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Quasiuniversality from all-in–all-out Weyl quantum criticality in pyrochlore iridates
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We identify an exotic quasiuniversal behavior near the all-in–all-out Weyl quantum critical point in three-
dimensional Luttinger semimetals, such as the pyrochlore iridates R2Ir2O7, with R a rare-earth element. The
quasiuniversal behavior is characterized by power laws with exponents that vary slowly over several orders
of magnitude in energy or length. However, in contrast to the quasiuniversality discussed in the context of
deconfined criticality, the present case is characterized by a genuinely universal ultra-low-temperature behavior.
In this limit, the pertinent critical exponents can be computed exactly within a renormalization group analysis.
Experimental implications for the pyrochlore iridates are outlined.
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Quasiuniversality refers to a situation in which observ-
ables display apparent critical behavior over several orders
of magnitude of energy or length, where, however, closer
inspections of the observed power laws reveal slow drifts
in the corresponding exponents [1–3]. Such a situation has
recently been intensely discussed in the context of deconfined
quantum criticality between antiferromagnetic and valence-
bond-solid orders in two-dimensional quantum magnets [4,5].
In this case, the quasiuniversal behavior observed in numer-
ical simulations [6] is believed to arise from a collision and
subsequent annihilation of the corresponding critical fixed
point with another, bicritical, fixed point, leaving behind a
slow renormalization group flow [1–3,7]. In this scenario,
the ultra-low-temperature behavior is ultimately weakly first
order, with, however, a large finite-temperature regime char-
acterized by quasiuniversality. An alternative interpretation
of the numerical data is the presence of a second divergent
length scale at criticality [8]. In this competing scenario, the
low-temperature behavior is genuinely universal, but requires
an adapted scaling ansatz accommodating the presence of the
additional length scale.

In the present Letter, we identify quasiuniversal behavior
in a three-dimensional model relevant to a class of pyrochlore
iridates with chemical composition R2Ir2O7, where R is a
rare-earth element, e.g., R = Pr, Nd. In their metallic phases,
these compounds exhibit an electronic excitation spectrum
characterized by quadratic band touching at the Fermi level
[9,10], and as such fall into the larger class of Luttinger
semimetals [11,12]. However, in comparison with the promi-
nent members of this class, HgTe [13] and α-Sn [14], the
pyrochlore iridates feature a substantially increased effective
quasiparticle mass, implying an enhanced role of electronic
interactions [15,16]. If strong enough, these interactions can
drive symmetry-breaking transitions, across which the elec-
tronic spectrum becomes partially or fully gapped out. Many
pyrochlore iridates, such as Nd2Ir2O7 [10,17], indeed display
a finite-temperature transition, below which the iridium mo-
ments feature all-in–all-out (AIAO) antiferromagnetic order.
This state breaks time reversal but preserves crystal symme-
tries [18]. Pr2Ir2O7, by contrast, appears to remain disordered

up to the lowest accessible temperatures [15,19]. By varying
the concentration x in (PrxNd1−x )2Ir2O7 and/or by applying
hydrostatic pressure, the Néel temperature associated with
the onset of AIAO order can be tuned to zero, uncovering
an underlying quantum phase transition [20]. Small AIAO
order converts the quadratic band touching point into eight
symmetry-related linear band crossing points [21–23]. Conse-
quently, the quantum phase transition is expected to separate
the symmetric Luttinger semimetal from a time-reversal-
broken Weyl semimetal. The presence of gapless fermions
at the transition indicates the possibility of unconventional
behavior. In fact, previous theoretical work suggested a novel
type of fermionic quantum critical point [24,25]. Here, we
elucidate the finite-temperature properties of this transition,
relevant for the experiments on the pyrochlore iridates. We
reveal a large finite-temperature regime above the quantum
critical point that is characterized by quasiuniversality (see
Fig. 1). This unusual behavior arises from the presence of a
marginally irrelevant coupling at the corresponding renormal-
ization group fixed point. Importantly, we present an approach
that allows us to identify properties of this fermionic quantum
critical point exactly, including its nontrivial critical expo-
nents. Our results reveal the AIAO Weyl quantum critical
point in pyrochlore iridates as a unique instance of an in-
teracting continuous quantum phase transition that is both
experimentally and theoretically accessible. As a side product,
we demonstrate the emergence of strong cubic anisotropy at
criticality, thereby resolving an apparent contradiction in the
literature [24,25].

Model. At the quantum critical point, the system can
be effectively described by a continuum Euclidean action
S = ∫

dτd3xL, with Lagrangian L = L0 + La + Lφ . Here, L0

describes noninteracting electronic quasiparticles near the
quadratic band touching [26–31],

L0 =
N∑

i=1

ψ
†
i

(
∂τ +

5∑
a=1

(1 + saδ)da(−i∇ )γa

)
ψi, (1)

and originates in the Luttinger Hamiltonian [32]. In the
above, N corresponds to the number of band touching points
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FIG. 1. Schematic finite-temperature phase diagram of py-
rochlore iridates R2Ir2O7 near the quantum critical point (QCP)
between the Weyl semimetal with all-in–all-out (AIAO) order,
sketched in the inset, and the symmetric Luttinger semimetal. r
indicates a nonthermal tuning parameter, such as chemical doping
or hydrostatic pressure. Between the nonuniversal high-temperature
regime and the genuinely universal ultra-low-temperature regime,
there is a large quasiuniversal regime, characterized by power laws
with slowly varying exponents.

at the Fermi level, with N = 1 in the case of the py-
rochlore iridates, ψi is a four-component Grassmann field,
sa := 1 (sa := −1) for a = 1, 2, 3 (a = 4, 5), δ parametrizes
the cubic anisotropy with −1 � δ � 1, the 4 × 4 matrices
γa fulfill the Euclidean Clifford algebra, {γa, γb} = 2δab1,
and da are proportional to 	 = 2 real spherical harmonics,
viz., d1( �p) = √

3py pz, d2( �p) = √
3px pz, d3( �p) = √

3px py,

d4( �p) =
√

3
2 (p2

x − p2
y ), and d5( �p) = 1

2 (2p2
z − p2

x − p2
y ). More-

over, we account for the long-range Coulomb interaction
∼1/|�x| via [29,33,34]

La = 1

2
(∇a)2 + iea

N∑
i=1

ψ
†
i ψi, (2)

where a denotes the scalar Coulomb field, and e the effective
charge. Fluctuations corresponding to AIAO ordering on the
pyrochlore lattice are parametrized by an Ising field φ, and
couple to the electronic quasiparticles as [24,25,35]

Lφ = 1

2
φ(r − ∇2)φ + gφ

N∑
i=1

ψ
†
i γ45ψi. (3)

Here, r denotes the tuning parameter for the quantum phase
transition, g the coupling constant, and γ45 := iγ4γ5. A term
(∂τφ)2 can be included in Eq. (3) as well, but is power-
counting irrelevant and as such does not change the critical
behavior. The same is true for bosonic self-interactions, such
as a φ4 term. A finite expectation value 〈φ〉 �= 0 breaks time
reversal and splits the quadratic band touching point into four
pairs of Weyl nodes along the [111] and symmetry-related
axes in the cubic basis.

Mean-field analysis. We start by discussing the model
on the level of mean-field theory at zero temperature.
Formally, mean-field theory corresponds to the limit of
large number N of quadratic band touching points at the
Fermi level. This effectively suppresses fluctuations of the
bosonic fields. The value of the order parameter is then ob-
tained by minimizing the mean-field energy EMF(φ) = r

2φ2 +∑2
i=1

∫
�p ε

(i)
φ ( �p), where ε

(1,2)
φ denote the two lower-branch

FIG. 2. Zero-temperature phase diagram of effective model as a
function of cubic anisotropy δ and interaction strength g2/r, from
mean-field theory. Coloring indicates the magnitude of the AIAO
order parameter 〈φ〉. With the onset of order, the quadratic band
touching point of the Luttinger semimetal splits into four pairs of
Weyl points in the AIAO Weyl semimetal (see insets). The transition
is continuous (discontinuous) for δ � δ0 (δ > δ0), with δ0 ≈ 0.0624.
Dashed lines delimit the region in which metastable states exist.

eigenvalues of the mean-field Hamiltonian HMF = ∑5
a=1(1 +

saδ)da( �p)γa + gφγ45 [see Supplemental Material (SM) (a) for
details [36]]. The resulting phase diagram is presented in
Fig. 2. We observe two distinct phases, the paramagnetic
Luttinger semimetal phase and the time-reversal-broken Weyl
semimetal phase. The former is located at small coupling
below a finite threshold (g2/r)c and hosts a quadratic band
touching point with fourfold degeneracy at zero momentum.
The Weyl semimetal phase, characterized by a finite order
parameter, is encountered above the phase boundary. It hosts
four pairs of Weyl nodes along the [111] and symmetry-
related axes in the electronic spectrum, and features AIAO
order on the pyrochlore lattice. For anisotropies δ � δ0 ≈
0.0624, we observe a continuous phase transition, while for
δ > δ0, the phase transition becomes discontinuous. The latter
case gives rise to metastable states in the region around the
transition, delimited by the dashed lines in Fig. 2. Importantly,
ab initio calculations and photoemission spectroscopy exper-
iments in Pr2Ir2O7 [9] suggest δ < 0, placing this material
into the regime with a continuous transition [37]. Note that at
strong coupling, a second transition towards a Mott-insulating
phase may be expected [21,23,38], which is not captured by
the mean-field theory of our effective model. However, the
presence or absence of this strong-coupling phase is irrelevant
for the physics close to the quantum critical point between
Luttinger and AIAO Weyl semimetals, which we will focus
on in the following.

Renormalization group analysis. Note that the partially
bosonized Lagrangian L = L0 + La + Lφ features a unique
upper critical dimension, since both the Yukawa coupling g
and the effective charge e become marginal in d = 4 spatial
dimensions. This allows a standard ε = 4 − d expansion. We
start by discussing the results at one-loop order, naively valid
only for small ε, but will then show that higher-loop correc-
tions in fact vanish exactly at the AIAO Weyl quantum critical
point. Integrating out modes with momenta q in the thin shell
�/b < q < �, where � denotes the ultraviolet cutoff, and
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FIG. 3. Fixed-point structure for N = 1 on the critical hypersurface r = 0 in (a) the parameter space spanned by δ, g2, and e2, (b) the g2-e2

plane for fixed δ = −1, (c) the δ-g2 plane for fixed e2 = 9ε/16, and (d) the δ-e2 plane for fixed g2 = 0. Black (gray) dots and lines indicate
fixed points and separatrices, respectively, located within (projected onto) the respective planes. Arrows denote flow towards the infrared, with
their coloring indicating the flow velocity. There is a unique quantum critical fixed point at finite coupling, labeled as QCP. It corresponds to
the continuous transition between the symmetric Luttinger semimetal and the AIAO-ordered Weyl semimetal. The symmetric state is described
by the Luttinger-Abrikosov-Beneslavskii fixed point at g2 = 0, labeled as LAB. The dots labeled as A, A′, QCP0, and G correspond to unstable
interacting and Gaussian, respectively, fixed points, further discussed in the SM.

arbitrary frequency, leads to the flow equations at criticality
r = 0 as [see SM (b) [36]]

dδ

d ln b
= − 2

15
(1 − δ2)2[(g2 + e2) f1e + (g2 − e2) f1t], (4)

dg2

d ln b
= (ε − ηφ )g2 − 2

15
(1 − δ2)[(1 + δ)(g2 + e2) f1e

− (1 − δ)(g2 − e2)( f1t − 3 f2e)]g2, (5)

de2

d ln b
= (ε − ηa)e2 − 2

15
(1 − δ2)[(1 + δ)(g2 + e2) f1e

− (1 − δ)(g2 − e2) f1t]e
2, (6)

where ηφ = Ng2 fg2 and ηa = Ne2 fe2 . Here, fi ≡ fi(δ) with
i ∈ {1e, 1t, 2e, e2} (i ∈ {g2}) are bounded and continuous
functions of the anisotropy parameter δ with fi > 0 ( fg2 �
−2/3) for δ ∈ [−1, 1] and fi = 1 ( fg2 = 0) for δ = 0. Their
definitions and numerical values for δ �= 0 are given in SM (c)
[36]. In the above flow equations, we have rescaled the cou-
plings as (g2, e2)�−ε/(2π2) 
→ (1 − δ2)(g2, e2), which turns
out convenient to assess the properties of the stable fixed
point. Note that this implies that higher-order loop correc-
tions to the above equations will involve additional factors
of (1 − δ2). Importantly, in the present form, the stable fixed
point associated with AIAO Weyl quantum criticality is lo-
cated at finite couplings, as we show next.

Figure 3(a) depicts the fixed-point structure for N = 1 on
the critical hypersurface r = 0 in the space spanned by the
parameters δ, g2, and e2. Notably, both g2 and e2 are rele-
vant couplings and flow towards a finite value in the infrared
[Fig. 3(b)]. For finite g2, the anisotropy parameter δ then no
longer has a fixed point at δ = 0, and instead flows towards
maximal anisotropy δ = −1 [Fig. 3(c)]. Most importantly,
there is a unique stable fixed point at finite couplings, lo-
cated at δ� = −1 and g2

� = e2
� = 9ε/(16N ). This fixed point,

labeled as QCP in Figs. 3(a)–3(c), corresponds to the con-
tinuous quantum phase transition between the symmetric
Luttinger semimetal, described by the Luttinger-Abrikosov-
Beneslavskii fixed point [26–29] in the g = 0 plane [Fig. 3(d)]
and the AIAO-ordered Weyl semimetal. It is characterized

by finite boson anomalous dimensions ηφ = ηa = ε, vanish-
ing fermion anomalous dimension ηψ = 0, and a dynamical
critical exponent z = 2. From the flow of the tuning parame-
ter r, we furthermore obtain the correlation-length exponent
ν = 1/(2 − ε). In SM (d), we show that particle-hole sym-
metry becomes emergent at the quantum critical point [36].
SM (e) also contains a discussion of the other, unstable, fixed
points [36].

The stable fixed point has remarkable properties. First of
all, the fact that it is located at δ� = −1 implies that higher-
loop corrections to the vertex renormalizations [Eqs. (5) and
(6)] vanish at criticality [see SM (f) for details [36]]. As a
consequence, we find that our one-loop results z = 2, ηφ =
ηa = 4 − d , and ν = 1/(d − 2) hold at all loop orders at the
quantum critical point. The transition between Luttinger and
AIAO Weyl semimetals in the pyrochlore iridates therefore
realizes a rare instance of an interacting fermionic quantum
critical point in a three-dimensional system that allows an
exact determination of its critical properties. With the exact
results at hand, we can resolve an apparent contradiction
in the literature concerning the relevance or irrelevance of
the cubic anisotropy at this quantum critical point [24,25].
While the anisotropy parameter δ vanishes at the Luttinger-
Abrikosov-Beneslavskii fixed point, it flows towards δ = −1
at the quantum critical fixed point. Technically, the emergence
of this maximal anisotropy at criticality arises from the order-
parameter contributions to the fermion self-energy, which are
neglected in the analysis of Ref. [25].

Quasiuniversality. In the vicinity of the quantum critical
fixed point at δ� = −1, the flow of the anisotropy parameter
takes the form

d(δ − δ�)

d ln b

∣∣∣∣
g2

�,e
2
�

= −cε

N
(δ − δ�)2 + O((δ − δ�)3), (7)

with a constant c := 3 f1e(−1)/5 ≈ 0.4449. Note the absence
of a linear term ∝(δ − δ�) in the above equation. The devia-
tion (δ − δ�) corresponds to a marginally irrelevant parameter,
implying a logarithmically slow flow towards the critical
point, δ(b) − δ� � N/(cε ln b), for ln b � 1. By contrast, the
Yukawa coupling and the effective charge acquire a power-law
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FIG. 4. Renormalization group flow on the critical hypersurface r = 0 from the ultraviolet scale, corresponding to b−ε = 1, to a
deep infrared scale, corresponding to b−ε = 10−6, starting from different microscopic parameters. Each curve corresponds to a nu-
merical integration of the flow equations using the initial conditions (δ, g2, e2) = (−0.5, 0.7391, 0.9098 + �) for b−ε = 1, with � =
−0.7, −0.6, −0.4, 0, 0.8, 2.4, 5.6 from purple to red. The starting values of (g2, e2) have been chosen to satisfy the pseudo-fixed-point
conditions for δ = −0.5 when � = 0. (a) Flow trajectories in the parameter space spanned by δ, g2, and e2, illustrating the crossover from
the nonuniversal regime, characterized by independent trajectories, to the quasiuniversal regime, in which these collapse onto a single curve.
Deviations of (b) anisotropy parameter δ and effective exponents (c) ηψ = 2 − z and (d) ηφ = 2 − 1/ν from their respective critical values
as a function of renormalization group scale b−ε . The quasiuniversal regime emerges at b−ε � 10−3, as indicated by the dashed line, and
manifests itself in (g2, e2)-independent, but anisotropy-dependent, drifting exponents. Note that the flow is still significantly away from its
ultra-low-energy limit even at b−ε = 10−6, as evidenced by the finite deviation δ − δ� � 0.1 in (b).

flow, g2(b) − g2
� ∝ b−ε and e2(b) − e2

� ∝ b−ε . This implies
a separation of scales, giving rise to the following three
regimes in energy: In the nonuniversal high-energy regime,
the couplings g2 and e2 flow from their microscopic values
towards pseudo-fixed-point values g2

∗(δ) and e2
∗(δ), which

depend only on the anisotropy parameter δ. Within this
regime, the latter can be considered approximately constant.
Its slow flow becomes visible only when several orders of
magnitude in energy are considered. This defines a quasi-
universal intermediate-to-low-energy regime [2,6], in which
the couplings g2 and e2 no longer depend on their mi-
croscopic values, but solely follow their pseudo-fixed-point
values g2

∗(δ) and e2
∗(δ) with a slowly varying anisotropy pa-

rameter δ. In this regime, the correlation length becomes
large, such that observables display approximate power laws
with slowly drifting exponents [39,40]. Finally, the genuinely
universal ultra-low-energy regime will be reached only after
the anisotropy parameter has approached its ultimate infrared
regime, which requires fluctuations on unusually many energy
scales to be integrated out.

This is exemplified in Fig. 4, which shows the numeri-
cally integrated renormalization group flow for different initial
couplings on the critical hypersurface r = 0. The couplings
g2 and e2 first exhibit a fast flow on individual, nonuniversal
trajectories, but then approach a single, quasiuniversal trajec-
tory of pseudo-fixed points (g2

∗(δ), e2
∗(δ)), along which they

only slowly flow, as a consequence of the slow flow of δ

[Fig. 4(a)]. In fact, even after six orders of magnitude in bε

have been integrated out, δ is still significantly away from its
ultra-low-energy value δ� = −1 [Fig. 4(b)]. There is therefore
a large quasiuniversal regime characterized by approximate
power laws with effective critical exponents, which are only
slowly drifting with energy or length. As shown in SM (b)
[36], the present model satisfies additional scaling relations
between the different exponent, viz., z = 2 − ηψ and 1/ν =
2 − ηφ . There are therefore only two independent effective
exponents. Their slow drifts as a function of scale are de-
picted in Figs. 4(c) and 4(d), illustrating the fact that the

genuinely universal values are reached, at least for some of
the exponents, only in the ultra-low-energy limit. We empha-
size that the slow renormalization group flow is independent
of microscopic parameters and as such will occur in any
given material realization of the AIAO Weyl quantum critical
point in Luttinger semimetals. In SM (g) [36], we compare
the quasiuniversal flow with a generic power-law flow of a
toy model that does not feature a marginal coupling, illus-
trating the unusual behavior observed in the quasiuniversal
regime.

Experiments. The quasiuniversal regime is separated by
crossovers from the nonuniversal regime at the ultraviolet
scale and the genuinely universal regime in the deep infrared,
and realizes a novel strongly interacting quantum state of
matter. For the pyrochlore iridates, the relevant energy scale
above which the physics depends on microscopic details of
the material is around 100 K [18]. Assuming z � 2, each
order of magnitude in energy corresponds to only half an
order of magnitude in bε , if ε = 1. The ultra-low-temperature
behavior will therefore be reached only well below the 1 mK
regime. Such a regime is not only difficult to access exper-
imentally and necessitates sufficiently pure crystals that do
not cut off the required long-range fluctuations: In the case
of the pyrochlore iridates, we also expect new effects in this
ultra-low-energy regime, arising from the weak Kondo cou-
pling of the iridium electrons to the rare-earth local moments
[41,42]. The experimentally most easily accessible regime
below 100 K, by contrast, will be governed by quasiuniver-
sal behavior, characterized by approximate power laws with
slowly drifting exponents. The specific heat as a function
of temperature, for instance, is expected to scale as C ∼
T d/z with drifting exponent d/z > 3/2 at around 100 K and
d/z = 3/2 in the ultra-low-temperature limit. Observing such
drifting exponents, e.g., in careful thermodynamic and/or
transport measurements, would accomplish the experimental
realization of this state of matter.

Conclusions. We have demonstrated the emergence of a
quasiuniversal regime, which should be understood as a differ-
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ent strongly interacting quantum state of matter, in the finite-
temperature phase diagram of interacting three-dimensional
Luttinger semimetals. While quasiuniversal behavior is usu-
ally associated with a fixed-point annihilation scenario [2,3],
our results show that the presence of a marginally irrel-
evant operator can lead to the same phenomenology. Our
findings call for experiments on sufficiently pure samples of
pyrochlore iridates R2Ir2O7, which search for power laws with
slowly drifting exponents in the intermediate-energy regime
above the Weyl-Luttinger quantum phase transition [20,43].
In the ultra-low-energy regime, by contrast, the weak Kondo
coupling between the iridium electrons and the rare-earth

local moments might lead to even more intriguing effects,
the study of which represents an excellent direction for future
theoretical work.
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