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Pseudospin polarization of composite fermions under uniaxial strain
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A two-dimensional system with extra degrees of freedom, such as spin and valley, is of great interest in the
study of quantum phase transitions. The critical condition when a transition between different multicomponent
fractional quantum Hall states appears is one of the very few junctions for many-body problems between theo-
retical calculations and experiments. In this work, we present that uniaxial strain induces pseudospin transitions
of composite fermions in a two-dimensional hole gas. Determined from transport behavior, strain along (111)
effectively changes pseudospin energy levels. We deduce that diagonal strain dominates these variations. Our
experiment provides a wedge for manipulating two-dimensional interacting systems mechanically.

DOLI: 10.1103/PhysRevB.109.L081110

In two-dimensional systems at ultralow temperatures and
high magnetic fields, exotic quantum states have been stabi-
lized by the strong correlation between electrons. It is well
known that noninteracting electrons form a series of discrete
energy levels called Landau levels (LLs) in magnetic fields,
and the filling factor v describes the number of occupied
LLs. At different filling factors, two-dimensional electrons
exhibit rich quantum phenomena, such as integer quantum
Hall effect [1], fractional quantum Hall (FQH) effect [2], and
charge density waves [3-8]. When a two-dimensional system
has additional degrees of freedom, multicomponent quantum
phases emerge. For example, at a particular filling factor, FQH
states with different spin, valley, and subband compete with
each other and transitions occur when those states become
degenerate in energy. Such transitions can be induced by
tuning the status of these components, such as tilted field
[9-11], gate-tuning density [12,13], biaxial strain [14,15],
and hydraulic pressure [16]. The energy separation between
different possible states near the transition is universal, so its
behavior can be compared with theoretical calculations, and
provides an insight into a complex quantum system.

In general, holes in GaAs are subjected to strong spin-orbit
interaction. The spin-orbit coupling in a two-dimensional sys-
tem is affected by two kinds of asymmetry. One is bulk
inversion asymmetry (BIA) which originates from the ma-
terial’s lattice structure and the other is structural inversion
asymmetry (SIA) which depends on the effective out-of-plane
electric field [17]. Uniaxial strain breaks the fourfold rota-
tional symmetry and tunes the orbital motion of particles.
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Previous investigations on FQH states under strain mostly
focus on symmetry, such as reorientation of stripe phase
[18] and anisotropy of Fermi contours [19-21]. However,
the energy variation of FQH states under strain has been
barely studied experimentally. The lowest two LLs share pre-
dominately N = 0 character and are separated by an energy
separation A shown in Fig. 1(e). When A is small, multi-
component FQH effects appear. Here, we report pseudospin
polarization transitions at 1 < v < 2 induced by strain in a
two-dimensional hole gas. Our result implies that the lattice
deformation along (111), &(111y, tunes A through the BIA and
induces the observed transitions.

The GaAs/AlGaAs heterostructure sample in this work
is grown on a GaAs (001) wafer by molecular beam epi-
taxy. Two-dimensional holes are confined to a 17.5-nm-wide
symmetric GaAs quantum well, with carbon §-doped layers
and undoped Al 24Gag76As spacer layers on both sides. The
carrier density is np >~ 1.6 x 10'" cm™2, and the mobility
is larger than 1 x 10°cm? V~'s~! at low temperatures. Our
rectangular sample is dissociated along [110] and [110] which
are denoted by X axis and Y axis. An L-shaped Hall bar is
patterned in the 1 x 1 mm? center area of the sample, with
ten InZn contacts around the edge of the pattern. We use
epoxy to bond the sample, as shown on the inset of Fig. 1(a).
The sandwich structure is mounted on a commercial uniaxial
strain cell (Razorbill CS130) with homemade thermal con-
nections and electrical filters. The strain cell applies uniaxial
tension (pressure) on the sample and makes the sample expand
(shrink) along the X axis, while the sample along the Y and
Z axes is free and becomes shrunken (expanded). GaAs has
a zinc-blende structure which consists of face centered cubic
lattices of Ga and As atoms. The As lattices are a translation
of Ga lattices in the diagonal direction (111) of lattices. The
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FIG. 1. Mechanical properties and transport properties of a GaAs
sample. (a) Illustration of sample mounting, a pattern of an L-shaped
bar, and strain distribution. Stress is applied along (110), paralleled
with X axis. When the sample is compressed, the distribution of
diagonal strain &, along the black (red) dashed line is plotted
nearby. &1y is defined as &(;11y/&(111y — 1. The diagonal strain &y,
is simulated through the software SOLIDWORKS, and &y is the
mean strain calculated from a 1 x 1 mm? area at the center of the
sample. The configuration of the sample cell is shown as an inset.
(b) Logarithm of longitudinal resistance R, (R,,) normalized by
strain-free resistance R,—o, and hole density n,, as a function of
displacement AL, at zero magnetic field. Traces of resistances cross
at the zero-strain position. No apparent density shift is measured in
our sample. Two small ellipses are diagrams of Fermi contour at pos-
itive and negative strain. The solid and dashed lines represent bands
with different spins at k = 0. (¢c) Simulated mean diagonal strain, de-
noted by &1y, versus deformation displacement AX when applying
uniaxial strain along X axis. Simulated in-plane strain is defined as
& = &x — &y. When compressing with a reasonable value of 5 um, the
sample is expected to have a significant gy, up to —4.9 x 10™*. The
insets show exaggerated deformation of the sample in the X-Z plane.
The difference between AL, in (b) and AX in (c) suggests that the
sample is subjected to a prepressurized status from the cooling down
process. (d) Diagrams of valance bands in GaAs two-dimensional
hole systems. Since the quantization along Z axis, the heavy-hole
band and light-hole band show anticrossings and are mixed with
each other [17]. (e) Landau level diagram of two-dimensional hole
system. The nonlinear curves of Landau levels show strong spin-orbit
coupling [17]. The arrows denote the pseudospins on the two lowest
Landau levels. A is the energy separation between the two lowest
Landau levels.

strains along the X, Y, Z axes are projected to (111) to form
the strain along (111), namely diagonal strain &1y [22].
We note that the diagonal strain on the sample has a linear
dependence on the deformation displacement in Fig. 1(c). We
use &(111y to mark different strains applied on the sample in

this measurement. The simulated 111y along the two arms is
nearly uniform; see Fig. 1(a).

Uniaxial strain breaks the fourfold rotational symmetry
of the Fermi contour, which becomes elongated along the
direction where tensile strain is applied [19-21]. Therefore,
the longitudinal resistances versus strain at zero magnetic
field are plotted in Fig. 1(b). When tensing the sample along
the X axis, the resistance of X arm increases rapidly as dis-
placement AL, increases, while the resistance of the Y arm
decreases. The phenomenon is consistent with anisotropic
Fermi contours under strain [19-21]. When the resistances of
two arms are the same at AL, = —0.68 um, the transport is
isotropic suggesting zero uniaxial strain. The small negative
shift of displacement results from the thermal expansion of
the piezo, even though the strain cell uses thermal-expansion-
compensation technology [23].

The magnetoresistance traces of two arms at different (111,
for 1 < v < 2 are shown in Fig. 2(a). All traces are measured
at an effective temperature of about 41 mK using the same
magnetic field ramping sequence. Transitions of FQH states
around v = 3/2 can be seen. Corresponding R, (R,,) minima
of FQH states disappear and reappear with varying 1.
Note that the strength of the minima in the magnetoresistance
traces is associated with the energy gaps of FQH states. There-
fore, the energy gap undergoes a closing and reopening. The
weakening positions of FQH states in Fig. 2(a) are marked
by black diamonds. From the X-arm data, the 5/3 minimum
becomes less clear when 111y declines to —5.4 x 107*, and
it tends to disappear if €111y further decreases. On the other
side of v = 3/2, the 4/3 minimum is distinct at low strains,
but becomes less clear when &1y declines, disappears at
ey = —3.7 x 107*, and becomes distinct again at g(111) =
—5.4 x 107*. Other FQH states exhibit the same behaviors
as the 4/3 state. The 8/5, 7/5, 11/7, and 10/7 minima dis-
appear at g1jjy = —2.6 x 1074, —1.5 x 107*, —1.5 x 107*,
and —0.4 x 107%, respectively. These behaviors measured in
the Y arm are slightly quantitatively different from that mea-
sured in the X arm, due to the insignificant different value
of strain distribution shown in Fig. 1(a). Other than that,
traces of the Y arm are qualitatively similar to those of the X
arm.

The transitions in Fig. 2(a) data can be explained by the
pseudospin polarization transitions of composite fermions
(CFs). CF is a quasiparticle consisting of one electron and
even magnetic flux quanta. The interacting electrons in a mag-
netic field correspond to noninteracting CFs in an effective
magnetic field [24]. Similar to LLs formed by electrons, CFs
form a series of discrete energy levels called A levels and they
are separated by CF’s cyclotron energy fiwcg. In Fig. 1(d), the
GaAs quantum well confines holes along the Z axis and breaks
the degeneracy of heavy-hole and light-hole bands. The two-
dimensional holes occupy the doubly degenerate heavy-hole
bands which consist of heavy heavy-hole (HHh) and light
heavy-hole (LHh) subbands, see Fig. 1(d), and each subband
generates a set of LLs. Within the axial approximation, the
spin-orbit coupling mixes LLs with the same total angular
momentum along the Z axis, resulting in a complicated LL
diagram; see Fig. 1(e). In particular, the two lowest LLs have
mostly N = 0 characteristics and are separated by an energy
A determined by the spin-orbit coupling strength. We denote
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FIG. 2. (a) Longitudinal resistance traces of two arms measured under different strains at about 41 mK. Traces are offset vertically as

multiples of 700 €2 for clarity. The values of applied diagonal strain &y,

are shown on the right side of the Y-arm plot. The black trace shows

data from the minimum strain. Possible FQH states are labeled by solid straight lines, based on the density calculated from Shubnikov—de Haas

oscillations at low fields. Pseudospin transitions of FQH states take place

at weakened minima of R, and are marked with black diamonds. (b)

Cartoon charts of CFs with pseudospin degree of freedom. (c) Energy diagram of CF’s A levels. Black and red solid lines represent A levels
with down- or up-pseudospin, respectively. Strain &5,y induces pseudospin splitting of A level and pseudospin transition at the crossing.

them by up-pseudospin (1) and down-pseudospin ({,) respec-
tively. When A becomes comparable with A level separation,
multicomponent FQH states with pseudospin degree of free-
dom form [17].

Compared with LLs, the relation between composite
fermion A levels filling factor (v°F) and electron LLs fill-
ing factor (v) is v = vF/(2v°F 4 1) when v < 1. Since the
particle-hole symmetry, v equals 2 — vF/(2v°F 4- 1) when
1 < v < 2. The CFs also retain a pseudospin degree of free-
dom, and each A level can be either up-pseudospin (1)
or down-pseudospin ({). The v =5/3 (vF = 1) state has
only one A level, and can be either up-pseudospin (1) or
down-pseudospin () fully polarized, as shown in Fig. 2(b).
Similarly, the v = 4/3 (vV°F = —2) state has three different
pseudospin ground states, (11), (14), and (J|), and two
pseudospin transitions.

In the CFs picture, the v = 5/3 state has two pseudospin
ground states. Unlike other FQH states, the ground states
of v =5/3 are both fully polarized. The only transition be-
tween these two states, indicated by the increased longitudinal
resistance, takes place when the energy separation of the
pseudospin A equals zero. The transition from an unpolarized
v = 4/3 state (1) to a fully polarized v = 4/3 state (11 or
4 1) is induced when the pseudospin energy separation A is
equal to the A level separation hiwcg. Following the same
rationale, we propose that A increases as varying €111y so that
the 4/3, 8/5,7/5, 10/7, and 11/7 states finally become fully
polarized, illustrated as the energy diagram for CF A levels
in Fig. 2(c). We summarize the R, normalized by resistance
at v = 3/2 in Fig. 3(a). The maxima marked by the arrows in
Fig. 3(a) correspond to the last transitions marked by circles in
Fig. 2(c), after which the FQH states become fully polarized.
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FIG. 3. (a), (b) Longitudinal resistance at different FQH states
normalized to the nearly constant resistance of v = 3/2 as a function
of strain &1y along X arm and Y arm. The solid line in each trace is
an eye guide for tendency. Arrows mark pseudospin transitions corre-
sponding to circles in Fig. 2(c). (c) Phase diagram for the pseudospin
polarization properties of CFs. The black square dots and red circular
dots of the two arms are critical diagonal strains extracted from (a)
and (b). The black solid lines drawn as an eye guide represent the
phase boundary of the polarization transition. To compare data with
spin transition in Ref. [9], the zero point of polarization energy is
aligned with the minimum &;;;, where pseudospin energy separa-
tion A &~ 0. Moreover, we assume that polarization energy in two
different systems is the same order of magnitude, so the polarization
energy is scaled by the ratio of Coulomb energy which is propor-
tional to the square root of carrier density, since Coulomb energy
V. = e?/(4mely) and magnetic length Iz = \/fi/eB = \/v/2mn. The
electron density in Ref. [9] is 1, = 1.13 x 10" cm™2, and the hole

density in our sample is n, = 1.61 x 10" cm~2.

From this figure, 5/3, 4/3, 8/5,7/5, and 11/7 states are fully
polarized at zero strain [22].

For further analysis, we summarize the strain at the tran-
sitions to fully polarized states and plot a phase diagram in
Fig. 3(c). The diagram shows that critical &1, needed to
polarize FQH states decreases as |1/vCF| increases, creating
a “tent (A)” shaped phase boundary. FQH states except the
v =15/3 one are pseudospin-polarized above the tent, but
pseudospin—partially polarized below the tent. Du et al. found
a similar spin transition induced by an in-plane magnetic field
in a GaAs two-dimensional electron gas with consistent con-
clusions [9]. The scaled polarization energy (,/n,/\/n.)Ez
represents the energy separation A tuned by strain.

One might expect that A variation might be related to
the anisotropic Fermi contour, where positive and negative
in-plane strain ¢ = ey — gy correspond to anisotropy along

the X or Y axis, respectively. The GaAs (001) surfaces have
a square symmetry, so the X axis is equivalent to the Y axis
geometrically. As shown in Fig. 1(b), the resistance anisotropy
[Rex — Ryy|/|Rxx + R,y| is an even function of the in-plane
strain ¢ = ex — ¢y which is proportional to ex. Thus, if A
were related to the anisotropy, one would expect it to be an
even function of ex. However, the evolution in Figs. 3(a) and
3(b) and the phase diagram in Fig. 3(c) are clearly not evenly
symmetric about ex. Therefore, the in-plane anisotropy is not
likely the cause of variation in A.

We suggest that the diagonal strain, &(;11) which mono-
tonically depends on the displacement in Fig. 1(c), is likely
the cause of the change of A. In our nearly symmetric GaAs
quantum well sample, the effective SIA is negligible. The BIA
caused by the built-in dipole electric field along (111) direc-
tion in GaAs dominates the spin-orbit coupling. The energy
separation can be written as

eB

7 ey

A= %(Ez — howe) + %\/ (hwe + E.)* + 87
where w, is cyclotron angular frequency, E, is Zeeman energy,
and 7 is the prefactor related to BIA [17]. We estimate that
the cyclotron energy 7w, is about 1 meV and Zeeman energy
E, is about —0.5 meV at v = 1 — 2 in our sample. A equals
V/27%eB/h at a small magnetic field, while it tends to E, at
a high magnetic field. Since the effective g factor of Zeeman
energy is negative, E, is negative, so A = 0 appears at some
intermediate magnetic field; see Fig. 1(e). When we compress
our sample along the X axis, the distance between Ga and
As planes perpendicular to the (111) direction decreases and
the interatomic overlap increases. Our results suggest that
the BIA-induced spin-orbit interaction |#| increases and the
energy degenerate point (A = 0) moves to a higher magnetic
field. The FQH states at v =1 —2 are on the high-field
side of the degenerate point [25]. These states tend to be
pseudospin-unpolarized when spin-orbit interaction increases.
In a previous study, hydrostatic pressure can also reduce the
pseudospin separation of two-dimensional hole systems [16].
In Fig. 4, we compare the evolution of v =5/3 and 4/3
states induced by uniaxial strain and the hydrostatic pressure.
The excitation gap of the v = 5/3 state decreases, and that
of the v =4/3 state decreases to zero and then increases
whether the sample is compressed uniaxially or uniformly.
A comparable feature is the weakening of the 4/3 state. It
appears at 1.8 kbar in the hydrostatic pressure experiment,
corresponding to critical g1y = —7.9 x 1074, as well as
at critical g(11;) = —3.6 x 107" in our uniaxial strain exper-
iments [22]. We note that hydrostatic pressure makes the
sample shrink uniformly, while uniaxial compressive pressure
makes the plane perpendicular to (111) expand, which could
be the result of the difference between the two experiments.

Examples with degrees of freedom controlled by strain
are rare in two-dimensional systems. Electrons in the AlAs
quantum well occupy two in-plane conduction-band valleys at
the X point in the Brillouin zone, and strain is well known to
induce transitions through the valley [15,26]. GaAs systems
do not share the valley degree of freedom, but here we find
strain-induced pseudospin transitions. Compared with other
methods for tuning degrees of freedom, strain avoids lots
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FIG. 4. Comparison of excitation gaps between uniaxial strain
and hydrostatic pressure. (a) Excitation gaps of v =5/3 and 4/3
states under different uniaxial strains. The tendencies of traces are
similar to those in hydrostatic pressure. (b) Data are from Ref. [16].
Since negative hydrostatic pressure, i.e., expanding samples uni-
formly, is hardly realized, the sample with hydrostatic pressure can
only be compared with the compressed sample. The diagonal strains
where the excitation gap of v = 4/3 state is minimum are compara-
ble in the two experiments.

of undesired effects. For example, the gate-tuning method
varies both density and potential asymmetry together [12],
and the tilted field method induces a finite-thickness ef-
fect to influence FQH states’ stability [11]. Therefore, strain
has the potential as a tool to probe multicomponent many-
body states, such as non-Abelian even denominator states
[27-30] and edge interactions between different polarization
states [31].

In summary, we study the transport of two-dimensional
hole gas systems confined in a symmetric quantum well.
We observe the pseudospin transitions of CFs in a two-
dimensional hole gas under strain, and propose that diagonal
strain &1y rather than the in-plane strain plays a critical role
in tuning the energy of different pseudospin bands. With the
strain technique, precise mechanical control can be applied
and we gain deeper insight into the complex energy structure
of many-body states.
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