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Tunable unconventional integer quantum Hall effect in two-dimensional Dirac-Weyl systems
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Two-dimensional (2D) Dirac semimetals possess intriguing properties due to their low-energy excitations
behaving like Dirac fermions. A hallmark of these materials is the unconventional integer quantum Hall effect
(IQHE), originating from the quantized Berry phase of Dirac fermions. Herein, using symmetry analysis, tight-
binding models, and numerical calculations, we reveal 2D Dirac-Weyl fermions in inversion symmetry breaking
systems that exhibit tunable unconventional IQHE. These unique 2D fermions are characterized by a pair of
helical edge states related by time-reversal symmetry T , which connect the projections of a Dirac point and two
separate Weyl nodes, indicating that the Dirac and Weyl points are interconnected as a whole. We show that
these 2D Dirac-Weyl fermions exhibit a tunable unconventional IQHE, featuring a Hall plateau sequence shifted
by three units of 2e2

h . The distance between adjacent quantized Hall plateaus can be adjusted by strain, which
is a unique feature that distinguishes from what is observed in graphene. Through first-principles calculations,
we identify an ideal candidate material for hosting 2D Dirac-Weyl fermions, offering a promising avenue for
experimental verification. Our findings open up a door to exploring unconventional IQHE in condensed-matter
systems beyond graphene.
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Introduction. In recent decades, two-dimensional (2D)
topological semimetals have gained significant research in-
terest due to distinctive properties stemming from their
low-energy excitations. The unique properties of their low-
energy excitations make them of fundamental interest and
have potential applications in low-dimensional electronics
[1–5]. So far, several categories of 2D topological semimet-
als have been extensively studied, with graphene being a
prime example. In the nonrelativistic limit, the low-energy
excitations of graphene mimic Dirac fermions with quantized
Berry phase, resulting in intriguing properties such as non-
trivial edge states, unconventional integer quantum Hall effect
(IQHE), Klein paradox, and twisted electronics [6–13], etc.

In the past few years, researchers have extensively explored
the properties of Dirac fermions in other 2D systems with non-
negligible spin-orbit coupling (SOC). To stabilize the crossing
points in the presence of SOC, nonsymmorphic symmetries
were introduced [14–22]. As in the three-dimensional (3D)
case, robust Weyl (two-fold degenerate) and Dirac (four-fold
degenerate) semimetals have been developed. In a 2D SOC
Weyl semimetal with broken inversion symmetry (P), there
are at least two Weyl nodes related by time-reversal symmetry
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(T ) in the Brillouin Zone (BZ), leading to edge states con-
necting the projections of two Weyl cones [23,24], as shown
in Fig. 1(a). In a 2D Dirac semimetal [14,19,25,26], each
Dirac fermion is formed by two Weyl points with opposite
Berry phase, resulting in vanishing Berry phase, but two edge
states connecting one pair of Dirac fermions [see Fig. 1(b)].
The unconventional IQHE, a hallmark of 2D Dirac fermions,
is particularly important for transport phenomena and mag-
netoelectronic devices [7], where the quantized Berry phase
shifts the positions of Hall plateaus compared to those in
conventional semiconductor interfaces. In bilayer graphene,
the Hall plateaus remain at standard integer positions, but the
zero-level plateau is missing [7,9,27–29]. So far, in semicon-
ductor interfaces as well as Dirac and Weyl systems, Hall
conductances are quantized to different values, but the dis-
tances between adjacent Hall plateaus are typically fixed. It
is a challenging and elusive task to manipulate the quantized
Hall conductances (filling factors or topological invariants)
with different intervals between neighboring quantum plateau
steps in condensed matter. Topological states, with their
intriguing properties, hold substantial potential for dissipa-
tionless electronics and fault-tolerant quantum computing.
The ability to easily manipulate topological invariants in real-
istic materials is crucial for advancing topological switching
applications [30,31].
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FIG. 1. Various 2D topological semimetals and their edge states.
Yellow and light blue colors represent cones with opposite Berry
phases. Green lines indicate the corresponding edge states. (a) Dirac
points in graphene without SOC or nonsymmorphic symmetry-
protected Weyl points with SOC. (b) Dirac points without P
symmetry connected by two edge states. (c) Dirac-Weyl fermions
linked by two edge states in a P symmetry-breaking system.

In this work, we introduce a robust 2D topological state,
referred to as the Dirac-Weyl fermion, which serves as a
promising platform to realize another type of IQHE and en-
ables manipulation of quantized Hall conductances. Through
the analysis of irreducible representations (IRs) in double
layer groups, we uncover six layer groups possessing such
fermions, as listed in Table I. A notable consequence of our
work is that helical edge states connect one Dirac node and
two Weyl nodes, resulting in a significant spin Hall conduc-
tivity, as depicted in Fig. 1(c). Moreover, our results show that
such fermion not only shifts the positions of Hall plateaus
by three units of 2e2

h (one unit in graphene) compared to
conventional semiconductor interfaces but also offers tun-
able quantized intervals between adjacent plateaus, signifying
the emergence of the tunable unconventional IQHE. Finally,
we identify an ideal candidate material for realizing these

TABLE I. Layer groups hosting Dirac-Weyl fermions. The third
and fourth columns are the abstract group (AG) and IRs, as indicated
in Ref. [33]. The last column shows the symmetry protection of the
Dirac-Weyl fermions.

Layer group Point group AG IRs Symmetry

P21212 (21) D2 G8
16 R9R9 {C̃2x, C̃2y}=0; T

Pba2(25) C2v {M̃x, M̃y}=0; T

P4212 (54) D4 G11
32 R6R7 {C̃2x, C̃2y}=0; T

P4bm (56) C4v {M̃x, M̃y}=0; T
P421m (58) D2d {C̃2x, C̃2y}=0; T
P4b2 (60) D2d {M̃x, M̃y}=0; T

FIG. 2. (a) A 2D square lattice with A (light blue solid circle)
and B (light blue hollow circle) sites located at the center and corner
of the cell, respectively. The black square represents the unit cell,
while the black and red curves illustrate the hopping parameters
ti, t so

i , t so′
i (i = 1, 2). (b) The corresponding 2D BZ and its projec-

tion onto the (100) edge. The large red dot represents the Dirac
point and the small blue dots represent the Weyl points in the BZ.
(c) The band structure without SOC along high-symmetry lines.
(d) The band structure with SOC along high-symmetry lines, with
high-symmetry points labeled by the eigenvalues of M̃y. (e) Edge
states computed from a semi-infinite ribbon along the x axis. (f) The
schematic diagram of helical edge states in the upper panel and the
spin texture related by T symmetry. The lower panel displays two
channels corresponding to two helical edge states with opposite spins
propagating in opposite directions. The p and σ denote momentum
and spin, respectively.

unique topological fermions, providing a promising platform
for investigating unique mesoscopic transport in electronic
systems [7] and for the potential application in topological
switching transistors [30,31].

Tight-binding models and symmetry arguments. Here, we
focus on a specific layer group in the main context, while other
layer groups are presented in the Supplemental Materials
(SM) [32]. First, we construct a four-band tight-binding
Hamiltonian for a square lattice with layer group P4bm
(No. 56). As shown in Fig. 2(a), the unit cell contains two
sites: A (light blue hollow circle) located at the corner
and B (light blue solid circle) located at the center. The
square 2D BZ, labeled by high-symmetry points and the
projected one-dimensional BZ on the (100) edge, are shown
in Fig. 2(b). Since the T symmetry is included, the symmetry
group becomes the gray group, which contains one four-fold
rotation symmetry C+

4z, two vertical-glide mirror planes,
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M̃x = {Mx|τ } and M̃y = {My|τ }, as well as T symmetry,
and its combination with all the spatial symmetry elements.
Here Mx and My are mirror reflections perpendicular to the x
and y axes, respectively, and τ = ( 1

2 , 1
2 , 0) is a half translation

of the lattice along the diagonal direction. Both M̃x and M̃y

interchange the positions of sites A and B. We assume that
each lattice site contains an s-like orbital with two spin states.
The basis are represented by |A,↑〉, |A,↓〉, |B,↑〉, and |B,↓〉,
and the symmetry generators are consequently represented as

C+
4z =

√
2

2
(σ0 − iσz ), M̃x = −iτxσx, T = −iσyK, (1)

where τi and σi (i = x, y, z) are Pauli matrices describing the
lattice and spin degrees of freedom, respectively, and K is the
complex conjugate operator. The derived tight-binding model
is given by

H = t1(coskx + cosky) + 2t2cos
kx

2
cos

ky

2
τx

+ t so
1 (sinkxσy − sinkyσx ) + t so′

1 τz(sinkxσx + sinkyσy)

+ 2t so
2 τx

(
sin

kx

2
cos

ky

2
σy − cos

kx

2
sin

ky

2
σx

)

+ 2t so′
2 cos

kx

2
cos

ky

2
τyσz, (2)

where ti (i = 1, 2) are hopping parameters, t so
i and

t so′
i (i = 1, 2) are SOC terms, and their corresponding bonds

are shown in Fig. 2(a). A set of suitable values is chosen as
t1 = −0.1, t2 = −1.8, t so

1 = −0.1, t so′
1 = −1.3, t so′

2 = −1,
t so′
2 = −0.05, which can perfectly describe the properties of

Dirac-Weyl fermions, including their band structure, edge
states, and Landau levels. If the Hamiltonian described in
Eq. (2) does not contain SOC, the energy bands form two
nodal lines that are two-fold degenerate (four-fold degenerate
if spin is considered), as depicted in Fig. 2(c). These nodal
lines result from the antiunitary operators M̃xT and M̃yT at
the boundary of the BZ. Here, we focus on the SOC effect,
and the corresponding band structure is shown in Fig. 2(d).
The nodal lines split into one four-fold Dirac point located at
the corners of the BZ and two pairs of two-fold Weyl points
along the �-X1 and �-X2 paths, resulting in a 2D Dirac-Weyl
fermion. The Dirac point is denoted by a large red dot, and the
Weyl points are indicated by small black dots in Fig. 2(b). Our
symmetry analysis reveals that 2D Dirac-Weyl fermions are
only determined by the four time-reversal invariant momen-
tum (TRIM) points, namely �, X1, X2, and M. At these TRIM
points, the selected operators are M̃x, M̃y, and T , but they
respect different commutation relations at each TRIM point.

Firstly, we choose the eigenvalues of M̃y to label the
different states at the TRIM points, as shown in Fig. 2(d).
At the M point, the three relations {M̃x,M̃y}=0, T 2 = −1,
and (T M̃x)2 = −1 ensure the presence of a four-fold Dirac
node. Additional details are available in the SM [32]. In par-

ticular, the anticommutation relation between M̃x and M̃y

leads to two-fold degeneracies, and the two states are always
accompanied by their Kramers partners owing to T 2 = −1
and (T M̃x)2 = −1, ensuring the four-fold Dirac point, as
seen in the band structure close to M in Fig. 2(d). When

moving to the X1 point, the operators remain unchanged, but
the commutation relation between M̃x and M̃y changes to
[M̃x,M̃y]=0, resulting in doubly degenerate states at X1.
At �, {M̃x,M̃y}=0 is maintained, but the product of T M̃x

becomes (T M̃x)2 = 1. Thus, only two-fold degeneracies ex-
ist at �. Between � and X1 points, the eigenvalues ±i evolve
into ±1 at X1 because of the half-lattice translation of M̃y,
causing band switching and the formation of Weyl points
between � and X1. To verify the presence of the Dirac point,
we construct an effective model at the M point, which is
considered as the direct sum of two Weyl equations with
opposite chirality (see details in the SM [32]). Our symmetry
arguments show that the Dirac-Weyl fermions as a whole
are only determined by the symmetry-operator relations at
the four TRIM points. This provides a powerful recipe to
find Dirac-Weyl fermions in other layer groups. The layer
groups that possess 2D Dirac-Weyl fermions are summarized
in Table I. We provide a general symmetry analysis and the
Hamiltonians for these layer groups to generate the Dirac-
Weyl fermions in the SM [32].

Next, we examine the properties of 2D Dirac-Weyl
fermions. By using the Green’s function method on a semi-
infinite ribbon model, we show the existence of edge states in
Fig. 2(e). There is one pair of helical edge states with opposite
spin textures located at opposite momenta, connecting the
projections of one Dirac point and two Weyl points (refer to
the spin texture of edge states in Fig. S1 in the SM [32]).
Related by T symmetry, the two helical edge states with oppo-
site spin are degenerate and propagate in opposite directions,
potentially leading to a robust large spin Hall conductivity.
These spin-momentum locked-edge states offer the possibility
of utilizing low-dissipation electronic devices, as illustrated
in Fig. 2(f).

Laudau levels and tunable unconventional IQHE. To gain
a deeper understanding of Dirac-Weyl fermions, we exam-
ine their Landau levels and Hall conductance using the
Hamiltonian in Eq. (2). We apply a uniform external mag-
netic field perpendicular to the plane of the 2D square lattice.
Further details of the calculations can be found in the SM
[32]. The Landau levels near the Dirac(Weyl) nodes can
be expressed as E (nD(W ) ) = √

2|nD(W )|νD(W )/lB, where lB =√
c/eB is the magnetic length, νD(W ) is the Fermi velocity, and

nD(W ) is the Landau level index [6]. The subscripts D and W
denote the Dirac and Weyl nodes in our model, respectively.
The calculated Landau level of Dirac-Weyl fermions is char-
acterized by a level anomaly at nD(W ) = 0 due to its linear
dispersion, as shown in Figs. 3(a) and 3(c). We calculate the
Hall conductance using the Landauer-Buttiker formula for a
six-terminal device, which takes an unconventional form, as
given in

σxy(EF ) = 2e2

h
[2nD(EF ) + 1] + 2e2

h
[4nW (EF ) + 2], (3)

where 2e2/h represents the unit of conductance considering
the spin degree of freedom. Interestingly, when the Fermi
velocities of Dirac and Weyl fermions are equal (νD = νW ),
the first Hall conductance is shifted by 3 units of 2e2/h,
and the adjacent Hall plateaus become 6 units of 2e2/h. The
Hall conductance of Dirac-Weyl fermions possess a reduced
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FIG. 3. (a) Landau levels of a ribbon under an external verti-
cal magnetic field and (b) the corresponding Hall conductance of
the six-terminal Hall bar with t2 = −0.5. For simplicity, the other
parameters used in the calculations are t1 = 0, t so

1 = 0, t so′
1 = −1.3,

t so′
2 = −1, t so′

2 = 0. The inset illustrates the schematic diagram of the
six-terminal Hall bar used to determine the Hall conductance nu-
merically. (c) Landau levels of the ribbon under an external vertical
magnetic field and (d) the corresponding Hall conductance of the
six-terminal Hall bar with t2 = −1.8. The remaining parameters are
unchanged from (b). The inset magnifies the region around nD = 1
of the Hall conductance.

form σxy = 2ne2/h with n = ±3,±9,±15, . . ., as shown in
Figs. 3(b) and 3(d). These features differ from the unconven-
tional quantization in graphene, where the quantum plateau
steps are n = ±1,±3,±5, . . . and in bilayer graphene, where
the Hall quantum plateau steps are n = ±2,±4,±6, . . .. This
is due to the multiple valleys in the model, as seen in the Hall
conductance given by Eq. (3). The first term is assigned to
the Dirac node with a two-valley degeneracy, and the second
term is attributed to the Weyl nodes, taking into account the
quadruple valley degeneracy. Therefore, the Hall conductance
intervals are featured with 6 units of 2e2/h.

As discussed above, the Dirac-Weyl fermions form a
coherent system that goes beyond the coupling of two Weyl
fermions or a semi-Dirac fermion [9,34]. The Fermi velocities
of Dirac and Weyl fermions can be controlled by adjusting
the strength of the nearest-neighbor hopping term t2. When
the Fermi velocities of Dirac and Weyl fermions are different,
the Landau level intervals are altered, as shown in Figs. 3(a)
and 3(c). Consequently, the Hall conductance exhibits
additional plateaus with tunable intervals. Specifically,
when the Fermi velocity of the Dirac cone is greater
than that of the Weyl cones, the Hall conductance of the
Dirac-Weyl fermions exhibits quantum plateau steps as
n = ±3,±5,±9,±11,±15 . . ., as shown in Fig. 3(b). On
the other hand, when the Fermi velocity of the Dirac cone
is smaller than that of the Weyl cones, the Hall conductance
plateau steps becomes n = ±3,±7,±9,±13,±15 . . ., as
shown in Fig. 3(d). This manipulation can be achieved
through experiments that induce strain or deformation. The

FIG. 4. (a) Monolayer structure of AgTe2. Silver and blue
spheres represent Ag and Te atoms, respectively. The unit cell is
enclosed in a black square box. (b) Band structure of AgTe2 with
SOC obtained by ab initio calculations.

slight energy separation and quantum interference between
the Landau levels of the Dirac and Weyl cones are responsible
for the fluctuations in the Hall conductance curve [35]. In
contrast, the Hall conductance of graphene depends solely
on an external strong magnetic field [7], and does not allow
for strain-controlled quantized Hall conductance due to the
degeneracy of Dirac cones, which hinders separate velocity
adjustments for different cones. Our Dirac-Weyl fermion
system introduces an innovative approach for manipulating
quantized Hall plateaus (topological invariants) by utilizing
external strain instead of a strong magnetic field.

Materials realization. Based on our first-principles cal-
culations, we have identified monolayer square AgTe2 as a
promising 2D Dirac-Weyl semimetal candidate. This mate-
rial belongs to the layer group P421m and consists of three
atomic layers. The top and bottom layers are composed of Te
atoms, while the middle layer contains Ag atoms, as shown
in Fig. 4(a). The optimized lattice parameters and Wyckoff
positions of Ag and Te atoms can be found in Table I of the
SM [32]. To verify the stability of the monolayer AgTe2, we
calculate its phonon spectrum and find no imaginary frequen-
cies. Further details on the phonon spectrum analysis can be
found in the SM [32].

The electronic band structure of AgTe2 with SOC is shown
in Fig. 4(b). There are two pairs of two-fold Weyl points
located along the �-X1 and �-X2 lines with identical energies.
Additionally, a single four-fold degenerate Dirac point exists
near the M point, forming the Dirac-Weyl fermions in the
vicinity of the Fermi level. According to the abstract group
[33], the little group at the M point has a four-dimensional
(4D) IR formed by two 2D IRs under T symmetry, thereby
ensuring the presence of the four-fold Dirac point. On the
high-symmetry lines, the 4D IR splits into two 2D IRs, which
is consistent with our symmetry analysis and tight-binding
model. Additionally, by applying biaxial strain, we can adjust
the Fermi velocities of Dirac and Weyl cones in AgTe2, with
summarized results in Table S2 and Fig. S4 in the SM [32].
These findings indicate that biaxial strain can reverse the
velocities of Dirac and Weyl nodes, potentially enabling the
experimental realization of tunable unconventional IQHE in
the realistic material AgTe2.

Conclusions. In summary, using symmetry analysis and
numerical calculations, we have provided a recipe for realiz-
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ing 2D Dirac-Weyl fermions in various layer groups without
P symmetry. Moreover, the 2D Dirac-Weyl fermions serving
as a promising platform can realize new types of uncon-
ventional IQHE, in which the quantized Hall conductances
can be manipulated by strain and deformation. Using first-
principles calculations, we identify monolayer AgTe2 as an
ideal material for experimental investigations of this phe-
nomenon. Our findings pave the way for further exploration
into tunable unconventional IQHE, presenting significant
opportunities for advances in magnetoelectronic device tech-
nology. Additionally, our results lay the groundwork for the
development of topological switching applications, akin to
transistor switching, but facilitated through innovative strain
engineering.
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