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Hubbard model on a triangular lattice: The role of charge fluctuations
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A chiral spin liquid (CSL) phase has been recently reported in the Hubbard model on a triangular lattice.
It emerges in an intermediate coupling regime at half-filling, which is sandwiched between a 120◦ antiferro-
magnetic (AFM) phase and a metallic phase as a function of on-site repulsion U . In this work, we examine
the mechanism of the CSL and complex phase diagram via analytic analysis and numerical density matrix
renormalization group (DMRG) method. First, we identify an exact Berry-phase-like sign structure in the
partition function of the model at arbitrary U , which is originated from the Fermi sign structure at U = 0.The
spin and charge degrees of freedom are generally entangled via a singular phase string in such a many-body sign
structure. In the large-U limit, the suppression of the charge fluctuation at half-filling can render the phase string
ineffective, resulting in the AFM order. However, if one precisely switches off such a phase string in the DMRG
calculation, the 120◦ AFM is shown to survive all the way down to a much weaker U without the emergence
of the CSL and metallic phases. It indicates that the phase-string sign structure plays the key role to mediate
the mutual interaction between the charge and spin fluctuations, which results in the CSL and metallic phases at
finite U . General implications for the Mott physics in the Hubbard model will also be discussed.
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Introduction. The quantum spin liquid (QSL) has been
a subject with growing interest since the concept was first
introduced by Anderson in the 1970s [1–6]. The antiferro-
magnetic (AFM) spin system on triangular lattice was once
believed to be a promising candidate to realize a QSL state
due to its strong geometric frustration. But the numerical
studies have revealed that in the Heisenberg model, the ground
state is actually 120◦ AFM long-range ordered [7,8]. Experi-
mentally some triangular lattice materials like Ba3CoSb2O9

[9–14] clearly exhibit a 120◦ AFM order. On the other hand,
several candidate materials with triangular lattice, such as the
organic Mott insulators κ-(BEDT-TTF)2Cu2(CN)3 [15–18]
and EtMe3Sb[Pd(dmit)2]2 [19–21], have been considered po-
tentially as the QSL systems.

In contrast to the Heisenberg model with spin local mo-
ment, a QSL phase in a Hubbard model at half-filling with an
intermediate strength of U has been recently reported [22–28].
Such a QSL phase is located between the metallic regime
at small U and the 120◦ AFM phase at large-U , where the
latter is continuously connected to the Heisenberg model in
the large-U limit. In particular, this QSL has been further
identified as a chiral spin liquid (CSL) [26,27].

Whereas the geometric frustration alone in the Heisenberg
model on a triangular lattice is not enough to drive the system
into a quantum disordered phase, the QSL discovered in the
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Hubbard model may be attributed to the fact that an increas-
ing charge fluctuation with reducing U plays an important
role. Among the numerous theories for QSL, the interplay
between the spin and the charge degrees of freedom has been
discussed [29–33]. But most theories have assumed a priori
the existence of QSL with the focus on the Mott transition to a
metallic phase.The charge fluctuation may lead to a high-order
spin interaction [34] to stabilize the QSL state. The numerical
results [35] show that a Heisenberg model with four spin term
or other additional terms can give rise to a rich phase diagram,
including the QSL phase.Nevertheless, how the charge fluctu-
ations systematically influence the spin order and vice versa
with reducing U/t , including the Mott transition, still remains
elusive as the central challenge in strongly correlated systems.

In this paper, we investigate the mechanism of how the
charge fluctuation frustrates the 120◦ AFM order as U re-
ducing from the strong-coupling limit. We first analytically
identify the precise sign structure of the triangular lattice
Hubbard model at an arbitrary U , temperature, and doping
concentration based on the partition function. It is shown
that the charge and spin degrees of freedom are intrinsically
entangled via a novel sign structure known as the phase string,
besides the conventional fermions statistics associated with
the charge (holons and doublons) and some geometric Berry
phase associated with the triangular lattice. The same kind
of phase-string factor has been previously identified on the
square lattice for the Hubbard model without the additional
frustration of the geometric phase [36]. Its large-U version has
also been previously found in the t-J model for both square
lattice [37,38] and triangular lattice [39].
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Then by “switching off” the phase-string (without chang-
ing the other phase factors and path-dependent weight) in a
density matrix renormalization group (DMRG) calculation,
we show that the CSL and metallic phases disappear in the
phase diagram, with only the AFM state persisting all the way
down to a much weaker U at half-filling. It clearly indicates
that the charge fluctuations must be mediated by the phase-
string sign structure in order to twist the AFM into a QSL in
the intermediate U/t . Namely, without the phase string, the
charge and spin correlations become effectively decoupled.
In general, it implies that the Mott physics is dictated by
the novel sign structure hidden in the Hubbard model, which
should be treated explicitly and carefully in order to properly
understand the interplay between the spin and charge dynam-
ics including the opening/closing of the charge (Mott) gap.

Sign Structure of the Hubbard Model.— In this work, we
shall study the Hubbard model,

HHub = Ht + U
∑

i

ni↑ni↓, (1)

where Ht ≡ −t
∑

〈i j〉,σ c†
iσ c jσ + H.c. denotes the nearest

neighbor (NN) hopping on a triangular lattice.
We shall first identify an exact sign structure in the partition

function as follows:

ZHub ≡ tr(e−βHHub ) =
∑

c

S[c]W [c], (2)

where W [c] � 0 is a positive weight, while S[c] with |S[c]| =
1 denotes the sign structure for any closed loop c of the spin
and charge coordinates in the full Hilbert space. The proof is
based on the high-temperature (T = 1/β) series expansion of
the partition function to all orders:

ZHub =
∞∑

n=0

βn

n!

∑

{αi}n
i=1

∏

i

〈αi+1|(−HHub)|αi〉, (3)

where α is the label of a complete set of basis composed of
the spin(on) (in the Sz quantization) and chargon coordinates
at single occupied and empty/double occupied sites (see the
Supplemental Material in Ref. [40]). We can view c = {αi}n

i=1
as a closed loop in the coordinate space with |α1〉 = |αn+1〉.

Here S[c] collects all the signs of the matrix elements
〈αi+1|(−HHub)|αi〉 to give rise to [40]

S[c] ≡ S0[c] × (−1)Nch
ex [c] × τph[c], (4)

where

S0[c] ≡ (−1)N↑[c] . (5)

Here N↑[c] denotes the total steps of hopping of ↑ spinons in
a closed loop c; (−1)Nch

ex [c] counts the fermion signs pending
on Nch

ex [c] as the total exchange number between the holons
and between the doublons as the identical particles. The third
factor in Eq. (4) is the most exotic which indicates a mutual
statistics between the chargons and spinons

τph[c] ≡ (−1)Nh
↓ [c] × (−1)Nd

↑ [c], (6)

in which Nh
↓[c] and Nd

↑ [c] count the total number of swaps be-
tween the chargons and spinons, i.e., a holon and a ↓-spinon,
and a doublon and an ↑-spinon, respectively, in the closed

(a)

(b)

(c)

(d)

S0[c]

τph[c]

FIG. 1. The illustration of the sign structure of the triangular
Hubbard model as given in Eq. (4). (a) A typical spin configuration of
120◦ AFM order at large-U ; (b) Charge fluctuations as spontaneous
creation (at link marked by an open diamond) and annihilation (at
link marked by the cross) of the holon (open circle) and doublon at
half-filling; (c) Elementary processes of the hopping of the chargon
(doublon, filled circle and holon, open circle) and the associated
signs, ±, depending on the spin swapped with the chargon. They
contribute to the phase string τph in Eq. (6) for the chargon hoppings
as illustrated in (d); Each up-spin hopping on the lattice will acquire
an additional geometric (−) sign [cf. (d)], which gives rise to a
geometric phase S0 in Eq. (5); Finally, it is noted that the chargons
will contribute to an additional minus sign in Eq. (4) each time two
identical holons or doublons are exchanged as if they are fermions
(not shown here in the figure).

loop c. The basic processes within a closed loop c and the
associated sign structure are figuratively illustrated in Fig. 1.

It is noted that previously a similar sign structure has
been exactly identified [36] for the two-dimensional (2D)
Hubbard model on a square lattice, in which S0[c] = 1 in
Eq. (4) without the geometric frustration. Here for the trian-
gular lattice, S0[c] is nontrivial which depends on the parity
of the total triangular units enclosed within the closed paths
of the ↑-spinons. In the large-U , i.e., the Heisenberg limit
at half-filling, it will be responsible for driving the system
into the 120◦ AFM order (see below). The fermion statistical
sign factor associated with the chargons is also conventional,
which is similar to doping a semiconductor. Inside the sign
structure in Eq. (4), the sign factor τph[c] introduces a novel
long-range mutual entanglement between the spin and charge
degrees of freedom, which is known as the phase-string whose
nontrivial effect has been previously studied in the doped
cases on a square lattice in the large-U limit [41,42].
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To examine its unique effect, one may exactly switch off
τph[c] in Eq. (4), with the partition function reducing to

Zσ -Hub ≡ tr(e−βHσ -Hub ) ≡
∑

c

S0[c](−1)Nch
ex [c]W [c] (7)

with the same weight W [c] [40]. It is straightforward to
show that the corresponding Hamiltonian is modified as [40]
Hσ -Hub = Hσ t + U

∑
i ni↑ni↓ where

Hσ t ≡ −t
∑

〈i j〉,σ
c†

iσ c jσ

[
σ P̂T

i j + (
1 − P̂T

i j

)] + H.c. (8)

with P̂T
i j a projection operator to enforce a single chargon

(holon or doublon) at the NN bond i j, whose hopping involves
an exchanging with a spinon [cf. Fig. 1(c)]. By contrast,
the projection (1 − P̂T

i j ) involves a simultaneous creation or
annihilation of a pair of holon-doublon at i j.

Therefore, the sole distinction between the Hubbard and
σ -Hubbard models lies in the presence and absence of the
phase-string factor of Eq. (6) in their respective sign structures
[cf. Eqs. (2) and (7)]. Physically the phase-string of Eq. (6)
will dynamically entangle the charge and spin degrees of
freedom in the Hubbard model, which otherwise may behave
independently of each other in a more conventional manner in
the σ -Hubbard model (see below).

Phase diagram at half-filling: DMRG results. To pre-
cisely characterize the distinction between the Hubbard model
and σ -Hubbard models, we employ the DMRG algorithm
to examine the ground state properties at half-filling in the
remainder of the paper. The triangular lattice is spanned by the
primitive vectors ex = (1, 0), ey = (1/2,

√
3/2) and wrapped

on cylinders with circumference of 4 along the y direction
(cf. Fig. S1 in Ref. [40]). Depending on the nature of distinct
phases, the bond dimension D is pushed up to D = 24000 to
secure the convergence.

In Fig. 2, the characteristics of the spin degrees of freedom
are shown in the intermediate U/t regime. Figures 2(a) and
2(b), present the results for the Hubbard model, in which three
typical phases are shown. To identify the 120◦ AFM order,
we compute the spin structure factor S(q), which is defined
as S(q) = 1/N

∑
i j〈Si · S j〉eiq·(ri−r j ). As shown in Fig. 2(a),

S(q) is peaked at q = K∗, characterizing the 120◦ AFM order
at large-U side, where K∗ is the closest allowed momentum
to K as the characteristic momentum of the 120◦ AFM order.
Then a CSL order as characterized by the order parameter
|〈Si · (S j × Sk )〉| sets in over an intermediate regime approx-
imately between 8.5 < U/t < 10.7 [see Fig. 2(b)], where the
peaked spin structure factor S(K∗) gets diminished. As U/t
continues to decrease further, the CSL order eventually van-
ishes and the system enters a metallic phase at U/t ≈ 8.5.
Such an insulator-to-metal transition can also be identified
by the close of the charge gap �c = 1

2 [E0(N↑ + 1, N↓ + 1) +
E0(N↑ − 1, N↓ − 1) − 2E0(N↑, N↓)], as shown in Fig. 3(a),
here E0(N↑, N↓) denotes the ground-state energy of a system
with N↑ spin-up electrons and N↓ spin-down electrons, and
N↑ = N↓ = N/2 at half filling. We remark that these results
are consistent with the previous study [26].

By contrast, the corresponding DMRG results for the σ -
Hubbard model are also presented in Figs. 2(d) and 2(c) for
the spin part and in Fig. 3 for the charge part, respectively. As

FIG. 2. The spin characterizations of the phase diagram in the
triangular Hubbard model and σ -Hubbard model by DMRG calcu-
lation. (a) and (d): The momentum distributions of the spin structure
factor S(q) at U/t = 8, 10, 18, respectively. The three distinct phases
of the Hubbard model in (a) reduce to a single phase in the σ -
Hubbard model [(d)]; (b) and (c): The chiral order parameter |〈Si ·
(S j × Sk )〉| (blue) and the spin structure factor at K∗ (red), for the
Hubbard model [(b)] and the σ -Hubbard model [(c)], respectively.

one can see, the phase diagram is totally changed from that
of the Hubbard model: in the whole parameter regime of U/t
that we inspect, the 120◦ AFM order always remains dominant
as the sole stable phase with no more CSL phase. Here the
charge gap remains finite [cf. Fig. 3(a)] and is persistent down
to U/t ≈ 2. Furthermore, in Fig. 3(b) the double-occupancy
per site, D/N , exhibits a fast increase in the CSL region of
the Hubbard model from the larger U . For the σ -Hubbard
model, however, D/N evolves much more smoothly and flatly
over the whole region, and so does the corresponding single-
electron momentum distribution nk in Fig. 3(d), in contrast
to a sharper Fermi-sea-like feature in the metallic phase of
the Hubbard model at U/t = 8.5 [cf. Fig. 3(c)]. In general,
the charge fluctuations are found to be well decoupled
from the 120◦ AFM spin order in the σ -Hubbard model, in
which one does not encounter a phase transition with U/t
reducing from the strong coupling to the order of one, in sharp
contrast to the three phases identified in the Hubbard case at
U/t > 8.
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FIG. 3. The charge characterizations of the Hubbard and σ -
Hubbard models. (a) The charge gap; (b) The average double
occupancy. The vertical lines: two phase transition points of the
Hubbard model; (c) and (d) Electron momentum distribution nk for
the Hubbard and σ -Hubbard models, respectively.

Discussion. There is no essential distinction between the
Hubbard and σ -Hubbard models in the large U/t limit, where
the spins are governed by the Heisenberg model while the
charge sector is well gapped. Note that the two models only
differ by the phase string in the partition function. The sharp
distinction between the two models with reducing U should
be thus entirely attributed to the phase string that mediates
the mutual coupling between the spin and charge degrees of
freedom. In other words, the emergence of the CSL as well as
the Mott transition to a metallic phase in the Hubbard model,
which is absent in the σ -Hubbard model, has to be understood
by the phase-string effect in the former.

For example, in the large-U limit with the chargon exci-
tations monotonically suppressed at half-filling, the residual
sign structure still functioning in Eq. (4) is essentially the
conventional Berry phase left [Eq. (5)], whose geometric frus-

tration due to triangular lattice leads to the 120◦ AFM order
of the spins. At ∼8.5 < U/t < 10.7, with reducing the charge
gap and increasing D/N , the charge fluctuation must influence
the spin part via the phase string such that the AFM order is
driven into the CSL phase in the Hubbard model but remains
unchanged in the σ -Hubbard model. Note that the charge fluc-
tuation is also self-consistently enhanced within the gapped
CSL spin phase in the former. Eventually a metallic phase at
smaller U/t � 8.5 with the Mott gap closing up, should be
also due to the phase-string, since in the σ -Hubbard model
the charge and spin fluctuations remain decoupled similar to
the large-U/t case with the 120◦ AFM order persisting all the
way down to a much smaller U/t without encountering the
CSL or metallic phase transition.

It is important to realize that for both the Hubbard and
σ -Hubbard models, the amplitude W [c] for each path c in
the partition functions remains the same. It depends on the
amplitudes of t , U , and temperature, and is expected to be
a smooth functional of the path c, which is in sharp contrast
to the phase-string sign structure [Eq. (6)]. The latter is sin-
gular as its sign changes with merely a spin-flip in the total
spins exchanging with a chargon for any path c. As the sole
distinction between the two models, the phase-string strongly
influences both the spin and charge sectors of the Hubbard
model by a quantum interference effect under the summation
of all the closed paths in an intermediately strong U . Similar
to the square lattice case [36,38], by a duality transformation,
one may exactly map the phase-string effect into a topological
(mutual Chern-Simons) gauge structure [36,41,42] in which
the fractionalized spin and charge degrees of freedom are
mutually coupled, and this framework has been previously
generalized to the triangular lattice t-J model at large doping
[39]. It will be very interesting to see how the CSL and the
metallic phase as revealed by DMRG may naturally arise from
such a gauge interaction, which will be explored elsewhere by
a perturbative approach.

Furthermore, the sign structure identified here for the tri-
angular Hubbard model is exact at arbitrary U , doping, and
temperature, as well as sample size and dimensionality. There-
fore, a systematic exploration based on the Hubbard and σ -
Hubbard models using the finite-size exact numerical methods
may be also very useful to understand such strongly corre-
lated systems at finite doping [43–51]. Recently a contrasted
DMRG study based on the sign structure has provided new in-
sights into the origin of superconducting and charge-density-
wave orders at finite doping in the t-t ′-J model on square lat-
tice [52]. A similar approach for the triangular lattice may also
be interesting in the large-U limit at finite doping [53–58],
where the phase-string effect associated with the doped
holes/electrons in Eq. (4) becomes singularly important.
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