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Quantum criticality and entanglement for the two-dimensional long-range Heisenberg bilayer
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The study of quantum criticality and entanglement in systems with long-range (LR) interactions is still in its
early stages, with many open questions remaining to be explored. In this work, we investigate critical exponents
and scaling of entanglement entropy (EE) in the LR bilayer Heisenberg model using large-scale quantum Monte
Carlo simulations. By applying modified (standard) finite-size scaling above (below) the upper critical dimension
and field theory analysis, we obtain precise critical exponents in three regimes: the LR Gaussian regime with a
Gaussian fixed point, the short-range (SR) regime with Wilson-Fisher exponents, and a LR non-Gaussian regime
where the critical exponents vary continuously from LR Gaussian to SR values. We compute the Rényi EE
both along the critical line and in the Néel phase, and we observe that as the LR interaction is enhanced, the
area-law contribution in EE gradually vanishes both at quantum critical points (QCPs) and in the Néel phase.
The log-correction in EE arising from sharp corners at the QCPs also decays to zero as the LR interaction grows,
whereas that for Néel states, caused by the interplay of Goldstone modes and restoration of the symmetry in
a finite system, is enhanced. Relevant experimental settings to detect these nontrivial properties for quantum
many-body systems with LR interactions are discussed.
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Introduction. In recent years, research on long-range (LR)
interacting quantum many-body systems has attracted signif-
icant attention from the perspectives of statistical physics,
renormalization group field theory, and lattice model com-
putation. These systems exhibit many exotic properties that
await to be explored thoroughly, such as the modification
of dynamic spectra [1–5], the violation of area-law scaling
of entanglement entropy (EE) [6,7], and the breaking of
the Lieb-Robinson bound [8–10]. Moreover, with the exper-
imental realizations of quantum many-body systems with LR
interactions, such as the Rydberg atom arrays [11–15] and
programmable quantum simulators [16–21], and the magic-
angle twisted bilayer graphene and two-dimensional (2D)
moiré materials [22–73], there grows significant motivation
to examine the novel properties of such systems.

In the meantime, the exploration of entanglement prop-
erties, predominantly the scaling behavior of entanglement
entropies, has emerged as a pivotal subject within the
field of condensed-matter physics. Such a focus derives
from its capacity to effectively characterize various quantum
states of matter, as well as the transitions between them,
including those beyond the conventional Landau-Ginsburg-
Wilson paradigm. Preceding investigations of EE have mainly
concentrated on short-range (SR) systems [74–78]. When
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considering long-range systems, intriguing results have been
found, including the violation of area-law scaling in one
dimension (1D) [6,7], the upper bound of area-law coeffi-
cient [79], and so on. The unbiased scaling behavior of EE
including subleading corrections in 2D long-range systems,
however, has yet to be explored, primarily due to computa-
tional limitations. Nevertheless, the advent of nonequilibrium
methods for measuring Rényi entanglement entropies [80–84]
has opened new avenues for research. These advancements
have made the precise detection of such properties in 2D
long-range systems increasingly feasible.

In this Letter we examine both the entanglement and
the critical properties for such systems in two dimen-
sions by studying the LR spin-1/2 antiferromagnetic bilayer
Heisenberg model with intralayer power-law decaying ( 1

rα
i j

)

interactions. For the SR case with only nearest-neighbor cou-
plings, the system has an SU (2) symmetry, and by tuning the
ratio of inter- and intralayer couplings, the system undergoes
a (2 + 1)-dimensional O(3) continuous phase transition from
the Néel state to a dimer product state [85,86]. With intralayer
LR interactions, the systems still display the Néel-to-dimer
phase transition; however, the transition is now modified. Here
we aim to explore the critical and entanglement properties
of this model systematically via field theory analysis, large-
scale unbiased quantum Monte Carlo (QMC) simulations,
and the nonequilibrium incremental algorithm for measuring
EE [81–84,87–89].

Our findings reveal the critical exponents at the QCPs of
the 2D LR bilayer Heisenberg model vary with α and can be
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FIG. 1. Model and phase diagram of the 2D LR antiferromag-
netic Heisenberg bilayer. (a) The bilayer antiferromagnetic model
with interlayer interaction J⊥ and intralayer LR interaction Ji j .
(b) The ground-state phase diagram of the model expanded by
the axes of α and g = J⊥

J , obtained from QMC simulation and
finite-size analysis, as exemplified in Figs. 2(a) and 2(b) and in the
Supplemental Material [90]. The Néel phase spontaneously breaks
the spin SU (2) symmetry and the dimer phase is a product state
without symmetry breaking. The QCPs separating them belong to the
(2 + 1)D O(3) universality when α > αc = 3.9621, a non-Gaussian
fixed point when 10

3 < α < αc, and a Gaussian fixed point when
α < 10

3 . QCPs in LR Gaussian, LR non-Gaussian, and SR regions
are denoted by green, yellow, and white dots (where the simulations
are performed) and lines, respectively.

classified into three regimes: the LR regime (α < 10
3 ) with

a Gaussian fixed point, the SR regime (α > αc, with αc =
3.9621) with Wilson-Fisher (WF) critical exponents, and a LR
non-Gaussian regime ( 10

3 < α < αc) where critical exponents
vary continuously from the LR to SR regimes. In addition, we
find that both the area-law and the corner correction coeffi-
cients of EE at the critical points decrease as LR interactions
become stronger. However, in the Néel state, only the area-law
coefficient decays as α becomes smaller, and the logarithmic
corrections increase as α decreases, attributing to the variation
of the anomalous dynamical exponent z(α) as a function of
α [1,2].

Model and method. We consider the spin-1/2 Heisen-
berg model on a square-lattice bilayer with antiferromagnetic
LR intralayer coupling Ji j and interlayer coupling J⊥ with
periodic boundary conditions, as shown in Fig. 1(a). The
Hamiltonian is

H =
∑
i �= j

Ji j (Si,1 · S j,1 + Si,2 · S j,2) + J⊥
∑

i

Si,1 · Si,2, (1)

where Ji j = J (−1)|xi+yi−x j −y j +1|

|ri−r j |α is defined as a staggered coupling
parameter which introduces no frustrations, and subscripts
1 and 2 denote different layers. We denote g = J⊥/J as
the tuning parameter and previous studies have shown that,

LR Gaussian

LR non-Gaussian

SR WF

(a) (b)

(c)

(d)

FIG. 2. Data collapse and the critical exponents ν and β ob-
tained in α ∈ (2, 10]. (a) Data collapse at α = 8 (SR case) with
critical exponents ν = 0.706(1) and β = 0.366(5). (b) Data collapse
at α = 3 (LR case with Gaussian fixed point above the upper criti-
cal dimension) with critical exponents ν ′ = 0.747(4), β = 0.497(7),
and ν = ν ′ d

duc
= 0.996(7). The green shaded area in panels (c) and

(d) denote the LR Gaussian regime (α < 10
3 ) where d = 2 is larger

than the upper critical dimension duc. In the region of 10
3 < α < αc

(yellow shaded area), the system is in a non-Gaussian fixed point,
and when α > αc (white area) the critical exponents become their
SR (2 + 1)D O(3) WF values [86].

when there are only nearest-neighbor intralayer interactions,
gc = 2.5220(1) separates the Néel-ordered phase with the
dimer product phase and this transition is in the (2 + 1)D
O(3) universality class [85,86]. We consider the Ewald-
modified coupling parameter [91–94] in the form of J̃i j =∑∞

m,n=−∞
(−1)|xi+yi−x j −y j +1|

|ri−r j+mLxex+nLyey|α to tackle the strong finite-size
effect in the LR Gaussian regions. In practice we truncate
the summation at m, n = ±500, which is sufficient to obtain
a good finite-size scaling (FSS) behavior as exemplified in
Figs. 2(a) and 2(b). At larger α, we find the original coupling
Ji j can also obtain converged results.

We also notice that the FSS forms should be modified
when the system enters the LR Gaussian region where the
system’s spatial dimension d is greater than the upper critical
dimension duc. In our case, as is discussed in the field theory
analysis section, duc = 3

2 (α − d ) and the system thus enters
the LR Gaussian regime when α < 10

3 . Therefore, we write
the scaling function that unifies both cases in data collapse to
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extract the critical exponents ν and β as [92–100]

m2 ∼ L−2β/ν ′
f [L1/ν ′

(g − gc)], g ∼ gc, (2)

with ν ′ = {ν for d < duc

ν duc
d for d > duc.

Here 〈m2〉 is the square of the Néel

order parameter m = 1
N

∑
r(−1)rx+ry Sz

r and ν is the actual cor-
relation length exponent. The phase transition point gc can be
located by crossing points of Binder ratios U (g, L) = 5

2 (1 −
1
3

〈m4〉
〈m2〉2 ) for various system sizes. The scaling of the Binder ra-

tio crossing points follows the relation of g∗(L) = aL−b + gc.
In practice, we set gc, ν ′, and β as free parameters and adapt
a stochastic data collapse scheme to determine their values
accurately [18,90,101]. Representative results are shown in
Figs. 2(a) and 2(b). We have simulated linear system sizes
up to L = 54 in the SR regime and up to L = 32 in the LR
regime, with the inverse temperature β = L.

Field theory analysis. To analyze the QCPs, we consider
the following quantum field theory,

S = SG + Sint, (3)

with the Gaussian term SG = ∫
dτdxd [

∑
i ∂τφ

i(x, τ )]2 +∫
dτdxd dx′d

∑
i φ

i (x,τ )φi (x′,τ )
|x−x′|d+σ and the interaction term Sint =

λ
∫

dτdxd{∑i[φ
i(x, τ )]2}2. It is well know that the (2 + 1)D

short-range bilayer antiferromagnetic model is in the classi-
cal three-dimensional Heisenberg universality class [102]. By
universality, the model and the field theory written in Eq. (3)
(with the second term in Eq. (3) replaced by the corresponding
local term

∫
dxd dt[∇φi(x)]2) share the same critical behavior.

In particular, the scalar field (φ1, φ2, φ3) can be identified
as the expectation value of the three-component vector 〈S〉.
To describe the long-range model, one should instead include
the nonlocal spatial interaction term in Eq. (1). To match the
lattice model, we set α = d + σ . Under the scaling trans-
formation τ → szτ , x → sx, and φi → s−
φ φi, the Gaussian
action SG remains invariant if we choose zG = α−d

2 and
G
φ =

3d−α
4 . After fixing z and 
φ , the coupling constant transforms

as

λ → s
1
2 (3α−5d )λ. (4)

When α < 5d
3 , the φ4 term is irrelevant, the Gaussian fixed

point is stable. When α > 5d
3 , the φ4 term is relevant, which

triggers renormalization group flow towards an infrared (IR)
fixed point. For a fixed σ , we define the upper critical dimen-
sion to be duc = 3

2σ . At this IR fixed point, the dynamical
critical exponents zIR(α) and the scaling dimension 
IR

φ (α)
will be renormalized. They clearly depends on α, even though
the precise form of the dependence is not known. This, in prin-
ciple, can be studied using quantum field theory techniques by
treating ε = α − 5d

3 as the perturbation parameter (a similar
study of the finite-temperature LR model was famously done
in Ref. [103]). We expect at some αc, the critical point of the
LR models becomes equivalent to the (2 + 1)D SR Heisen-
berg model. This will be confirmed by our numerical study
later. The crossover from LR to SR happens when zIR(α) = 1.

We now focus on the d = 2 case. To calculate αc, we need
to consider perturbation around the SR model. That is, we
consider the following action [104]:

S = SCFT[φ̂i(x)] +
∫

dτdx2dx′2
∑

i φ̂
i(x, τ )φ̂i(x′, τ )

|x − x′|α . (5)

Here SCFT formally denotes the action of the SR model
at criticality, which corresponds to a conformal field theory
(CFT). This CFT has been well studied. In particular, the CFT
action has a scaling symmetry with (t, x) → (st, sx). Also,
under this system, the scalar field transforms as s−
φ φ̂(st, tx),
with scaling dimension 
φ ≈ 0.518 92 [105]. The LR term is
relevant when α < αc = 3.9621. The α = 4 model is another
special point. When α = 4, the action Eq. (3) is precisely the
SR action after Fourier transformation. The point is, therefore,
in the SR region, which is consistent with αc = 3.9621.

Critical behavior. We first use the crossing points of Binder
ratios g∗(L) to locate gc by fitting to the relation g∗(L) =
aL−b + gc. Then we set gc as a free value around the fitted
value and perform data collapse to determine the values of gc,
ν ′, and β according to Eq. (2), and the results are exemplified
in Figs. 2(a) and 2(b) for the cases of α = 3 and 8. We employ
the stochastic data-collapse approach to obtain high-accuracy
exponents; the detailed description and examples are given
in the Supplemental Material [90]. The value of ν can then
be calculated from the relation ν ′ = duc

d ν. Note that the ex-
pected value of ν in the LR Gaussian regime is ν = 1

α−d and
duc = 3

2 (α − d ), so ν ′ will take the value of 0.75 in the entire
Gaussian regime.

We then plot the obtained critical exponents ν and β versus
the interaction exponent α. As shown in Figs. 2(c) and 2(d),
when α > αc the critical exponents take the SR values of
the (2 + 1)D O(3) universality class with ν = 0.706(1) and
β = 0.366(5) [85,86]. When α < 10

3 , the system enters the LR
Gaussian regime with ν = 1

α−2 and β = 0.5. Between these
two regimes, the critical exponents ν and β vary continuously
with α from the SR to the LR values. The deviation of β from
its SR value at α = 4 is due to strong finite-size effects near
the crossover at α = αc.

Entanglement entropy. The violation of area-law scaling
of EE in 1D quantum spin chains with LR interactions
has been observed via density matrix renormalization group
(DMRG) [6,7]. However, apart from a few works [79,106]
discussing the reliability of area-law scaling of EE in LR
systems, the important scaling form of EE for 2D LR systems
is unexplored. Meanwhile, with the fast development of QMC
algorithms for EE computation [81–84,87,88,107], the Rényi
EE now can be measured with high precision and efficiency
both in phases and at the critical points in 2D systems. For 2D
SR systems, EE takes the form of

S(l ) = al − sc ln l + c, (6)

where l is the length of the entanglement boundary and the
logarithmic term arises from the contribution of sharp cor-
ners on the boundary. For SR models, the value of sc is
universal and sc ≈ 0.081 for four π

2 corners at the (2 + 1)D
O(3) criticality [78,82,83]. However, for LR systems the scal-
ing forms of EE have not been explored, especially at their
QCPs. We measure the second Rényi EE S(2)

A at the QCPs in
Fig. 1(b). We choose a L

2 × L
2 square region as A as shown

in the inset of Fig. 3(a) and use the scaling relation defined
in Eq. (6) to fit our results. The fitting results are shown in
Figs. 3(b) and 3(c), and one finds as α decreases the area-law
coefficient gradually decays to a small value, which indicates
that quantum entanglement at the criticality becomes weaker
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(a)

(b) (c)

FIG. 3. EE at the QCPs. S(2)
A and its scaling behavior at the QCPs

shown in Fig. 1(b) with system sizes L = 8, 10, 12, . . . , 22. (a) Rényi
entropies versus the system sizes for different interaction powers α.
The inset shows the square entanglement region A with the boundary
length l = 2L. (b) The area-law coefficient a versus α. (c) The log-
coefficient sc versus α.

when the interactions becomes more long-ranged. This can be
understood by the fact that the critical points are described
by a LR Gaussian theory for α < 10

3 and the system becomes
more mean-field-like when LR interactions are enhanced. The
corner corrections drop rapidly to zero as the system goes
into the LR region α < αc, which can be understood as strong
LR interactions trivializing the geometry of sharp corners and
making the EE less sensitive to the shape of the entanglement
boundary.

We also examine the scaling of EE in the Néel phase in
Fig. 4. As shown in the inset of Fig. 4(a), we choose region
A to be the L × L

2 partition with a smooth boundary. In this
setting, the logarithmic corrections are purely from the in-
terplay between gapless Goldstone modes and restoration of
the symmetry in a finite system [5,76]. With the addition of
power-law decaying LR interactions, the dynamic exponent
z(α) of the Néel state is modified [1,2] as well as the structure
of tower of state [5,76]. In this case, the sc in Eq. (6) needs
to be replaced by −sG = −NG[d−z(α)]

2 and NG is the number of
Goldstone modes. We thus fit our results of EE with Eq. (6)
and the fitting results are shown in Figs. 4(b) and 4(c). We find
the area-law coefficient a also decays as the LR interactions
get stronger, whereas the logarithmic coefficient sG increases
from the SR value sG = NG

2 = 1 to sG ≈ 1.76 as α decreases
from 6 to 2. We substitute the data of z(α) from previous
QMC and spin-wave analysis [2] into sG = NG[d−z(α)]

2 and find
good agreement with the fitted sG, as shown in Fig. 4(c). The
derivations in the SR and LR Gaussian regimes are attributed
to finite-size effects.

(a)

(b) (c)

FIG. 4. EE inside the Néel phase. S(2)
A and its scaling behavior

for the single-layer LR Heisenberg model, i.e., g = 0 in Eq. (1) in
the Néel phase with system sizes L = 8, 12, 16, . . . , 44. (a) Rényi
entropies versus the system sizes for different interaction powers α.
The inset shows the cylinder entanglement region A with the bound-
ary length l = 2L. For clarity, S(2)

A is modified with a constant so that
S(2)

A (l = 16) is the same for every α. (b) The area-law coefficient a
versus α. (c) The logarithmic coefficient sG versus α. The red line
shows the result sG = NG[d−z(α)]

2 , with z(α) obtained from spin wave
theory and QMC data (L = 64) in Ref. [2].

Discussions. In this work, we address the important open
questions regarding the critical exponents and scaling of EE
in 2D LR quantum many-body systems. Through large-scale
QMC simulations, we obtained precise critical exponents in
the LR Gaussian regime with a Gaussian fixed point, the
SR regime with WF exponents, and an LR non-Gaussian
regime where the critical exponents vary continuously from
LR to SR values. Our investigation of Rényi EE has revealed
highly nontrivial features both along the QCP line and in the
Néel phase, in that, as the interaction becomes longer-ranged,
the area-law contribution in EE gradually vanishes, while
the log-correction is enhanced in the Néel phase due to the
anomalous dependence of the dynamical exponent z(α) on α.
Our results have important implications for future theoretical
and experimental investigations of LR interacting quantum
many-body systems, including Rydberg atom arrays [11–15],
programmable quantum simulators [16–19,21], and magic-
angle twisted bilayer graphene and 2D moiré materials.
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