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Ergodic inclusions in many-body localized systems
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We investigate the effect of ergodic inclusions in putative many-body localized systems. We consider the
random field Heisenberg chain, which is many-body localized at strong disorder and we couple it to an ergodic
bubble, modeled by a random matrix Hamiltonian. Recent theoretical work suggests that localized systems are
unstable to ergodic bubbles, driving the delocalization transition. We tentatively confirm this by numerically
analyzing the response of the on-site purities to the insertion of the bubble. For a range of intermediate disorder
strengths, this response decays very slowly, or not at all, with increasing distance to the bubble. This suggests
that at those disorder strengths, the system is actually delocalized in the thermodynamic limit. However, the
signal is quite weak and artefacts in the numerics cannot be ruled out conclusively.
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Introduction. The discovery that noninteracting particles
in a disorder potential can become completely immobile by
Anderson in 1958 [1] has created a new field of study, which
became enormously active in the last decade after it was
predicted that this localized phase could persist in the pres-
ence of interactions, leading to a perfect insulator at any
temperature [2–7]. While it is difficult to realize such sys-
tems in condensed matter experiments due to the presence of
phonons, many-body localized (MBL) systems were realized
in synthetic quantum matter [8–10]. It was first suggested
that the interplay of interaction and disorder gives rise to a
nonequlibrium phase transition between a thermal phase at
weak disorder, which satisfies the eigenstate thermalization
hypothesis (ETH) [11–14] and a many-body localized phase
at strong disorder. Such a transition would be unparalleled
in equilibrium [15–22]. A large body of theoretical work
now supports the picture that the many-body localized phase
is characterized by an emergent complete set of quasilocal
integrals of motion [23,24], which are fully consistent with
the observed phenomenology of area law entanglement in all
many-body eigenstates [25–27], as well as with the logarith-
mic post-quench entanglement production [28–31].
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Recently, however, the stability of the insulating phase in
the thermodynamic limit has been put into question, gen-
erating a debate on MBL as a phase of matter [32–45].
Some works suggest that the critical disorder might be way
higher than what was expected [37,38,46–48], others even
predict an infinite critical disorder in the thermodynamic limit
[35,39,40,43,49]. As a matter of fact, quantum simulations
have shown MBL signatures in systems with a few tens of par-
ticles [8,10,50,51], thus today’s experiments can only access a
MBL regime that asymptotically, in time and system size, may
or may not thermalize. One central aspect in this debate is the
delocalization transition mechanism and the crossover behav-
ior in finite systems, whose understanding is still incomplete.
In the vicinity of the transition, anomalously slow dynamics
was observed [52–56], which was related to anomalous ther-
malization behavior [26,57–60], and a theoretical description
based on rare insulating inclusions was proposed [16,61,62].
It remains, however, unclear how this picture can be recon-
ciled with the observation of slow dynamics in quasiperiodic
potentials [19,55,63]. It was also proposed that the many-
body resonances are driving the slow dynamics in this
regime [64].

It was pointed out in Ref. [65] that many-body localized
systems are unstable under certain conditions toward thermal
inclusions by a mechanism dubbed “avalanche” [66,67], and
such a transition as a function of the localization length was
confirmed numerically in idealized models [68,69], also tai-
lored to address implications for the instability of MBL in
higher dimensions [65,70,71]. Current activities now focus
on the identification of this mechanism driving the transition
in more realistic models [40,72–75] and experiments [76,77].
This is challenging and so far direct evidence for the avalanche
mechanism in standard MBL models is still lacking. In this
work, we directly address the issue of avalanches in a standard
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FIG. 1. System setup: A spin chain (blue) is coupled to an er-
godic bubble (red). The spins at site 0 and L − 1 are both coupled
to the bubble with coupling strength g, such that both “ends” of the
chain are symmetric. In order to make the bubble perfectly thermal,
its Hamiltonian is given by a random GOE matrix, while the spin
chain corresponds to a XXZ spin 1/2 model in the presence of
a random field coupled to local Ŝz

i operators and nearest neighbor
interactions.

MBL model and consider a thermal inclusion coupled to a
disordered spin chain.

Model. We study the random field XXZ chain, modeled
by the Hamiltonian HXXZ (“the chain”) coupled to an ergodic
(or “thermal”) bubble with Hamiltonian R̂0. The setup for the
model is illustrated in Fig. 1. The total Hamiltonian is of the
form

Ĥ = ĤXXZ ⊗ 1̂ + 1̂ ⊗ R̂0 + gHcoupling. (1)

Here the first factor of the tensor product refers to the chain
and the second factor refers to the thermal bubble. The XXZ
Hamiltonian acts on L spins labeled by i = 0, . . . , L − 1;

ĤXXZ = J
L−2∑
i=0

[
1
2

(
Ŝ+

i Ŝ−
i+1 + Ŝ−

i Ŝ+
i+1

) + �Ŝz
i Ŝz

i+1

] +
L−1∑
i=0

hiŜ
z
i ,

(2)

where we have taken the random fields hi ∈ [−W,W ] drawn
from a box distribution. We consider the isotropic point � =
1. All parameters are measured in J = 1 units. The coupling
term reads

Ĥcoupling = (
Ŝz

0 ⊗ 1̂
) · (1̂ ⊗ R̂1) · (

Ŝz
L−1 ⊗ 1̂

)

+ [(Ŝ+
0 ⊗ 1̂) · (1̂ ⊗ R̂2) · (Ŝ−

L−1 ⊗ 1̂) + H.c.], (3)

where the matrices R̂l , l = 0, 1, 2 are independent random
matrices from the Gaussian Orthogonal Ensemble (GOE),
with a scaled bandwidth defined by

Rl = β

2
(A + AT ) ∈ RnGOE×nGOE , Ai j = norm(0,1), (4)

where norm(0,1) are normal random variables with zero mean
and unit variance. The dimension nGOE of the random matrices
controls the power of the ergodic bubble; here we use nGOE =
3, 4, 5, 6, 8. β is a real variable that controls the band width of
the random matrices and is chosen such that the level mixing
(reflected in the overall gap ratio) is maximal for the largest
possible range of parameters (see the Supplemental Material
(SM) in [78] for more details).

Note that the ergodic bubble is coupled to spins 0 and
L − 1, thus closing the chain into a ring. Therefore, both ends
of the chain are symmetric and the longest distance from the
bubble corresponds to the spin situated at the middle of the
chain i = �L/2�. We also note that the coupling in Eq. (3) of

the bubble to the chain is chosen such that all terms preserve
the total spin Ŝz = ∑L−1

i=0 Ŝz
i in the chain. This allows us to re-

strict our study to the largest sector of the Hilbert space, given
by Sz = 0 for L even and Sz = 1 for L odd, with a Hilbert
space of dimension d ≡ d (L, nGOE) = nGOE

( L
�L/2�

)
. We per-

form massively parallel shift-invert diagonalization [79,80]
for computing eigenstates close to the exact spectral center
of each sample given by (Emax + Emin)/2, with (Emin)Emax

being the (anti)ground state energy. We confront results for
our system with a thermal bubble, Eq. (1) with the isolated
XXZ chain Eq. (2).

Numerical protocol. We consider two types of observ-
ables. First, we compute the rn parameter of adjacent
energy gaps in the middle of the spectrum given by rn =
min(δn, δn+1)/max(δn, δn+1) [5], with δn = En+1 − En. Here
En−1, En, En+1 are consecutive energy levels of the XXZ
chain, and the system with a bubble, respectively. This param-
eter is useful to distinguish the ergodic and localized phase in
a simple way.

Second, we use the single site purity γi = Tr(ρ2
i ), where

ρi = Tr{L−i}(|n〉〈n|) is the reduced density matrix on a single
site i for a given eigenvector |n〉. Due to the U (1) symmetry
of the model, γi can be conveniently expressed via the matrix
element 〈n|Sz

i |n〉 as (a brief analysis of these matrix elements
is presented in the SM in [78])

γi = 2〈n|Sz
i |n〉2 + 1

2 . (5)

In a fully ergodic system, the ETH and random matrix theory
predict that γi − 1/2 ∼ d−1/2 where d is the total Hilbert
space dimension d ∼ O(eL ), for states |n〉 chosen at maximal
entropy [14]. The matrix elements 〈n|Sz

i |n〉 by themselves
show qualitative signatures of thermalization, see the SM in
[78] for a short discussion.

In models where ergodicity is induced from boundary ef-
fects, as it presumably happens in the case investigated here,
one should be more careful and write γi − 1/2 ∼ d−1/2

eff,i where
deff,i is the effective dimension, see [26] and the SM in [78].
In contrast, in a localized system, we expect γi to depend
substantially on the state |n〉 and the disorder realization, and
we expect the average γ̄i to be given by a volume-independent
value, tending to one as W → ∞. For each disorder realiza-
tion, we use 50,...,100 eigenstates |n〉 and for each set of model
parameters at least 2000 disorder realizations of the fields hi

and bubble Hamiltonian R̂l .
Shift of MBL transition in the interacting chain. In an

infinitely long disordered chain, it should not matter whether
we add a thermal bubble or not, because thermal Griffiths
regions acting as ergodic patches are expected to be present
anyhow. In a chain of moderate size, we expect that a substan-
tial fraction of samples appears to be localized simply by lack
of ergodic regions. This would lead to a shift of the apparent
critical disorder value Wc for short chains if one compares the
isolated chain to our model where we add a bubble by hand.
In Fig. 2, we compare the disorder averaged gap ratio r of ad-
jacent energy gaps in the middle of the spectrum given of the
isolated XXZ chain (right) to the XXZ chain-bubble system
(left) as a function of disorder strength W for different system
sizes L. Using the crossing of r of size L and L + 2 as a proxy
for the apparent critical point at this length scale, the inset
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FIG. 2. Average gap ratio [5] r for the disordered field XXZ spin
chain of size L coupled to a thermal bubble of size nGOE = 4 (left)
and the same system without bubble and chain length L + 2 (right).
Inset: Pairwise crossing of gap ratio r(W ) as function of 1/L for both
systems.

suggests that it is indeed the case that the crossings appear at
slightly larger disorder strengths in the presence of the bubble.
However, due to large statistical uncertainty, it is far from clear
whether this is a significant signal. Even if it were significant,
finite-size effects render the crossing analysis an unreliable
way to pin down the critical point precisely.

Change of local ergodicity in interacting chains. We inves-
tigate the one-site purities γi as a measure of local ergodicity.
Throughout this paper, we consistently use the labels “lo-
calized” and “thermal” as inferred from the crossing point
of r (see Fig. 2), i.e., with the critical point at W ≈ 3.5−4,
even though recent works locate the transition at larger W
[37,38,43,47]. Inspecting the average purities in the presence
and absence of the thermal bubble (see Fig. 3) is clear that
the effect of the bubble at long distance is rather small and
subtle. Therefore, it is useful to first map out what the theory
of quantum avalanches predicts.

Theoretical background. For a simple avalanche model of
our setup, we assume the existence of an apparent localization
length ξ , describing the system in absence of the bubble, and
a number p giving the probability that the bubble can kickstart
a thermalization process in its near vicinity, see Ref. [69] for
a detailed discussion and arguments why p  1 in our setup.
A simple model, based on an unrealistic dichotomy between
ergodicity and localization, leads (see the SM in [78]) to the
following very rough prediction:

(γ̄i − 1/2) ≈ (1 − p)(1 − e−|i|/ξ )(γ̄XXZ−1/2) + pd−1/2
eff,i , (6)

with γ̄i the average purity at site i and γ̄XXZ the average purity
in the bubbleless system. For p = 0, we recover a perfectly
localized system, whereas for p = 1, the system is ergodic but
the average purity still increases with i, because the effective
dimension deff,i depends on the distance to the bubble. This
effective dimension is defined as

deff,i = e−2i/ξ dtherm, (7)

FIG. 3. Purity γi as function of the distance from the bubble for
different disorder strengths W . Left (Right) panel shows system size
L = 16 (L = 18) and nGOE = 4. Horizontal shaded areas correspond
to the γXXZ in the absence of the bubble with L + 2 chain length
compared to the bubble-chain system.

with dtherm the total Hilbert space dimension of the thermal
region, given by

dtherm =
⎧⎨
⎩

n
1

1−ξ/ξ∗
GOE if ξ < ξ∗

2LnGOE if ξ > ξ∗,

where ξ∗ = 1/ log 2 is the critical localization length. Accord-
ing to the above formula Eq. (6), there are two regimes in
which γ̄XXZ − γ̄i does not decay to zero, or only very slowly.

(i) ξ > ξ∗. Here, the bubble thermalizes a fraction p of
samples, resulting in a shift γ̄XXZ − γ̄i which remains finite
as i → ∞, even though it decreases due to the decrease of
deff,i.

(ii) ξ approaches ξ∗ from below. Then γ̄XXZ − γ̄i → 0 at
large i, but the decay is arbitrarily slow when ξ → ξ∗, because
the decay of deff,i is arbitrarily slow.

In practice, (i) and (ii) are of course hard to distinguish.
Large distance behavior. In Fig. 3, we indeed see a sign of
influence of the bubble that does not, or only very slowly,
decay with distance from the bubble. We observe that the
purity in the presence of the bubble seems to tend to an
asymptotic value that is significantly lower than the value
for the bubbleless system. This seems to be the case up to
disorder strength W = 5.6−6, after which the signal, i.e., the
difference γ̄XXZ − γ̄i, becomes comparable to the error bars.

Combining this with the theoretical analysis above, we see,
hence, that our results are compatible with disorder strengths
up to W = 5.6−6 being in the delocalized regime. Since this
delocalization is realized only in a small fraction of samples,
i.e., p  1, there is no surprise that our crossing analysis does
not exhibit any sizable shift.
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FIG. 4. Average purity γ i at fixed distance i = 5 from the bubble
plotted as function of system size L for different disorder strengths
W . Left panel: XXZ spin chain of length L with bubble of size
nGOE = 4. Right panel: XXZ Heisenberg chain of size L. Average
is taken over disorder realizations and eigenstates.

We will analyze this further below, but let us first note that
it is far from clear whether our system sizes are large enough
to speculate about the limit i → ∞. Indeed, in Fig. 4, we
investigate the dependence of the purity at fixed distance on
increasing system size L. We see that for disorder values at
and above W = 5.2, the purity γ5 is actually increasing with
increasing system size. This is an effect that is not even ac-
counted for in our model equation and it should be interpreted
as a sign that finite-size effects are still important (see the SM
in [78] for further analysis).

Another way to look for thermalization induced by the
bubble is through correlations between different sites of the
chain. In that spirit we look at statistical correlations between
two purities γi and γ j . Those are defined as

C(r) = (γ0 − γ̄0)(γr − γ̄r )

σ0σr
, (8)

where γi − γ̄i captures the purity fluctuations around its mean
and σ 2

i = (γi − γi )2 is the variance of the purity at site i. The
quantity C(r) is the Pearson correlation coefficient between
purities at sites next to the bubble (i = 0) and sites at dis-
tance r from that spin with r = 0, 1, . . . , L/2. This quantity
for different disorder and system size is shown in Fig. 5.
Interestingly, for W = 4.4 the bubble seems to be enhancing
correlations compared to the bubbleless case. This effect is
even growing with system size and it persists for W = 5.2
and, up to some extent, for W = 6.0. The latter is possibly a
quantitative witnessing of a small fraction p of avalanching
samples. Certainly, the purity correlation C(r) seems to be

FIG. 5. Average purity correlation C(r) as function of the dis-
tance from the bubble for disorder strengths W = 4.4, 5.2, 6.0, 8.0.
Dashed lines correspond to bubbleless system of size L + 2 while
solid lines to bubble-full system of size L.

better in capturing the weak correlations due to avalanching
samples than the bare purity γ i.

Since the signals that we observe, the difference in γ̄XXZ −
γ̄i and the correlations in Fig. 5, are rather small; there is
the concern that they might be caused by some artefact. For
example, even in a well-localized system, in the absence of
any avalanches, the purity-purity correlation C(r) from Eq. (8)
has a nonzero limit as r → ∞ of order C

L2 with C ∝ 1
W 2 in

the high-disorder limit W → ∞, see the SM for more details.
While we do not see any clear mechanism how this might
pollute our analysis, we find it hard to exclude it.

Conclusion. We have studied the effect of ergodic inclu-
sions modeled by local random matrices in disordered spin
chains of up to 20 sites. We report little or no drift of the
thermal-to-localized transition in the average level spacing
compared to the bubbleless case, which was also observed
in similar settings [72]. We also investigate long distance
effects of the bubble by looking at functions of the local
magnetization expectation value, in this case the purity and its
fluctuations. There, we have numerically witnessed a poten-
tially divergent, long wavelength, response of an apparently
localized chain (as estimated by ED studies like [79]) to an
ergodic bubble. The effect is weak and not unambiguous, but
it is compatible with the avalanche theory proposed in earlier
works. Importantly, such weak correlations may be influenced
by spurious long-range correlations due to the U (1) symmetry
(see the SM in [78]), although we can not confirm this from
our numerics.

Recent studies also point out weak but persisting correla-
tions produced by many-body resonances in the same disorder
regime we study [37,47]. Our results suggest that the bubble is
effectively enhancing such weak correlations when the system
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looks well localized in average. However it is yet not clear
how to directly relate the observed signal with the many-body
resonances.
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