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Dynamical breaking of electron-hole symmetry in nonequilibrium chiral quantum channels
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We investigate the relaxation dynamics in a chiral one-dimensional quantum channel with finite-range interac-
tions, driven out of equilibrium by the injection of high-energy electrons. While the distribution of high-energy
electrons, after dissipation of some of their energy, has been examined previously [Phys. Rev. B 108, L081121
(2023)], we study the distribution of charge carriers excited from the channel’s Fermi sea during this process.
Utilizing a detector to measure the energetic imprint in the Fermi sea downstream of the injection point, we
discover an initial symmetry in the distribution of excited electrons and holes relative to the Fermi level. However,
this symmetry breaks down with stronger interactions and increased propagation distances, attributed to terms of
order four and beyond in the interaction. We interpret these results in terms of interference between states with
different numbers of plasmons in the Fermi sea.
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The complex relaxation dynamics in integrable systems
offer an array of fascinating features that are not exclusively
limited to thermal equilibration [1–4]. Certain experimen-
tal settings, such as trapped cold atoms prepared in specific
nonequilibrium states, have demonstrated a lack of intrin-
sic relaxation [5,6]. By utilizing quantum wires, one can
explore the relaxation dynamics inherent to the integrable Lut-
tinger liquid model and beyond [7–13]. Additionally, quantum
Hall edges, hosting chiral one-dimensional quantum channels,
present us with further experimental opportunities for creating
nonequilibrium states [14–18].

In the context of quantum Hall edges that contain
multiple channels, considering contact interactions between
electrons within these channels provides a sufficient de-
scription of relaxation phenomena [3,4,15,17,19–27]. The
resulting dynamics yield nearly thermal metastable states,
recently demonstrated in experimental setups [28,29]. These
metastable states eventually thermalize on longer timescales,
when nonlinear terms in the dispersion relation gain in impor-
tance and break integrability in the system [12,30–32].

For a comprehensive understanding of relaxation in single
quantum Hall edge channels, it is necessary to consider finite-
ranged interactions [21,24,33–36]. When the injection energy
is below a specific threshold, dictated by the screening length
and the interaction-renormalized Fermi velocity (the threshold
becomes infinite for contact interactions), the Pauli blockade
almost completely suppresses relaxation in these channels
[21,35,37–39]. Above this energy threshold, the relaxation
in single channels has recently been explored by considering
electron injection at a defined high energy [40]. After an initial
rapid decay, an unexpected cessation of energy relaxation was
found, potentially attributable to an energy mismatch between
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high-energy electrons and low-energy plasmons. This ulti-
mately results in a metastable state that deviates significantly
from equilibrium.

In this Letter, we focus on the investigation of excitations
within the Fermi sea, which occur as a result of the relax-
ation of high-energy electrons in a single quantum Hall edge
channel. To detect these excitations, we employ the resonant
level of a quantum dot. The dot operates as a spectrometer
for both electrons (above the Fermi level of the channel) and
holes (below the Fermi level of the channel). These excitations
can tunnel into a drain channel, as depicted in Fig. 1, thereby
generating either a positive or negative detector current. The
magnitude of this current corresponds to the density of the
excitations, enabling us to quantify the perturbations within
the channel, which are caused by the energy loss from the
injected electron. An intriguing observation from our study is
the development of an asymmetry in the densities of excited
electrons and holes in the Fermi sea of the channel. This
lack of symmetry is presumably induced by the interaction of
the high-energy electron with the electrons in the Fermi sea.
Due to this interaction, the state of the Fermi sea becomes a
superposition of states with different numbers of plasmons.
We interpret the asymmetry between particle and hole excita-
tions in terms of interference between different states in the
superposition, i.e., interference between states with different
numbers of plasmons.

Model and Hamiltonian. High-energy electrons are in-
jected into the chiral channel through an initial quantum dot,
possessing a resonant level at energy ωi (see Fig. 1). In a
scenario with a high injection energy (ωi � v/λ), the de-
tector signal resulting from the injected electrons that have
dissipated some of their energy can be distinguished from
the signal originating from charge carriers that are excited
from the Fermi sea [40]. A subsequent quantum dot detects
this signal at an energy level ωf. While the signal from in-
jected electrons at ωf ≈ ωi has been explored thoroughly in
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FIG. 1. Setup: Electrons with energy ωi are injected from an
emitter quantum dot into a chiral quantum channel, driving it out of
equilibrium. The chemical potential of the source μi is set to ensure
constant filling of the emitter quantum dot. The relaxation process
of these injected electrons gives rise to excitations within the Fermi
sea. After a specified propagation distance, these excitations are
detected by a detector quantum dot. To ensure that only excitations
are detected, the drain’s chemical potential μf is chosen equal to the
channel’s chemical potential μ. The energy of the detector quantum
dot ωf is then varied to determine the density of the excitations.

Ref. [40], in this Letter, we examine the signal from charge
carriers at ωf ≈ μ, which have been excited from the Fermi
sea during the above-mentioned process.

In this analysis, we will limit our consideration to the case
of small tunneling amplitudes (ηi/f). Utilizing the Keldysh
formalism, we can treat the tunneling Hamiltonians

Ht ;i/f = ηi/f

∫
dke−ikxi/f c†

kdi/f + eikxi/f d†
i/fck, (1)

in a perturbative manner up to the lowest nonvanishing order
[41–43]. The quantum dots are described by the Hamiltonian
Hdot = ωid

†
i di + ωfd

†
f df, and the equilibrium electron system

within the channel is characterized by the Hamiltonian

H =
∫

dk vkĉ†
k ĉk + 1

4π

∫
dkdk′dq νqĉ†

k−qĉ†
k′+qĉk′ ĉk . (2)

Here, νq represents the Fourier transform of the real-space
interactions between electrons. These interactions between
the injected electrons and those already present in the channel
lead to the excitation of plasmons within the Fermi sea of the
channel.

Excess electron distribution. We start by bosonizing the
Hamiltonian H in Eq. (2). This process provides us with
formulas for the greater (+) and lesser (−) Green’s func-
tions of the channel, which can be expressed as G±(x, t ) =
G±

0 (x, t ) exp[S±(x, t )]. In this equation, G±
0 (x, t ) = 1/2π (x −

vt ± iε) represents the noninteracting component which is
separated for convenience [35,40]. The influence of in-
teractions is encapsulated in the exponent. Assuming a
zero-temperature limit, this component can be defined by the
following formula,

S±(x, t ) =
∫ ∞

0

dq

q
[e∓i(ωqt−qx) − e∓i(vqt−qx)], (3)

where ωq = vq(1 + νq/2πv) denotes the plasmon dispersion
relation.

In the following, we examine interactions characterized
by an exponential decay in momentum space, with screening
length λ and strength ν [40], denoted by

ν(exp)
q = ν exp (−λ|q|). (4)

This representation allows us to approximate the corre-
sponding Green’s functions, thereby facilitating an analyt-
ical treatment and improving the efficiency of numerical
evaluation.

Upon employing Eq. (4), the exponent in Eq. (3) can be
expressed as a sum of powers of simple poles in the complex
t plane [40],

S(exp)±(x, t ) =
∞∑

n=1

1

n

[ ν
2π

t

x − vt ± iλn

]n

. (5)

We also explore a model Green’s function [35,40] which
only contains two velocities instead of a continuum of plas-
mon velocities

G±
2v(x, t ) = 1

2π

1

x − vt ± iε

x − vt ± iλc

x − v̄t ± iλc
, (6)

where one pole is determined by the unrenormalized elec-
tronic velocity v and another by the interaction renormalized
velocity v̄ = v + ν/2π , which coincides with the plasmon
velocity defined by the derivative of ωq at q = 0.

In both models, we enforce strict chirality, setting
the advanced Green’s function Ga(x, t ) = �(−t )[G<(x, t ) −
G>(x, t )] to zero for x > 0. Assuming small tunneling ampli-
tudes ηi/f, the general formula for the distribution of electrons
and holes in relation to the channel’s ground state [41–43]
(which is proportional to the detector signal both above and
below the Fermi level) can be expressed as follows:

p(x, ωi, ωf )

= v2

2π

∫ +∞

−∞
dt0

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 eiωft0 e−iωi (t1−t2 )

× G−(0, t1 − t2)Gα (0,−t0)[
−+(x, 0, t0, t1, t2)

− 
−−(x, 0, t0, t1, t2)]. (7)

In this equation, α denotes the lesser component (−)
below the Fermi level, ωf < 0, and the greater com-
ponent (+) above the Fermi level, ωf > 0. In addition,
we use the abbreviation 
βγ (x, t0, t1, t2, t3) = Gβ (x, t0 −
t3)Gγ (x, t1 − t2)/Gβ (x, t1 − t3)Gγ (x, t0 − t2), and the dis-
tance x = xf − xi describes the spatial separation between the
emitter and detector along the channel.

Two-velocity model. To focus on the energetic sector of
Fermi sea excitations centered around the chemical potential
μ = 0 for high-energy injected electrons (ωi � v̄/λ), we will
neglect the poles of the Green’s functions in Eq. (7) that con-
tribute to terms decaying exponentially with ωi. This approach
leads to the following expression for both models:

pFS(x, ωf ) = −i
v2

2π

∫ ∞

−∞
dt0

∫ ∞

−∞
dt1 eiωf (t0−t1 )

× Gα
c (0, t1 − t0) exp[S+(x, t0) − S−(x, t0)]

× exp[S−(x, t1) − S+(x, t1)]. (8)

As a first test for the validity of Eq. (8), we apply it to
the Green’s functions of the two-velocity model specified in
Eq. (6). This method leads to the following result for the

L081112-2



DYNAMICAL BREAKING OF ELECTRON-HOLE SYMMETRY … PHYSICAL REVIEW B 109, L081112 (2024)

−4 −2 0 2 4
ωf [v/λc]

−2

−1

0

1

2
p F

S
,2

v
( x

s,
ω

f)
[λ

c/
v̄
]

v̄ = 1v

v̄ = 1.2v

v̄ = 2v

FIG. 2. Fermi sea distribution for the two-velocity model, eval-
uated at xs = 10λc. The resulting distribution, as apparent from
Eqs. (9) and (10), decays exponentially as a function of the detec-
tion energy. While the distribution is symmetric between positive
and negative energies in the scaling limit v̄ = v [cf. Eq. (11)], for
v̄ > v the distribution develops an asymmetry with a slower decay
for ωf > 0, but a smaller initial value for ωf = 0+ as compared to
ωf = 0−.

density of electrons above the Fermi sea (ωf > 0),

pe
FS,2v(xs, ωf )

= +λc

v̄

x2
s + λ2

c

(
1 − v̄

v

)2

x2
s + λ2

c

(
1 + v̄

v

)2

(
4v

3v̄
+ 2

3

)
exp

(
−2ωf

λc

v̄

)
.

(9)

Similarly, we obtain the density of holes below the Fermi sea
(ωf < 0) as

ph
FS,2v(xs, ωf )

= −λc

v̄

x2
s + λ2

c

(
1 − v̄

v

)2

x2
s + λ2

c

(
1 + v̄

v

)2

6(
2 + v

v̄

) exp

(
+2ωf

λc

v

)
. (10)

Here, xs = (v̄ − v)x/v corresponds to the spatial disper-
sion of the wave packet when observed at the detection point
[40]. The expressions in Eqs. (9) and (10), displayed for
xs = 10λc in Fig. 2, agree with the results derived for the
corresponding Fermi sea excitations when fully evaluating
Eq. (7) for the two-velocity model [Eq. (6)]. This agreement
holds true in the limit of high injection energy limit, i.e., when
ωi � v̄/λ [40].

Distribution for exponential interaction. We set out to
evaluate the distribution in Eq. (8) numerically for the full

interaction exponent specified in Eq. (5). This equation is the
outcome of employing the exponential form of interactions
found in Eq. (4). To achieve this, we consider a scaling limit
characterized by large propagation distances (x � λ) and
weak interactions (ν/2π � v). We maintain the product of
these quantities, denoted by xs = xν/2πv, which corresponds
to the spatial dispersion at the detection point, as constant
[40]. The two-velocity solution [Eqs. (9) and (10)] in this limit
exhibits symmetry between electrons and holes, expressed as

pFS,2v(ωf , xs ) = α
2λc

v

x2
s

x2
s + 4λ2

c

e−αωf
2λc
v . (11)

Here, α = +1 when above the Fermi sea (ωf > 0) and α = −1
when below the Fermi sea (ωf < 0). Notably, the distribution
just decays exponentially as a function of the detection energy
ωf for all xs values.

For the full model’s evaluation, we begin by recogniz-
ing that the Green’s functions independent of x in Eq. (8)
become noninteracting within the scaling limit. By shifting
t̃0 → t̃0 + x/v and t̃1 → t̃1 + x/v in Eq. (8), the scaling limit
can be applied to the x-dependent exponents, yielding

S(exp)±
(

x, t + x

v

)
scaling−−−→
limit

∞∑
n=1

1

n

(−xs )n

(vt ∓ iλn)n
. (12)

By understanding the singularities of the integrand in
Eq. (8), we are able to express the distribution as the limit of a
sequence of contour integrals. The integrand of each element
of the sequence is proportional to the integrand in Eq. (8) but
with the sums in the exponent restricted to the first N terms.
As a result, for each element of the sequence, the integrand has
only a finite number of singularities. The integration contour
we consider is given by a semicircle that follows the real
line and is closed in the suitable half plane, encapsulating all
singularities within that half plane. The contribution of the arc
segment of the contour decreases in accordance with Jordan’s
lemma. For each sequence element, we can then separate the
two contour integrals by rewriting the noninteracting Green’s
function as an integral

1

v(t̃0 − t̃1) ± iε
= ∓iv

∫ ∞

0
dω e±iω[(t̃0−t̃1 )±i ε

v ], (13)

and then exchanging the contour integrals with the frequency
integral. Finally, we can identify the decoupled contour inte-
grals as complex conjugates of each other and thus express the
distribution as

pFS(xs, ωf )
scaling−−−→
limit

lim
N→∞

α

4π2

∫ ∞

0
dω

∣∣∣∣∣
∫

CN

dtei(|ωf |+ω)t exp

(
N∑

n=1

(−xs)n

n

[
1

(vt − iαλn)n
− 1

(vt + iαλn)n

])∣∣∣∣∣
2

, (14)

where CN can be any bounded contour enclosing all N
singularities in the upper half plane, and α = +1 for the
electron distribution (ωf > 0) and α = −1 for the hole
distribution (ωf < 0). This approach facilitates an efficient nu-

merical computation of excited charge carriers’ distributions,
extending to values of xs up to 100λ. In our numerical cal-
culations, we employ dimensionless variables ξs = xs/λ and
εf = ωfλ/v.
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FIG. 3. Density pFS of Fermi sea excitations for a range of xs

values. Interestingly, for large values of xs, the distribution of excited
electrons (ωf > 0) displays a greater concentration near the chemical
potential at ωf = 0 compared to the distribution of holes (ωf < 0).

The distributions we have computed are presented in Fig. 3
for different values of xs. It is apparent from Eq. (14) that,
unlike the two-velocity model solution in the scaling limit,
given in Eq. (11), the distributions of electrons and holes are
not the same. This is due to the presence of α in the exponent.
As shown in Fig. 3, an asymmetry develops between these
distributions for larger xs values. Contrary to the two-velocity
model, the decay is not exponential as a function of detection
energy. Instead, the hole distribution starts off with a slow
decay, whereas the electron distribution has a higher peak at
low energies before rapidly decaying.

This asymmetry is visualized in Fig. 4, which displays
the difference, |pFS(ωf, xs )| − |pFS(−ωf, xs )|, between the ab-
solute values of the electron and hole distributions at the
corresponding xs values. Notably, the distribution for xs = λ is
almost symmetric. Close to the Fermi energy, it only deviates
by a few percent from the two-velocity solution given in
Eq. (11). This similarity to the two-velocity solution is even
more pronounced for smaller xs values.

By expanding Eq. (8) for the exponential interaction model
in the scaling limit in xs/λ and evaluating the integrals up to
a specific order in xs/λ, we gain insight into the similarity
between the two solutions for small values of ξs. Numerically,
we discover that the distribution is perfectly symmetric up
to order (xs/λ)2. In an expansion, asymmetric contributions
arise starting only at order (xs/λ)4 or higher. Consequently,
the total distribution is nearly symmetric in the regime of weak
interaction strength and short propagation length (xs/λ � 1),
which second-order perturbation theory adequately captures.
We suggest that the asymmetric contributions at higher expan-
sion orders arise due to the interference of states with different
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FIG. 4. The difference of Fermi sea excitation densities pFS for
electrons and holes, plotted for the same values of xs in Fig. 3. For
values xs � 1, this difference becomes significant.

numbers of plasmons in the Fermi sea (cf. the discussion in the
Supplemental Material [44]).

Additionally, we analytically derived the expansion up to
order (xs/λ)2 and found that it matches the (xs/λ)2 term
obtained from expanding Eq. (11) for small xs when λc = λ.
This clarifies why the two-velocity solution agrees well with
the solution from the exponential interaction model for small
xs/λ values.

Conclusion. In this Letter, we have explored the excita-
tion dynamics of charge carriers originating from the Fermi
sea within a one-dimensional chiral channel, driven out of
equilibrium by the dissipated energy of high-energy injected
electrons. We focused on Fermi sea excitations by discarding
terms that decay exponentially with the injection energy. We
evaluated the robustness of this approach by juxtaposing the
expression obtained by neglecting the exponentially decaying
terms with the result of a full calculation of the channel’s
distribution and then taking the limit of high injection energy.
This comparison was conducted within an analytical model
that contains only two different excitation velocities.

Upon performing a numerical analysis of the densities
of charge carriers excited from the Fermi sea for the full
model within a scaling limit, we discovered an asymmetry
between the excitations of electrons and holes. This asym-
metry becomes apparent when the propagation distances and
interaction strengths surpass the applicability of second-order
perturbation theory.
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