohm (AB) cages [16–19],
or proposals for topology in laser systems [20]. However,
whether the scattering approach is capable of analyzing the
fate of the edge states, as a low-dimensional system moves in
parameter space away from topologically nontrivial symme-
try classes to topologically trivial ones, is an open question.
Sorting out these points is the scope of this paper.

As a benchmark, we study a one-dimensional chain whose
versatility yields a scattering matrix that “flows” in parameter
space among several members of the topology classification
scheme [12,13], including the “BDI” class, which contains the
SSH model [7,11,21–24].

As expected, the finiteness of the chain, combined with
details of its coupling with the semiinfinite leads, affects the
scattering amplitudes and thus may hinder their use as in-
dicators of topological properties characterizing the isolated
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FIG. 1. (a) A triangle chain, hosting two sites a and b in the
unit cell, with j1,2 and j3 being the in-cell and out-of-cell tunneling
amplitudes. Each triangle is threaded by an Aharonov-Bohm flux
� in units of the flux quantum. (b) The possible symmetry classes
of the triangle chain in the (| j3|, �) plane, with the “BDI” class at
the origin, the “AI” (“D”) class on the horizontal (vertical) axis, and
the “A” class occupying the entire plane (except the axes). (c) Two
possible configurations of coupling a finite chain of N cells to two
semiinfinite leads: in both configurations, the left lead is coupled to
an a1 site, λ = 0 (1) describe coupling the right lead to a bN (aN ) site.
The tunneling amplitudes on the leads are J0, and Jc is the coupling
amplitude.

chain. For instance, focusing on the reflection amplitude at
the Fermi energy of a topological chain [4,5], one finds that
though the size effect may be removed by making the chain
semiinfinite (coupling it to a single lead), the phase of the
reflection amplitude does depend on the endpoint where it is
monitored. Interestingly, we find that the reflection amplitude
of a semi-infinite chain belonging to a topologically trivial
class can attain the “nontrivial” value −1, not at the Fermi
energy, and an edge state appears on one side of a long isolated
chain at that energy, which can be robust against disorder.

Our results show that the reflection amplitudes do indicate
the appearance of edge states in all (topological and non-
topological) cases. For the topological cases, the transmission
has a peak at the topological phase transition (TPT), which
happens at the Fermi energy E = 0, even in finite long chains.
This peak decays as the chain moves into the nontopological
regions, where a transmission peak may also occur at nonzero
energy. In any case, the appearance of a peak in the trans-
mission is insufficient to conclude a possible TPT. Note that
a standard scattering experiment measures the reflection |r|2,
not its amplitude r. However, even if the sign of r could be
measured, it does not identify the topological phase.

The chain. The model we analyzed [Fig. 1(a)] is built of
identical triangles, each penetrated by an AB flux �. The ver-
tices are two sites, a and b, connected by staggered tunneling
amplitudes, j1 and j2, with nearest-neighbor a sites coupled
by j3. It is described by

H� = −
∑

n

( j1a†
neiφ1 bn + j2b†

neiφ2 an+1

+ j3a†
neiφ3 an+1 + H.c.), (1)

where a†
n (b†

n) creates a spinless electron residing on the a
(b) site of the nth cell and φi=1,2,3 are the partial AB fluxes
(in units of �0 = h/e), accumulated on each bond, with � =
φ1 + φ2 − φ3. Contingent on the values of j3 and �, this chain

“flows” among four symmetry classes. For j3 = 0 the AB
flux is irrelevant and the chain becomes the SSH wire [11],
whose Hamiltonian obeys time-reversal, particle-hole (PH),
and chiral symmetries and thus belongs to the “BDI” class.
For a nonzero j3 and � = ±π/2, the Hamiltonian is PH
symmetric (details in Ref. [25]), placing the chain in the “D”
class. The topology of the high-symmetry classes “BDI” and
“D” can be quantified by the Zak phase ϑzak [25,29], equal
to π in the nontrivial topological phase where | j1/ j2| < 1 and
zero otherwise. For other parameters the system belongs to the
topologically trivial low-symmetry classes “A” and “AI”, see
Fig. 1(b), for which ϑzak is not quantized [25].

Scattering matrix. The scattering formalism requires at-
taching semiinfinite leads on both sides of a finite chain.
Modeling those by identical one-dimensional tight-binding
Hamiltonians (with zero on-site energies and tunneling ampli-
tudes J0), and denoting both tunnel couplings with the chain
by Jc, yields two possible edge configurations, see Fig. 1(c);
in the λ = 0 configuration the chain comprises an integer
number N of unit cells, for λ = 1 it does not, the rightmost
site being aN .

The scattering matrix S relates the amplitudes of the in-
coming plane waves from the left (right), AL(R), with those of
the outgoing waves, BL(R), whose energy E is related to the
(dimensionless) wave vector κ ,[

BL
BR

]
= Sλ

[
AL
AR

]
, E = −2J0 cos(κ ). (2)

Denoted by 	a/b(n), (n = 1, 2, ..., N), the wave functions at
the a/b sites of the nth cell, continuity at the endpoints implies

Jc

J0

[
	a(1)

	χ (N )

]
= eiκ

[
AL

AR

]
+ e−iκ

[
BL

BR

]
, (3)

where χ = b(a) for the λ = 0(1) configuration. Another re-
lation connecting the endpoints is obtained by the transfer
matrix, T . Let Vn = {	b(n), 	a(n)}T be a vector comprising
the eigenfunctions of H� at the two sites of the unit cell, with
1 � n � N − 2. The transfer matrix connecting two nearest-
neighbor vectors reads

Vn+1 = T (E )Vn. (4)

Expressed in terms of a vector v̂,

T (E ) = exp (αv̂ · σ − iζ ),

v̂ = ei(φ1+β )

2 j2 sinh(α)
{w1 − E , i(w1 + E ),w2 + e−iφ1 j1},

cosh(α) = (
E2 − j2

1 − j2
2

)/
(2|W |) (5)

(σ is the vector of the Pauli matrices). Here W = j1 j2 −
E j3e−i�, β = arg[W ], ζ = � + φ3 + β, w1=e−2iφ1 [E j1 j2 −
j3( j2

1e−i� + j2
2 ei�)]/W , and w2 = e−iφ1 (2 j2e−iβ cosh α +

j1).
As usual, the Bloch spectrum of a chain obeying periodic

boundary conditions is given by T N Vn = Vn. In that case, α

is purely imaginary for a bulk state, while when E is located in
the band gap exp[α(E )] < −1 is real [25]. In an open chain,
where translational symmetry is broken around the chain-lead
junctions, VN−1 and VN depend on the specific endpoints
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FIG. 2. (a) The sign distribution of the two-sided reflection am-
plitudes off a finite chain in the λ = 0 configuration, with the (blue)
thick curve being the threshold for a sign change. (b) The correspond-
ing reflection phases ϕ0,r and the transmission |t0,r |2 of a N = 20 cell
chain in the “A” (� = 0.48) and “D” classes. (c) Same as (a), for
the λ = 1 configuration, with the horizontal line marking the sign
change. (d) ϕ1,r and |t1,r |2 for λ = 1. The scattering energy is E = 0,
the Fermi level. The tunneling amplitudes are j3 = 0.2, Jc = 0.3, and
J0 = 2.0 (units of j2).

[Fig. 1(c)], and then

Fλ(E )

[
	a(1)

	χ (N )

]
= Jc

[
AL + BL

AR + BR

]
. (6)

The matrix Fλ(E ) is detailed in Ref. [25]. The eigenenergies
of an isolated chain, Jc = 0, are given by det[Fλ(E )] = 0.
Otherwise,

Sλ ≡
[

rλ,l tλ,r

tλ,l rλ,r

]
= −1 − 2i sin(κ )

[
e−iκ − �F−1

λ

]−1
,

� = (
J2

c /J0

)
, (7)

where rλ,l (rλ,r) and tλ,l (tλ,r) are the reflection and transmis-
sion amplitudes from the left (right) in the λ configuration,
and the unitarity of Sλ is ensured by Fλ = F†

λ .
Size effects. In the λ = 0 configuration the reflection am-

plitudes at the Fermi energy (E = 0) are

r0,l/r = −�2e(N−1)α ± 2iξ�SN−1 + |W |e−Nα

�2e(N−1)α − 2iξ�SN−1 − |W |e−Nα
, (8)

where ξ=2 j1 j2 j3 cos �( j2
1 − j2

2 ), Sn = sinh[nα], and exp[α]
= −| j2/ j1| for E = 0. For the most symmetric classes “BDI”
( j3 = 0) and “D” (� = π/2),

r0,l = r0,r =
(∣∣∣∣ j1

j2

∣∣∣∣
2N

− �2

j2
2

)(∣∣∣∣ j1
j2

∣∣∣∣
2N

+ �2

j2
2

)−1

. (9)

The reflection amplitude is negative for | j1/ j2| < γN with
γN = |�/ j2|1/N being the parameter indicating the finite-size
effect, and is positive otherwise, see Fig. 2(a). At | j1/ j2| =
γN , the reflection amplitude changes from −1 to +1, and the
transmission is peaked. This is distinct from the size effect on
the threshold for the emergence of edge states in the isolated

SSH chain, | j1/ j2| < N/(N + 1) [9], based on the Bloch spec-
trum. The size effect in an isolated chain is fully determined
by the chain length N , reducing the range for the edge states,
as compared to | j1/ j2| < 1. Within the scattering formalism,
the size effect is determined by both N and �. Importantly, for
|�/ j2| > 1, i.e., for γN > 1, the range of negative reflection
amplitudes can exceed that of the nontrivial phase. Then a
negative reflection amplitude gives a false indication of the
system topology. Nonetheless, there is a transmission peak,
with | j1/ j2| = γN , where the reflection passes through zero,
as seen in Fig. 2(b). That peak coincides with the one found
before [9] only for N → ∞, where γN = 1. Such a peak has
been proposed as a signal of TPT [4]. Its dependence on the
coupling with the leads casts doubts on this identification.

For the “AI” and “A” classes, the reflection amplitudes
r0,l �= r0,r in Eq. (8) are complex. The reflection phases ϕ0,l ≡
arg[r0,l ] and ϕ0,r ≡ arg[r0,r] vary smoothly with | j1/ j2|, and
the amplitudes do not cross zero around | j1/ j2| = 1, exclud-
ing the possibility of a transmission peak of unit magnitude.
Interestingly, this peak still appears near the topological axes
in Fig. 1(b), but decays away from these axes: It does not
imply a TPT.

The size effect can be removed in the λ = 1 configuration,
where at the Fermi energy

r1,l/r = ξ ∓ i�

ξ + i� coth[(N − 1)α]
. (10)

Thus, r1,l = −r1,r = − tanh[(N − 1)α] for ξ = 0. Since
exp[α] = −| j1/ j2| at E = 0, the left (right) reflection is neg-
ative (positive) for | j1/ j2| < 1, changing the sign of r1,l (r) as
required by the TPT’s criterion in the “BDI” or “D” class.
However, the different signs of r1,l (r) may lead to conflict-
ing predictions of the topology. For instance, r1,l = −1 for
| j1/ j2| < 1 indicates a topological phase, but r1,r = 1 corre-
sponds to a trivial phase. This contradiction can be traced to
the lack of a b site at the rightmost cell, making the chain an
“incomplete” one, for which it is impossible to define PH and
chiral symmetries, as opposed to the case of a two-sublattice
chain of N unit cells (details in Ref. [25]). Thus, without
preliminary knowledge of the ends’ configuration of a finite
chain, a one-sided reflection does not fully determine the
topology of a finite system. Peaks of the transmission are
predicted in many cases, but their relation to the TPT’s of
finite chains remains questionable.

Edge states in low-symmetry classes. The reflection am-
plitudes at E = 0 of the “AI” and “A” classes are complex
[Eq. (10)], and cannot jump from −1 to +1 upon changing
| j1/ j2| as for the “D” class. But examining the variations
of the reflection phases in Figs. 3(a) and 3(b) shows that a
negative reflection amplitude can appear at certain points in
the j1-E plane for these classes, depending on the endpoints’
configuration [25]. Figures 3(c) and 3(d) confirm that there are
edge states for which the reflection amplitudes are negative.

In general, the reflection amplitude is [25]

rλ,l/r = −1 − 2i(det[Fλ]e−iκ − �Fλ,11/22) sin κ

det[Fλ]e−2iκ − �tr[Fλ]e−iκ + �2
. (11)

When the scattering energy resonates with an eigenenergy
of the isolated chain, i.e., for det[Fλ(E )] = 0, a negative
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FIG. 3. Comparison of features of the “AI,” “D,” and “A” classes
(for AB fluxes marked on the panels) in the λ = 0 [(a) and (c)] and
λ = 1 [(b) and (d)] configurations. (a), (b) The phases’ distribution
of the reflection amplitudes off the two endpoints in the j1-E plane.
(c), (d) The energy spectra of isolated chains (N = 20) as functions
of j1. The sidebar indicates the extent of the states formed in the gap
(η0 is defined in the text). Tunneling amplitudes as in Fig. 2.

reflection on the left/right endpoint appears only if Fλ,11/22 =
0. However, in a finite chain, the two conditions are not com-
patible: for Fλ,nn = 0, det[Fλ] = −Fλ,12Fλ,21 ∝ exp[−2Nα]
which differs from zero, unless E is located in the energy gap
(exp[α(E )] < −1) and N → ∞. Thus, a left/right edge state
in the band gap of a sufficiently long isolated chain can coexist
with a negative reflection amplitude from that side.

In the λ = 0 configuration, this situation is realized for

F0,22 = 0 ∀ {
E = 0, j2

2 > j2
1

}
,

F0,11 = 0 ∀ {
E = ε2, ε2

2 + j2
2 > j2

1

}
, (12)

where ε2 ≡ ξ ( j2
1 − j2

2 )/( j2
2 + j2

3 ). The vanishing of F0,22 im-
plies the appearance of a negative reflection amplitude on the
right side [see Fig. 3(a)], corresponding to a (right) edge state
around E = 0 as shown in Fig. 3(c). The extent of the edge
states is quantified by η0 ≡ ∑5

i=1 |Vi|2 − ∑N
i=N−4 |Vi|2, with

the left (right) edge state characterized by η0 ∼ 1 (−1). The
energy ε2 at which F0,11 vanishes varies with � [25]. As it
increases, it “pushes” the system from the “AI” class to the
“A” one, passing through “D,” broadening the parameter range
available for ε2 compared to that for the right endpoint.

The persistent appearance of a zero-energy edge state at the
rightmost side of the chain in all four classes [see Fig. 3(c)] is
due to the protection of the subchiral symmetry possessed by
the b sites [30–32]. The chiral symmetry of the two-sublattice
chain is broken once j3 �= 0 (leading to a-a tunneling), ren-
dering the energy of the edge state located at the left side
to differ from zero, while the b sublattice still maintains the
chiral symmetry [31].

For the λ = 1 configuration, a right-side edge state appears
when

F1,22 = 0 ∀ {
E = ε1, ε2

1 + j2
1 > j2

2

}
, (13)

FIG. 4. (a) Energy spectra of a finite disordered isolated chain
(parameters as in Fig. 2) as functions of � in the λ = 0, 1 configu-
rations with j1 = 0.8 j2. The left and right edge states are indicated
by the solid and dashed lines. (b) The phases of the reflection am-
plitudes of the disordered chain in the �-E plane. The disorder is
modeled by adding to the tunneling amplitude j1 a random term,
δ j1,n = 0.3(wn − 0.5), with wn ∈ [0, 1] being a random number.

where ε1 ≡ ξ ( j2
1 − j2

2 )/( j2
1 + j2

3 ). Interestingly, for ξ = 0 the
right-side edge state appears for | j2/ j1| < 1, the opposite
range to that of the left side, | j2/ j1| > 1 [see Eq. (12)]. It fol-
lows that there is always a zero-energy state in the band gap, as
seen in Fig. 3(d). This results from the fact that for λ = 1, the
chain comprises two two-sublattice subchains, connected at
kink (see Fig. S4 in Ref. [25]). The left subchain is isomorphic
to a finite chain in the λ = 0 configuration. Interchanging the
roles of j1 and j2 in the right subchain shows that the two have
mirror symmetry with respect to the kink. This swapping of j1
and j2 explains the parameter ranges found above.

Scattering theory is also useful for probing the edge states
of a disordered chain belonging to a low-symmetry class.
Figure 4(a) portrays the energy spectra of an isolated disor-
dered chain coupled to leads in the two configurations λ =
0, 1. As seen, with the change of the AB flux, the energy of the
edge states is robust (“protected”) against a weak disorder. As
the symmetry class is varied, “AI”→ “A”→ “D”→ ... →“AI,”
there appear two edge states for λ = 0: A zero-energy edge
state located at the right side and a nonzero-energy one at
the opposite side. For λ = 1, j1 and j2 are not in the range
securing F1,22 = 0 [see Eq. (13)], and thus the zero-energy
(right) edge state disappears. The trend of variation of the left
and right edge states is reflected in the conditions required for
negative reflection amplitudes, see Fig. 4(b).

Conclusions. By studying the scattering properties of a fi-
nite triangle chain coupled to two semiinfinite leads, we could
follow the conditions for the appearance of edge states and
their relationships with the reflection amplitudes’ phases in
several symmetry classes, topological as well as nontopologi-
cal. In particular, we show that a negative reflection amplitude
can appear in nontopological classes, and can be correlated
with the appearance of edge states, even in the presence of
weak disorder, rendering these features as dubious indicators
of a topological transition. Our study compares in detail the
reflection amplitudes and edge states on both endpoints of a
finite system, emphasizing the dependence on the length of
the chain and the configuration of its coupling to the leads.
Since scattering properties can be measured on finite chains
(say, of cold atoms) at low temperatures, and as we have found
that (i) weak disorder is not detrimental for edge states and
(ii) by applying Aharonov-Bohm flux the system can “flow”
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in the space of symmetry classes, it is hoped that our study
will invoke more interest regarding the characterization of
topological materials via scattering properties.
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