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Constraints of internal symmetry on the non-Hermitian skin effect and bidirectional skin effect
under the action of the Hermitian conjugate of time-reversal symmetry
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Non-Hermitian skin effect is a basic phenomenon in non-Hermitian systems, which means that an extensive
number of eigenstates can be localized at the boundary. In this Letter, we systematically investigate the
constraints from all internal symmetries on the non-Hermitian skin effect in arbitrary dimensions. By adopting
the powerful amoeba formulation, we build a generic correspondence between the various internal symmetries
and the behavior of the non-Hermitian skin effect. Notably, we find that, for non-Hermitian systems with the
Hermitian conjugate symmetry of time-reversal symmetry (TRS†), the eigenstates can simultaneously localize
at opposite boundaries, which is beyond the amoeba formulation and we dub the phenomenon bidirectional
skin effect. Our work provides an overall perspective from the internal symmetry to the non-Hermitian skin
effect.
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Introduction. Hermiticity of Hamiltonian is a fundamen-
tal assumption for closed systems. Once a system has
gain and loss, it can effectively be described by a non-
Hermitian Hamiltonian [1–5]. In recent years, non-Hermitian
systems have attracted very active studies [5–15], accom-
panying the discovery of many novel phenomena, such as
exceptional points [5,16–26], non-Hermitian PT symmetry
breaking [27,28], edge burst [29–32], etc. In experiments,
such non-Hermitian systems can be realized in photonic crys-
tals [33,34], ultracold atoms [35,36], and acoustic cavities
[37,38]. One particularly intriguing phenomenon in non-
Hermitian systems is the so-called non-Hermitian skin effect
(NHSE) [8,10,36,39–51], which refers to the presence of
abundant bulk states at the boundary. As is known, for Her-
mitian systems under open boundary conditions (OBC) the
wave functions of bulk states are always extended, and only
topological states are sharply localized at the boundary. The
spectra of a Hermitian system under OBC and periodic bound-
ary conditions (PBC) are almost the same except for the
topological modes. Thus, the rise of NHSE in a non-Hermitian
system implies that the wave functions and spectra under
OBC are drastically different from those under PBC. For
one-dimensional (1D) non-Hermitian systems, both the wave
functions and the spectra of bulk states under OBC can be
well described by the non-Bloch band theory [10,15]. For
dimensions higher than 1D, building non-Bloch band theory
turns out to be quite challenging, and only very recently it has
been uncovered that the amoeba formulation could provide
a general framework for studying higher-dimensional NHSE
[50–52].

Since the Hamiltonian is no longer a Hermitian opera-
tor, there are seven rather than three internal symmetries for
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non-Hermitian systems [6]. Similar to Hermitian systems, an
internal symmetry will put certain constraint on the spectra of
non-Hermitian systems. Take the particle-hole symmetry as
an example. If the system has an eigenstate with eigenenergy
E , then there must be another eigenstate at −E [36]. Notably,
the internal symmetry also puts constraints on the NHSE.
Some previous works have shown that the TRS† can result
in a class of Z2 skin effect in 1D non-Hermitian systems
[11,41], while the particle-hole symmetry in arbitrary dimen-
sions enforces two particle-hole partner skin modes to localize
at opposite boundaries. Although those case-by-case works
have revealed the existence of nontrivial interplay between
the internal symmetry and the NHSE, the generic relation
between them remains to be established.

In this Letter, we systematically investigate the influence
of all seven internal symmetries on the NHSE through the
amoeba formulation. By analytically calculating the trans-
formation of winding number associated with the Ronkin
function, we determine the generic relation between the in-
ternal symmetry and the NHSE in arbitrary dimensions.
Furthermore, we note that the skin modes in a non-Hermitian
system with TRS† can simultaneously be localized at opposite
boundaries, a phenomenon that we dub as bidirectional skin
effect. Notably, we find that this phenomenon is beyond the
description of the amoeba formulation, but can be captured by
the TRS† winding numbers defined by us.

Internal symmetry of non-Hermitian systems. Owing to
the lift of the constraint from hermiticity, the type of in-
ternal symmetry is enriched in non-Hermitian systems. The
seven internal symmetries for non-Hermitian systems in-
clude time-reversal symmetry (TRS), particle-hole symmetry
(PHS), chiral symmetry (CS), Hermitian conjugate symmetry
of time-reversal symmetry (TRS†), Hermitian conjugate sym-
metry of particle-hole symmetry (PHS†), sublattice symmetry
(SLS), and pseudo-Hermitian symmetry [6]. The operators of
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these internal symmetries can be written in the general form,

Ô = UOR̂, (1)

where UO is a unitary matrix, R̂ the identity operator for
unitary symmetries (PHS, PHS†, pseudo-Hermitian symme-
try) and the complex conjugate operator for anti-unitary
symmetries (TRS, TRS†, CS, SLS). For a non-Hermitian
Hamiltonian, H (k), the transformation under an internal sym-
metry operation can be represented as

UOH (k)U −1
O = HO(k), (2)

where UO is the unitary matrix given in Eq. (1). For general
cases, the Hamiltonian H (k) can be expressed in the general
form

H (k) =
∑

j

tje
ik·j, (3)

where j = ( j1, j2, . . . , jd ) denotes the hopping vector, k =
(k1, k2, . . . , kd ) is the momentum vector in dD, and tj is an
s × s hopping matrix if the system which has s degrees of
freedom (like orbital or sublattice) in a unit cell. When the
system has an internal symmetry, the transformation of the
matrix tj under the corresponding internal symmetry is given
by

UOtjU
−1
O = tOj . (4)

The forms of HO(k) and tOj for specific internal symmetries
are given in the Supplemental Material [53].

Amoeba formulation. For 1D non-Hermitian systems, one
can obtain the non-Bloch band theory by directly solv-
ing the lattice Schrödinger equation. However, for higher
dimensional non-Hermitian systems, the boundary condi-
tions of the Schrödinger equation on the lattice are much
more complicated. As a consequence, the Schrödinger equa-
tion for higher dimensional non-Hermitian systems in general
cannot be directly solved, and thereby a building of the
higher-dimensional non-Bloch band theory faces great chal-
lenging. Recently a remarkable progress in solving this
fundamental problem is the recognition of the connection
between the amoeba formulation and the NHSE in arbitrary
dimensions [50].

The Ronkin function is a key technique in the amoeba
formulation. For a non-Hermitian system, whose Hamiltonian
under PBC is given by Eq. (3), the Ronkin function character-
izing this system is of the form

R(E , H,μ) =
∫

T d

(
dk

2π

)d

ln det[E − H (eμ+ik )], (5)

where T d = [0, 2π ]d denotes the dD torus, and

H (eμ+ik ) = H (eμ1+ik1 , · · · , eμd +ikd )

=
∑

j

tje
j·(μ+ik) (6)

with μ the vector reflecting the localization property of the
skin modes. Consider a skin mode of the non-Hermitian
system,

ψ0(x) = β
x1
1 β

x2
2 · · · βxd

d ψ, (7)

TABLE I. The eigenenergy and decaying factor of the skin mode
related to Eq. (12) for different internal symmetry. The first row is the
internal symmetry, the second row is the value of ẼO , and the third
row is the value of μ̃O in Eq. (12) under the corresponding internal
symmetry. T+, C−, S, C+, T−, �, and η represent TRS, PHS, CS,
TRS†, PHS†, SLS, and pseudo-Hermitian symmetry, respectively.

O T+ C− S C+ T− � η

ẼO E∗ −E −E∗ E −E∗ −E E∗

μ̃O μ −μ −μ −μ μ μ −μ

where x = (x1, x2, . . . , xd ) is the position, β j = eμ0, j+ik j for
the jth direction, and the eigenenergy of ψ0 is denoted as
E0 [54]. According to the Amoeba formulation, the Ronkin
function, R(E0, H,μ), will take the minimum value if

μ = μ0 = (μ0,1, . . . , μ0,d ). (8)

In other words, if E0 belongs to the spectrum of the
non-Hermitian system under OBC, and the eigenstate corre-
sponding to it is ψ0 given in Eq. (7), then the winding number

wm = 1

2π i

∫ 2π

0
dkm∂km ln det[E − H (eμ0+ik )]

= 0 or ill defined (9)

for ∀m = 1, 2, . . . , d [50,55] (the derivation for Eq. (9) is
given in the Supplemental Material [53]).

Constraints of internal symmetry on the NHSE. Now, we
consider a non-Hermitian system, whose Hamiltonian under
PBC is given by Eq. (3), and has an internal symmetry de-
noted by O. Assume that this system has a skin mode with
eigenenergy E and decaying factor

μ = (μ1, . . . , μd ). (10)

We further define a winding number of the form

wO
m = 1

2π i

∫ 2π

0
dkm∂km ln det[UO(E − H (eμ+ik ))U −1

O ].

(11)

By a straightforward derivation (see more details in the Sup-
plemental Material [53]), we find that

wO
m = ± 1

2π i

∫ 2π

0
dkm∂km ln det[ẼO − H (eμ̃O+ik )], (12)

where ẼO = ±E or ± E∗, and μ̃O = ±μ for different inter-
nal symmetries, as shown in Table I.

Next, using the fact that the determinant of a matrix does
not change under a unitary transformation, i.e.,

det
[
UO(E − H )U −1

O
] = det [(E − H )], (13)

it is readily found that

wO
m = 1

2π i

∫ 2π

0
dkm∂km ln det[E − H (eμ+ik )]. (14)

As assumed in the beginning that this system has a skin
mode with eigenenergy E and decaying factor μ, from the
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FIG. 1. (a) The blue dots refer to eigenenergies of the system given by Eq. (16) under OBC. The lower red dot corresponds to ET RS1 =
−1.5 − 0.195i, and the upper one corresponds to ET RS2 = −1.5 + 0.195i. (b) The probability density profile corresponding to ET RS1. (c) The
probability density profile corresponding to ET RS2. Values of parameters are t1 = 2, t−1 = 1, w1 = 1.5, w−1 = 3.3, p1 = 1.8, p−1 = 2.6, and
c = 0.5. The system size is 40 × 40.

discussion around Eq. (7) we know that

wO
m = 0 or ill defined (15)

for ∀m = 1, 2, . . . , d . Applying this result back into Eq. (12),
one can immediately reach the conclusion that if there exists
a skin mode at E and a given boundary determined by the
decaying factor μ, then there must exist another symmetry-
enforced skin mode at ẼO and the same place (for μ̃O = μ)
or opposite boundaries (for μ̃O = −μ). The constraints of
the seven internal symmetries on the NHSE summarized in
Table I is one of the central results of this work.

Before proceeding, we would like to give a remark on the
result shown in Table I. From the third column of Table I, one
can see that the particle-hole symmetry enforces two particle-
hole partner skin modes to localize at opposite boundaries. As
aforementioned, this generic result has already been obtained
in a previous work [36], however, the approach therein is
much more involved and specific for the particle-hole sym-
metry. Thanks to the powerfulness of the amoeba formulation
for describing NHSE, here we have determined the complete
picture in a rather neat way.

Example illustration. To show the correctness of the an-
alytical theory, we consider a 2D non-Hermitian system
for illustration. The concrete Hamiltonian under PBC is
given by

HT+ (kx, ky) =
(

t−1e−ikx + t1eikx c + p−1e−iky

c + p1eiky w−1e−ikx + w1eikx

)
,

(16)

where t1, t−1, p1, p−1, w1, w−1, and c are real numbers. It is
easy to check that the above Hamiltonian has TRS, and the
TRS operator is given by

T̂+ = I2×2K, (17)

where I2×2 is the 2 × 2 identity matrix and K is the complex
conjugate operator.

The spectra of this Hamiltonian under OBC for a specific
set of parameter values are given in Fig. 1(a). Consider two
eigenstates related by TRS. Without loss of generality, we
choose the pair with ET RS1 = E∗

T RS2 = −1.5 − 0.195i that are
belonged to the OBC spectra. As shown in Figs. 1(b) and 1(c),

the probability density profile of these two skin modes are
localized at the same boundary, agreeing with the prediction
summarized in the second column of Table I. Examples for
other internal symmetries are provided in the Supplemental
Material [53], and all numerical results agree with the predic-
tions summarized in Table I.

Bidirectional skin effect. From Table I, one can see that
the fifth column corresponding to TRS† is quite special since
only for this symmetry ẼO = E . The invariance of E and the
change of μ to −μ under the TRS† operation indicate that,
under OBC, there will be two degenerate skin modes local-
izing at opposite boundaries of the system. However, we find
that such degenerate skin modes are fragile. For general cases,
the degeneracy disappears and the eigenstate is extended or
simultaneously localized at two opposite boundaries. To il-
lustrate this fact, we construct a simple 1D model of the
form

H (k) =
(

t−e−ik + t+eik γ

γ t−eik + t+e−ik

)
. (18)

The TRS† operator for this system is

Ĉ+ = UC+K =
(

0 1
1 0

)
K. (19)

In the limit of γ = 0, the OBC spectra of this system are dou-
bly degenerate, and two eigenstates corresponding to the same
eigenenergy E are localized at opposite boundaries (Fig. 2).
Once γ �= 0, the double degeneracy of the OBC spectra is
lifted, and we find eigenstates that are simultaneously local-
ized at two opposite boundaries (Fig. 3).

Remarkably, we find that the above phenomenon is in fact
beyond the description of the amoeba formulation. To see this,
let us return to the amoeba formulation. Assuming that E
belongs to the spectra of the system under OBC, the winding
number about E for the Hamiltonian under PBC is

wPBC
m = 1

2π i

∫ 2π

0
dkm∂km ln det [E − H (k)], (20)
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FIG. 2. (a) The blue dots refer to eigenenergies of the system
given by Eq. (18) under OBC for the case that γ = 0, and the
orange loop corresponds to the PBC spectrum for γ = 0. The two
bands under PBC are degenerate, and both of them correspond to the
same orange loop in the complex plane. The red dot corresponds to
ET RS†1 = 2.53. (b) The blue and red lines are the distributions of the
two eigenstates corresponding to ET RS†1. Values of other parameters
are t1 = 1, t−1 = 2, and the system size is 40.

where m = 1, 2, . . . , d . After the transformation of UC+ , we
find that (see the Supplemental Material for details [53])

wPBC
m = 1

2π i

∫ 2π

0
dkm∂km ln det

[
UC+ (E − H (k))U −1

C+

]

= 1

2π i

∫ 2π

0
dkm∂km ln det[E − H (−k)T ]

= −wPBC
m . (21)

One immediately obtains

wPBC
m = 0 or ill defined (22)

for ∀m = 1, 2, . . . , d . Since

H (k) = H (eμ+ik )|μ=0, (23)

according to the amoeba formulation, all eigenstates of this
system are extended except for topological modes, which
means that the NHSE does not exist in this system with TRS†.
However, as shown above, we find that different from tradi-
tional skin modes, eigenstates can simultaneously localize at
opposite boundaries. For the convenience of describing this
phenomenon, we term it bidirectional skin effect. It may be
worth emphasizing that here our findings can be applied to
arbitrary dimensions. In 1D, the bidirectional skin effect is
just reduced to the Z2 skin effect discovered in Ref. [41].

In the following, we develop a topological invariant to
capture the bidirectional skin effect. The steps are as follows.
First, we note that the winding number in Eq. (20) can be

FIG. 3. (a) The blue dots are the locations of the eigenenergies of
the system given by Eq. (18) under OBC for the case with γ = 0.1,
and the orange loop corresponds to the PBC spectrum for γ = 0.1.
The two bands under PBC are also degenerate, and both of them
correspond to the same orange loop in the complex plane. The red
dot is ET RS†2 = 1.87 + 0.64i. (b) The blue line is the distribution of
the eigenstate corresponding to ET RS†2. Values of other parameters
are t1 = 1, t−1 = 2, and the system size is 40.

rewritten as

wPBC
m (E ) = 1

2π i

∫ 2π

0
dkm∂km ln

[
2N∏

n=1

E − En(k)

]

=
2N∑

n=1

1

2π i

∫ 2π

0
dkm∂km ln [E − En(k)]

=
2N∑

n=1

w(n)
m (E ), (24)

where En(k) is the nth band of the system under PBC, and

w(n)
m (E ) = 1

2π i

∫ 2π

0
dkm∂km ln [E − En(k)] (25)

is the winding number of the nth band. We find that if under
OBC the eigenstate at E is extended, then

w(n)
m (E ) = 0 (26)

for ∀m = 1, 2, . . . , d, and n = 1, 2, . . . , 2N . In contrast, if
the eigenstate is simultaneously localized at opposite bound-
aries, pairs of nonzero winding numbers will appear [56], i.e.,

w(p)
m (E ) = −w(q)

m (E ) �= 0, (27)

where the qth band is related to the pth band by TRS†, i.e.,

Eq(k) = Ĉ+Ep(k). (28)
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Therefore, for a non-Hermitian system with TRS†, whether
the eigenstate at a given E is a bidirectional skin mode or not
can be described by

νm(E ) = 1

2

N−1∑
n=0

∣∣w(2n+1)
m (E ) − w(2n+2)

m (E )
∣∣, (29)

where m = 1, 2, . . . , d . Here the (2n + 1)th and (2n + 2)th
bands are related by TRS†, and the system has 2N bands in
total [57]. We call these topological invariant TRS† winding
numbers. If νm(E ) = 0 for ∀m = 1, 2, . . . , d , the eigenstate at
E is extended in the bulk. In contrast, if νm(E ) �= 0 for one or
more νm(E ), the eigenstate at E is a bidirectional skin mode.
See the spectrum shown in Fig. 3(a); it is not hard to find
that for the bidirectional skin mode corresponding to ET RS†2,
ν(ET RS†2) = 1 [58]. Examples for bidirectional skin effect
in 2D non-Hermitian systems are given in the Supplemental
Material [53].

Conclusion and discussion. In this Letter, we have sys-
tematically investigated the behavior of NHSE under various
internal symmetries based on the amoeba formulation and
obtained their constraints on the NHSE. We find that for a
non-Hermitian system with an internal symmetry O, if it has a
skin mode with a decaying factor μ and at eigenenergy E , then

there must exist another skin mode at eigenenergy ẼO, which
localizes at the same (opposite) boundary of the original skin
mode if μ̃O = μ (μ̃O = −μ). Furthermore, we have found
the bidirectional skin effect in non-Hermitian systems with
TRS†, and we have introduced a topological invariant named
as TRS† winding numbers to describe this phenomenon. From
the aspect of 38-fold symmetry classes, for a non-Hermitian
system with symmetry class Q, if Q contains TRS†, the sys-
tem can have bidirectional skin effect, otherwise, only the
conventional skin effect is allowed. To conclude, we have
established the overall picture of the relation between the
internal symmetry and the NHSE. As our findings neither rely
on the dimension nor specific non-Hermitian Hamiltonians,
they admit a wide application. In experiments, the ultracold-
atom systems can be utilized as the platform to observe the
novel behaviors of non-Hermitian skin effect under internal
symmetries [35,36,59]. Furthermore, our formula can be used
to research the properties of non-Hermitian skin effect under
crystalline symmetries and this is a focus in our future work.
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