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Surface Dirac cones in three-dimensional topological insulators have generated tremendous and enduring
interest for almost two decades owing to hosting a multitude of exotic properties. In this work, we unveil the
existence of two types of anomalous surface Dirac cones in three-dimensional Dirac semimetals. These surface
Dirac cones are located at the surfaces perpendicular to the rotation symmetry axis and are found to display
a number of features remarkably different from that in topological insulators. The most prominent one is the
absence of a singular Dirac node. In addition, the spin textures of these nodeless surface Dirac cones are found
to exhibit a unique two-phase-angle dependence, leading to the presence of two different winding numbers in
the orbital-resolved spin textures, which is rather different from the well-known spin-momentum locking in
topological insulators. Despite the absence of a Dirac node, we find that the two types of surface Dirac cones
are also characterized by quantized π Berry phases, even though one of them takes a quadratic dispersion.
In the presence of time-reversal-symmetry-breaking fields, we find that the responses of the surface and bulk
Dirac cones display an interesting bulk-surface correspondence. The uncovering of these nodeless surface Dirac
cones broadens our understanding of the topological surface states and bulk-boundary correspondence in Dirac
semimetals and also lays down the basis for studying unconventional Dirac physics.
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Since the rise of graphene and topological insulators (TIs),
the exploration of Dirac-cone band structures has continued
to be at the frontier of a number of disciplines [1–13]. The
great interest in Dirac-cone band structures lies in many as-
pects, such as their relativistic linear dispersions [14], their
fundamental connection with topology [15–17], and being the
sources of a diversity of unconventional responses [18–25].
The Dirac cones can be roughly classified into two classes,
gapped or gapless, with the former (latter) effectively de-
scribed by a massive (massless) Dirac Hamiltonian [26,27]. A
fundamental difference between them is that the gapless Dirac
cones carry a symmetry-protected band degeneracy (known
as Dirac node or point) that acts as a topological charge.
The discovery of an odd number of two-dimensional (2D)
gapless Dirac cone on the surface of a 3D strong TI [28–32]
has attracted particular interest since it not only provides an
exception to the fermion-doubling problem [33–35], but also
realizes a class of unconventional metals with many intriguing
properties. Notable properties associated with a gapless sur-
face Dirac cone (SDC) include the quantized π Berry phase
that can lead to weak antilocalization in transport [36,37] and
the spin-momentum-locking Fermi surface [38,39] that can
create non-Abliean Majorana zero modes when superconduc-
tivity is brought in [40–42]. Moreover, when the gapless SDC
is gapped by certain time-reversal symmetry (TRS) breaking
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field, half-integer quantum Hall effects as well as topological
electromagnetic effects can be observed [43–46].

TIs build a common picture through the bulk-boundary
correspondence that the 2D gapless SDCs are decedent from
the 3D gapped Dirac cones in the bulk [47,48]. However, this
does not mean that gapless SDCs can only appear in TIs. As
an intermediate phase between TIs and normal insulators, 3D
Dirac semimetals (DSMs) with band-inverted structure and
rotation symmetry in fact can also support an odd number of
2D gapless Dirac cones on a given surface. This fact was first
noticed when Kargarian et al. revealed that the Fermi arcs in
DSMs could deform into Fermi loops [49], which implies the
possibility of the existence of SDCs in DSMs. Later Yan et al.
analytically derived the low-energy Hamiltonian describing
the surface states and showed how the gapless SDCs arise
[50]. All these studies, however, are restricted to the side
surfaces parallel to the rotation axis where the bulk Dirac
nodes are located, owing to the primary interest in Fermi arcs
and the fact that Fermi arcs only exist on the surfaces where
the projections of the bulk Dirac nodes do not overlap [51].

Recently, a remarkable experiment reported the observa-
tion of 2D gapless SDCs in some iron-based superconducting
compounds with 3D bulk Dirac nodes protected by C4z rota-
tion symmetry [52]. Notably, the 2D gapless Dirac cones are
located on the surface where the projections of the bulk Dirac
nodes overlap, revealing that the largely overlooked top and
bottom surfaces perpendicular to the rotation axis also carry
interesting topological surface states in DSMs. Inspired by
this experiment, we consider two representative types of 3D
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FIG. 1. Schematic diagrams of three types of gapless SDCs.
(a) Linear SDC in TIs; the Dirac node (a Kramers degener-
acy) denoted by a solid dot is enforced by TRS. Panels (b) and
(c) are respectively the linear and quadratic nodeless SDCs in the
opposite-parity and same-parity DSMs. The open circles in (b) and
(c) represent the absence of Dirac node.

DSMs protected by C4z rotation symmetry and explore the
topological surface states on the top and bottom surfaces. Re-
markably, we find that the gapless Dirac cones found on these
surfaces display a number of features sharply distinct from the
SDCs in TIs. The most evident difference is the absence of
Dirac node in them, as illustrated in Fig. 1. The spin textures
of these nodeless SDCs are found to have a unique two-phase-
angle dependence enforced by a subchiral symmetry, rather
different from the one-phase-angle dependence exhibited in
TIs. Furthermore, despite the absence of Dirac node, we find
that the two types of SDCs are also characterized by quantized
π Berry phases, even though one of them has a quadratic
dispersion. In the presence of TRS-breaking fields, we find
that the responses of the surface and bulk Dirac cones display
an interesting bulk-surface correspondence.

Linear nodeless SDCs in the opposite-parity DSM. DSMs
are materials whose conduction and valence bands cross at
some isolated points (Dirac nodes) in the Brillouin zone
[53–59]. Depending on whether the band crossings occur
between bands with opposite parity or same parity, DSMs can
be roughly divided into two classes [60]. For the convenience
of discussion, we dub the class involving bands with opposite
(same) parity as opposite-parity (same-parity) DSMs.

Let us first consider the opposite-parity DSM. Focusing
on a cubic-lattice realization, the minimal model is given by
[55,61]

H(k) = (m − t cos kx − t cos ky − tz cos kz )σzs0

+λ(sin kxσxsz − sin kyσys0)

+η1(ks) sin kzσxsx + η2(ks) sin kzσxsy, (1)

where ks = (kx, ky) denotes the xy-plane momentum,
η1(ks) = η1(cos kx − cos ky), η2(ks) = η2 sin kx sin ky, σi

and si are Pauli matrices in orbital and spin space, and σ0

and s0 are the corresponding identity matrices. For notational
simplicity, the lattice constants are set to unity throughout.
Without loss of generality, below we consider all parameters
in Eq. (1) to be positive and |m − 2t | < tz < m. Accordingly,
a band inversion occurs at the time-reversal invariant
momentum � = (0, 0, 0) and there are two Dirac nodes
located at kD,± = ±(0, 0, kD) with kD = arccos(m − 2t )/tz.

It is noteworthy that the existence and the locations of the
bulk Dirac nodes do not depend on the two η terms. However,
as we shall show below, the η terms have rather remarkable
effects on the topological surface states.

When η1 and η2 vanish, the Hamiltonian (1) at a given
kz is characterized by a Z2 invariant [5] and describes a 2D
TI for |kz| < |kD| and a normal insulator for |kz| > |kD|. For
this situation, the DSM can be regarded as a stacking of 2D
TIs in the z direction. Accordingly, the surface states only
exist on the side surfaces and the isoenergy contours of these
surface states form the so-called Fermi arcs. Once η1 and η2

become finite, the dispersions of the surface states on the side
surfaces change dramatically [49,50,62–64], leading to the
change of the Fermi-arc connectivity and the rise of SDCs that
can have nontrivial interplay with superconductivity [65–67].
Furthermore, it has been recognized that the η terms can
also give rise to gapless hinge states [68], a hallmark of
second-order topology. These findings have one after another
deepened our understanding on the bulk-boundary correspon-
dence of DSMs. Now we show that our understanding remains
incomplete.

To intuitively show that 2D gapless Dirac cones also exist
on the top and bottom surfaces, we first introduce a set of
momentum-dependent Pauli matrices, namely,

s̃x = cos θks sx + sin θks sy,

s̃y = − sin θks sx + cos θks sy,

s̃z = sz, (2)

where θks = arg[η1(ks) + iη2(ks)]. In this work, two phase
angles will be involved—one is θks and the other is φks =
arg(sin kx + i sin ky). When considering the continuum coun-
terpart of the lattice Hamiltonian, these two phase angles
are implicitly assumed to take the corresponding continuum
forms [e.g., φks = arg(kx + iky)].

It is easy to verify that this set of Pauli matrices also satis-
fies [s̃i, s̃ j] = 2iεi jk s̃k and {s̃i, s̃ j} = 2δi j s0 for i, j ∈ {x, y, z}.
Using them, the Hamiltonian can be rewritten as

H(k) = (m − t cos kx − t cos ky − tz cos kz )σzs0

+ λ(sin kxσxs̃z − sin kyσys0)

+ η(ks) sin kzσxs̃x, (3)

where η(ks) =
√

η2
1(ks) + η2

2(ks). The above form resembles
the minimal model for 3D TIs [47], suggesting the existence
of gapless Dirac cones on the z-normal surfaces if η(ks) is
nonzero. In this form, it is also easy to see that there exists
a unitary operator anticommuting with the Hamiltonian, i.e.,
{C,H} = 0, with C = σxs̃y. Conventionally, such an anticom-
mutation relation suggests that the Hamiltonian has chiral
symmetry. However, this is not the case here, simply because
the operator C is not a constant operator but depends on partial
components of the momentum vector. Such an algebraic prop-
erty was recently discussed and dubbed subchiral symmetry in
Ref. [69]. An important conclusion from Ref. [69] is that the
subchiral symmetry operator itself admits topological charac-
terization and its topological property will impart into the spin
texture of the topological boundary states. Apparently, here
s̃y displays a nontrivial winding as ks goes around the origin
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once, indicating the nontrivialness of the subchiral symmetry
operator.

Now let us proceed to derive the low-energy Hamiltonians
describing the gapless Dirac cones on the z-normal surfaces.
The methods are well developed [26]. As usual, the first step is
to do a low-energy expansion of the bulk Hamiltonian around
the band-inversion momentum and decompose the Hamilto-
nian into two parts [70], i.e., H = H0 + H1, with (see more
details in the Supplemental Material [71])

H0(k) =
[

M(ks) + tz
2

k2
z

]
σzs0 + γ (ks)kzσxs̃x,

H1(k) = λ(kxσxs̃z − kyσys0), (4)

where M(ks) = m − 2t − tz + t (k2
x + k2

y )/2 and γ (ks) =
1
2

√
η2

1(k2
x − k2

y )2 + 4η2
2k2

x k2
y . Considering a half-infinity sys-

tem occupying z � 0 (z � 0), replacing kz → −i∂z, and
solving the eigenvalue equation H0(ks,−i∂z )ψα (x, y, z) = 0
under the boundary conditions ψα (z = 0) = 0 and ψα (z →
∞) = 0 [ψα (z → −∞) = 0], one will obtain two solutions
corresponding to the zero-energy boundary states at the bot-
tom (top) surface. Their explicit forms read [72]

ψa
α (x, y, z) = N sin(κ1z)e−κ2|z|ei(kxx+kyy)χa

α, (5)

where the superscript a = {t, b} labels the top and bottom
surfaces, κ1 =

√
−2tzM(ks) − γ 2(ks)/tz, κ2 = γ (ks)/tz, N is

a normalization constant, χ t
α satisfy σys̃xχ

t
α = χ t

α , and χb
α sat-

isfy σys̃xχ
b
α = −χb

α . The normalizability of the wave functions
determines the region hosting boundary states, which turns out
to be the region bound by the projection of the band-inversion
surface, i.e., M(ks) < 0. Noteworthily, the point ks = 0, how-
ever, needs to be excluded since γ (ks) vanishes at this point.
This result is consistent with the fact that the effective 1D
Hamiltonian H(0, 0, kz ) is gapless and the projections of the
two bulk Dirac nodes are exactly located at this surface time-
reversal invariant momentum [55].

The low-energy Hamiltonians for the top and bottom sur-
faces are obtained by projecting H1(k) onto the Hilbert space
spanned by the corresponding two zero-energy eigenstates.
Since [σys̃x, C] = 0, we can choose χ t/b

α to be the eigenstates
of the subchiral symmetry operator. Without loss of gen-
erality, we choose χ t

± = (|σy = 1, s̃x = 1〉 ± |σy = −1, s̃x =
−1〉)/

√
2 and χb

± = (|σy = 1, s̃x = −1〉 ∓ |σy = −1, s̃x =
1〉)/

√
2, so that Cχ

t/b
± = ±χ

t/b
± . Here |σy = ±1, s̃x = ±1〉

stands for |σy = ±1〉 ⊗ |s̃x = ±1〉, with σy|σy = ±1〉 =
±|σy = ±1〉 and s̃x|s̃x = ±1〉 = ±|s̃x = ±1〉. Accordingly, in
the basis of (ψ t

−, ψ t
+)T or (ψb

+, ψb
−)T , the low-energy surface

Hamiltonians are found to take the off-diagonal form

Ht/b(ks) = λ(kxρy − kyρx ), (6)

where ρi denote Pauli matrices acting on the two eigenstates
of the subchiral symmetry operator. Apparently, the surface
Hamiltonians take the exactly same form as in TIs [47]. How-
ever, here the linearly dispersive SDCs have two fundamental
differences. First, as discussed above, surface states are absent
at ks = 0. This fact indicates the absence of Dirac node in
this class of SDCs. Second, here the basis functions are the
eigenstates of the subchiral symmetry operator, which them-
selves carry nontrivial topological properties as the subchiral

symmetry operator displays a nontrivial winding with respect
to the momentum. As will be shown below, this property has
nontrivial effects on the spin texture and Berry phase.

To determine the spin texture and Berry phase, we need
to first determine the spinor part of the wave functions for
the SDCs. To be specific, let us focus on the upper band of
the top-surface Dirac cone for a detailed discussion (the spin
texture for the bottom-surface Dirac cone is just the opposite
and the Berry phase is the same). According to the form of
Ht in Eq. (6), it is easy to find that the eigenstate for the
upper band is (1, ieiφks )T /

√
2. By further taking into account

the nontrivial basis functions, the corresponding spinor takes
the form

|u(ks)〉 = 1√
2

(χ t
− + ieiφks χ t

+). (7)

Because the spin and orbital are entangled by spin-orbit cou-
pling, we consider the orbital-resolved spin texture [73–75],
which are given by s̄(o± )

i (ks) = 〈u(ks)|(σ0 ± σz )si|u(ks)〉/2,
where the two superscripts o+ and o− label the two orbitals
(here we ignore the constant factor h̄/2 connecting the Pauli
matrices to the spin operators). A straightforward calculation
obtains

s̄(o± )
x (ks) = ±[sin(θks ∓ φks )]/2,

s̄(o± )
y (ks) = ∓[cos(θks ∓ φks )]/2,

s̄(o± )
z (ks) = 0. (8)

The spin polarizations are aligned in the surface plane. This
is similar to the spin textures of the SDCs in TIs. However,
here a striking difference is that the spin textures depend on
two phase angles rather than one as in TIs [75]. Particularly,
the angle θks originates from the subchiral symmetry and will
change 4π when the polar angle of the surface momentum
changes 2π . Due to the unique two-phase-angle dependence,
the two orbital-resolved spin textures display a remarkable
property, namely, their spin polarizations wind one and three
times, respectively, when ks winds the origin once, as shown
in Figs. 2(a)–2(c). This is rather different from the TI for
which only one time of winding will exhibit [6,7].

Also based on |u(ks)〉, the Berry connection is given by
[76]

Aα (ks) = −i〈u(ks)|∂kα
u(ks)〉 = 1

2∂kα
(θks + φks ), (9)

where α = {x, y}. Since θks will wind 4π and φks will wind
2π when ks winds 2π , it indicates that one particle will
accumulate a π (mod 2π ) Berry phase when it goes around
the surface Fermi loop once. This important result indicates
that the quantized π Berry phase remains intact even though
the singular Dirac node is absent in the SDCs.

Quadratic nodeless SDCs in the same-parity DSM. Let us
move our attention to the same-parity DSM. Also focusing on
a cubic-lattice realization, the minimal model is given by [61]

H(k) = (m − t cos kx − t cos ky − tz cos kz )σzs0

+λ sin kz(sin kxσxs0 − sin kyσysz )

+η1(ks)σysx + η2(ks)σysy. (10)

Without loss of generality, below we again consider all param-
eters to be positive and |m − 2t | < tz < m so that the two bulk
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FIG. 2. Energy spectra at ky = 0 for a sample with open (pe-
riodic) boundary conditions in the z (x and y) direction and spin
textures of the top-surface Dirac cones. The solid red lines in (a) and
(d) show the existence of linear and quadratic SDCs in the opposite-
parity and same-parity DSMs, respectively. The orbital-resolved spin
textures in (b) and (c) [(e) and (f)] are plotted on the isoenergy
contour of the SDC illustrated by the red dashed line corresponding
to E = 0.375 (0.038) in (a) [(d)]. Common parameters are m = 3,
t = tz = 2, and λ = 1. η1 = η2 = 5 in (a)–(c) and η1 = η2 = 0.5 in
(d)–(f).

Dirac nodes are also located at kD,±. Similar to the first model,
this model also supports interesting gapless topological states
on the side surfaces and hinges [68]. However, much less is
known about the top and bottom surfaces. Below we explore
the surface states on these two surfaces.

The first thing to note is that the Hamiltonian (10) also has
a subchiral symmetry, with the symmetry operator given by

C̃ = sin φksσxs0 + cos φksσysz. (11)

Also using the continuum-model approach, we find that the
wave functions of surface states on the top and bottom sur-
faces are given by

ψ̃a
α (x, y, z) = Ñ sin(κ̃1z)e−κ̃2|z|ei(kxx+kyy)χ̃a

α, (12)

where κ̃1 =
√

−2tzM(ks) − λ2k2
s /tz, κ̃2 = λ|ks|/tz, and χ̃a

α

satisfy C̃χ̃a
α = αχ̃a

α with α = ±. The normalizability of the
wave functions also suggests that the region hosting surface
states corresponds to M(ks) < 0 but with the point ks =
0 excluded. Without loss of generality, we choose χ̃ t

± =
|σ± = ±1, sz = ±1〉 and χ̃b

∓ = |σ± = ∓1, sz = ±1〉, where
σ± = sin φksσx ± cos φksσy. In the basis of (ψ̃ t

+, ψ̃ t
−)T or

(ψ̃b
−, ψ̃b

+)T , the low-energy surface Hamiltonians are found to
take the off-diagonal form

Ht/b(ks) = ±
(

0 η−(ks)eiφks

η+(ks)e−iφks 0

)
, (13)

where + (−) refers to the top (bottom) surface and η±(ks) =
− η1

2 (k2
x − k2

y ) ± iη2kxky. It is easy to see that the energy dis-
persions of the surface Hamiltonian are given by E±(ks) =
±√

η+(ks)η−(ks), which are quadratic rather than linear, as
shown in Fig. 2(d). It is worth emphasizing that the Dirac node
is also absent for this class of quadratic SDCs.

Again let us focus on the upper band of the top-surface
Dirac cone for a discussion of its spin texture and Berry phase.
The corresponding spinor part of the wave function is found
to take the form

|ũ(ks)〉 = 1√
2

(
χ̃ t

+ + ei(θks −φks )χ̃ t
−
)
. (14)

Based on |ũ(ks)〉, one finds

s̄(o± )
x (ks) = [cos(θks ∓ φks )]/2,

s̄(o± )
y (ks) = [sin(θks ∓ φks )]/2,

s̄(o± )
z (ks) = 0. (15)

The two orbital-resolved spin textures also depend on two
phase angles and display different windings, as shown in
Figs. 2(e) and 2(f). The Berry connection is given by

Aα (ks) = −i〈ũ(ks)|∂kα
ũ(ks)〉 = 1

2∂kα
(θks − φks ). (16)

Similarly, this result indicates that the particle will accumulate
a π (mod 2π ) Berry phase when it goes around the surface
Fermi loop once. This is a remarkable result since usually a
quadratic cone is accompanied with a zero (mod 2π ) Berry
phase [77]. From Eq. (16), it is apparent that the π Berry phase
is attributed to φks , indicating its origin from the subchiral
symmetry rather than the quadratic band structure.

Response to TRS-breaking fields. It is known that the SDCs
in TIs are protected by TRS and the lift of TRS can gap
the SDCs [43,78]. On the other hand, it is known that TRS-
breaking fields will split one bulk Dirac node into two Weyl
nodes [9]. Here the SDCs are nodeless and therefore are not
protected by TRS. To open a gap to the SDCs, mathematically
a Dirac mass term of the form mDρz is required to enter into
the surface Hamiltonian (6) or (13). As the basis functions
for the surface Hamiltonians are eigenstates of the subchiral

(a) (b)

(c) (d)xk xk

xk xk

E E

E E

FIG. 3. Energy spectra at ky = 0 for a sample with open bound-
ary conditions only in the z direction (lattice sites Nz = 400).
Common parameters are m = 4, t = tz = 2, and λ = 1. The values
of (η1, η2, B1, B2) in (a), (b), (c), and (d) are (5,5,0.2,0), (5,5,0,0.2),
(1,1,0.2,0), and (1,1,0,0.2), respectively. Panels (a) and (b) corre-
spond to the opposite-parity DSM and (c) and (d) refer to the
same-parity DSM.
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symmetry operators, a necessary but not sufficient condition
to generate the Dirac mass term is that the TRS-breaking
fields must commute with the subchiral symmetry operator.
To demonstrate the above arguments, we consider two types
of Zeeman splitting fields, i.e., B1σ0sz and B2σzsz. For the
opposite-parity DSM, B1σ0sz preserves the subchiral symme-
try, while B2σzsz does not. The situation is just the opposite
for the same-parity DSM. As shown in Fig. 3, the results show
that B2σzsz gaps the SDCs in the opposite-parity DSM, while
B1σ0sz gaps the SDCs in the same-parity DSM, which is con-
sistent with the above analysis. Interestingly, we note that, no
matter whether the SDCs are gapped or not, the surface states
are always connected with the bulk nodes, either at E = 0 or
±B1 (±B2), which can be viewed as a kind of bulk-surface
correspondence. Furthermore, for the gapless cases shown in
Figs. 3(a) and 3(d), we note that the Zeeman fields flatten the
SDCs, which may have nontrivial interplay with interactions.

Discussions and conclusions. We have unveiled the exis-
tence of two types of nodeless SDCs with linear and quadratic
dispersion, quantized π Berry phases and unconventional

spin textures, expanding our understanding of the topological
surface states and bulk-boundary correspondence in DSMs.
Our predictions are of general relevance as our theory is
based on two generic classes of DSMs. In experiments, the
dispersion of the SDCs and the concomitant unconventional
spin textures can be directly detected by using spin-resolved
and angle-resolved photoemission spectroscopy [39,52,79–
83]. To conclude, our work exemplifies that the subchiral
symmetry can enrich the properties of the topological bound-
ary states and our findings diversify the types of SDCs with
fascinating properties, opening directions for future studies of
unconventional Dirac physics.
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