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We study the parton construction of chiral spin liquids (CSLs) using projected Gaussian fermionic entangled
pair states (GfPEPSs). First, we show that GfPEPSs can represent generic spinless Chern insulators faithfully
with finite bond dimensions. Then by applying the Gutzwiller projection to a bilayer GfPEPSs, spin- 1

2 Abelian
and non-Abelian CSLs are obtained for Chern number C = 1 and 2, respectively. As a consequence of the
topological obstruction for GfPEPSs, very weak Gossamer tails are observed in the correlation functions of the
fermionic projected entangled pair state (PEPS) Ansätze, suggesting that the no-go theorem for chiral PEPS is
universal but does not bring any practical limitation. Remarkably, without finetuning, all topological sectors can
be constructed showing the expected number of chiral branches in the respective entanglement spectra, providing
a sharp improvement with respect to the known bosonic PEPS approach.

DOI: 10.1103/PhysRevB.109.L081107

Introduction. The notion of the topological phase has rev-
olutionized our understanding of phases of matter beyond the
Landau paradigm. In two-dimensional systems without time-
reversal symmetry, if there exist chiral edge modes moving
only in one direction, the states are dubbed chiral topolog-
ical states. The most well-known chiral state in lattice-free
fermion systems is the Chern insulator [1,2], where the topol-
ogy is completely characterized by the bulk Chern number C
indicating the number of chiral edge modes [3,4]. Through
Gutzwiller projection on copies of Chern insulators (labeled
by a spin index), a chiral spin-liquid (CSL) state in the parton
representation [5] can be obtained. Interestingly, in contrast
with their parent chiral Chern insulators, CSLs inherit long-
range entanglement from the Gutzwiller projection. Hence,
CSLs are bosonic variants of the fractional quantum Hall
states and can be classified by the chiral gapless modes on
the edge or, equivalently, the entanglement spectrum (ES)
[6,7] described by (1+1)-dimensional conformal field theo-
ries (CFTs) [8]. For example, for two copies of half-filled
Chern insulators with C = 1 in each copy, the projected spin
state becomes the topological SU(2)1 CSL [9,10] which is
equivalent to the bosonic ν = 1

2 Laughlin wave function [11].
In more general cases, the topological nature of parton wave
functions built from Chern insulators with higher Chern num-
ber are not clear. For conventional methods like variational
Monte Carlo [12], computation of the ES of projected parton
states is very involved and, hence, has been achieved only
in very rare specific cases [13]. Thus, characterizing parton
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wave functions through entanglement-based methods, e.g.,
projected entangled pair states (PEPSs) [14], is desired.

PEPSs have been successfully used for investigating two-
dimensional topological states, where nonchiral topological
orders can be encoded by gauge symmetry exactly [15–18].
However, there seems to exist a topological obstruction for
PEPSs to represent chiral topological states. For the case of
free fermions where the corresponding PEPS representation is
the Gaussian fermionic PEPS (GfPEPS), the obstruction has
been proven exactly [19–21], namely, if a GfPEPS is chiral,
then its bulk should be gapless. For the non-Gaussian case
such as those in spin systems, a series of numerical studies
shows that the numerically optimized chiral bosonic PEPSs
also have artificial (gossamer) long-range correlations in the
bulk [22–25]. Since interacting chiral PEPSs are also likely
to be subject to topological obstruction, it becomes important
to scrutinize the possible artifacts of the PEPS descriptions
of a true CSL. Do we have some sort of universality in
its description in terms of bosonic and fermionic interacting
PEPSs? More importantly, there exist several subtle issues
in the numerically optimized bosonic PEPS, e.g., the exis-
tence of redundant chiral branches in the ES [24,26–28] and
the challenge in accessing the complete set of topological
sectors [23]. Thus, it is interesting to see whether the pro-
jected fermionic PEPS describes the edge theory of CSLs
faithfully, which could also shed light on resolving the prob-
lems in bosonic PEPSs. For that purpose, we study generic
chiral spin liquids using optimized GfPEPS parton wave func-
tions constructed from a parent Chern insulator Hamiltonian
[29].

GfPEPS for Chern insulator. As a preliminary step before
constructing Gutzwiller-projected parton wave functions, we
investigate the GfPEPS representations for free fermion Chern
insulators. One representative lattice model is the two-band
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(a) (b) (c)

FIG. 1. Schematic diagrams of (a) the Hofstadter Chern insulator
model with a two-site A, B unit-cell along the x direction marked by
the dashed line, (b) the translation invariant GfPEPS Ansatz with A, B
physical sites included in one tensor and (c) the spin state constructed
from Gutzwiller-projected GfPEPSs.

Hofstadter model [30,31]:

H = −
∑
m,n

(t1c†
m+1,ncm,n + t1eimπ c†

m,n+1cm,n)

−
∑
m,n

[t2ei(mπ±π/2)c†
m±1,n+1cm,n] + H.c. (1)

Here, (m, n) denotes the coordinates of the fermionic creation
and annihilation operators, and the phases of hopping terms
t1, t2 can be read from Fig. 1(a), providing a homogeneous
π/2 flux in all triangular units. The sites can be relabeled with
A, B sublattice indices as c†

2x−1,y = c†
x,y,A and c†

2x,y = c†
x,y,B.

At half-filling, the exact ground state is a gapped insulator
with Chern number C = 1 for t1, t2 > 0. To simulate the
free fermion ground state, we adopt the translation invariant
particle number conserving U(1) symmetric GfPEPS Ansatz
parametrized by a single tensor in Fig. 1(b) and perform varia-
tional optimization [32,33]. The translation invariant GfPEPS
at half-filling can be written as a product state in the Brillouin
zone, where all k modes are determined by the single real-
space tensor and cannot vary independently. The cost function
is chosen as the expectation value of Eq. (1) [33]. Here,
a single tensor contains A, B physical sites of the unit-cell
with a physical Hilbert space dimension d = 22 and virtual
bond dimension D = 2M , where M is the number of virtual
fermionic modes. Thus, the one-site translation (projective)
symmetry in the x direction is only approximately realized but
can be improved with increasing M.

In the Hofstadter model, the optimized GfPEPS shows
topological features when the number of virtual modes satis-
fies M � Mmin and then becomes sharper with increasing M,
as depicted in Fig. 2. We set t1 = 1 and focus on the parameter
t2 = 0.5 with the largest band gap. Starting from M = 1,
the energy error decreases systematically, see Fig. 2(a). The
topology of the optimized free fermion states can be deduced
from the number of chiral branches in the single-particle ES
λα [34,35], or equivalently, from the edge spectrum εα =
(eλα + 1)−1 of the subsystem correlation matrix Ccut, defined
as

Ccut
i, j =

{
Tr[|ψ〉〈ψ |c†

i c j], i, j ∈ subsystem,

0, otherwise.
(2)

Here, |ψ〉 is the free fermion many-body state on the whole
lattice. Along the y direction, we cut out a cylinder from
the torus as a subsystem and plot the correlation matrix
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FIG. 2. Observables of the GfPEPS for the Hofstadter model op-
timized on a 80×80 torus. (a) Energy error per site vs M. Inset shows
energy error along the kx direction path across the sharp singular
point in k space with M = 2. (b) Edge spectrum of the correlation
matrix localized at one boundary of the 40×80 cylinder cut from the
torus. (c) and (d) Correlation functions for different t2 values. The
open black circles correspond to trivial states without chirality.

spectrum εα in Fig. 2(b), where bulk states have been removed
according to a numerical criterion |εα − 0.5| > 0.499. The
M = 1 state is nonchiral since both left- and right-moving
modes exist, while for M � 2, the dispersion of the edge mode
becomes chiral and shows quantitative agreement with the
exact results.

We then examine the real-space bulk correlation functions
between A, B sublattices at distance x, defined as 〈c†

AcB〉 =
〈c†

1,yc2x,y〉 (the exact correlation functions between the same
sublattice always vanish). The corresponding GfPEPS results
are shown in Fig. 2(c), where for M � 2, the optimized states
with correct topology exhibit a crossover behavior: At short
distance, the correlations decay exponentially as expected un-
til approaching a small magnitude ∼10−5 and then show a
weak long-distance gossamer tail with algebraic decay (which
we have confirmed by fitting on much larger clusters). The
existence of the long-distance tail can be understood from a
sharp momentum space singular point, as shown in the inset
of Fig. 2(a), and is consistent with the topological obstruc-
tion for GfPEPS. It is expected that the correlation functions
improve as M increases, although in practice, the precision
of our numerical optimization sets some limit. In Fig. 2(d),
we show the results for t2 = 0.125, exhibiting a much longer
bulk correlation length and slower decay of correlations, from
which one can roughly observe that the weight of the artificial
gossamer tail decreases with M.

We find a different scenario for the optimized GfPEPS
in another Chern insulator model—the Qi-Wu-Zhang model
[36]. The minimal bond dimension to observe the chiral edge
is M = 1, but in that case, there is no sharp singularity
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in momentum space and no crossover behavior in correla-
tion functions, akin to the family of states investigated in
Refs. [19,20,37]. For larger bond dimensions M > 1, the
same momentum and real-space behaviors as those in the
Hofstadter model are observed. The corresponding numerical
results are shown in the Supplemental Material (SM) [38].

Gutzwiller projected spin state with C = 1. We now move
to the Gutzwiller projected state, which is expected to be
the SU(2)1 CSL when C = 1. By construction [33,37], we
build the SU(2) invariant fermionic state via stacking two
copies of GfPEPSs labeled by spin ↑ and ↓ components;
hence, the tensors with virtual bond dimension 4M satisfy
U(1)×SU(2) symmetry, and each virtual state is labeled by
both charge and spin quantum numbers. The tensor for the
spin state is obtained by applying the Gutzwiller projector
PG = ∏

i(n̂i,↑ + n̂i,↓)(2 − n̂i,↑ − n̂i,↓), as shown in Fig. 1(c).
After grouping the double-layer virtual indices, the tensor can
be treated as conventional PEPSs numerically. We choose the
M = 2 GfPEPS optimized at t2 = 0.5 and construct PEPS rep-
resentation of the projected state using the fermionic tensors
[39,40]. To inspect the real-space correlation functions on the
infinite lattice, we use the corner transfer matrix renormaliza-
tion group (CTMRG) [41,42] method, where the approximate
contraction is controlled by the environment bond dimension
χ and becomes exact in the χ → ∞ limit. The numerical
results for spin-spin correlations 〈SA · SB〉 between A, B sub-
lattices at distance x are shown in Fig. 3(a). The correlations of
the projected state decay also exponentially at short distance
up to a length scale x ≈ 5 and then decay much slower. As the
absolute value of the slope at long distance decreases with χ ,
we expect the exact correlation function (which corresponds
to the limit χ → ∞) of this M = 2 state decays slower than
any exponential decay, like the correlations in chiral bosonic
PEPSs [22–25].

The topological order of the CSL state is characterized by
the bipartite ES, which can be computed on an infinitely long
cylinder [43]. The topologically degenerate spin states can be
constructed from projected free fermion states with different
boundary conditions. The flux inserted by the antiperiodic
boundary condition (APBC) is realized by applying a non-
contractable loop of gauge symmetry operator Z = ∏

i Zi on
the virtual space [15], where the gauge symmetry operator Zi

takes the form Zi = (−1)ni , as illustrated in Fig. 3(b). Here,
the gauge symmetry can be interpreted as the fermion parity
of virtual spin- 1

2 particles or the number parity of singlet pairs
crossing the ith virtual bond [16,44]. The SU(2)1 CSLs on
the cylinder have two topological sectors. On a finite cylinder,
the minimally entangled states (MESs) [45,46] are determined
by explicitly controlling populations of edge modes in the
unprojected states. Correspondingly, on the infinite cylinder
we determine the MES according to the single-particle ES
in the unprojected states as well as virtual space quantum
numbers, based on the equivalence between the edge spectrum
and ES, as implied by Eq. (2) [34,35].

To control the filling of the free fermion edge modes, we
plot in Fig. 3(c) the spectrum of the subsystem correlation
matrix representing a (single) physical edge. The Fermi level
εF = 0.5 (λF = 0 marked by a dashed line) defines the Fermi
sea state |ψFS〉 = ∏

σ=↑,↓
∏

1−εα<εF
d†

α,σ |Vac〉, where d†
α,σ

denote the bulk and edge modes with eigenvalue εα and spin
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FIG. 3. Features of projected and unprojected C = 1 states ob-
tained from optimizing the Hofstadter model at t2 = 0.5 and M = 2.
(a) Correlation functions after Gutzwiller projection, computed with
various χ . (b) Gauge symmetry in the local tensor of the Gutzwiller
projected state. (c) Edge spectrum of the free fermion correlation ma-
trix on a width Ny = 6 cylinder with PBC and APBC. The dashed line
denotes the Fermi level of the entanglement Hamiltonian. (d) and (e)
Entanglement spectra of the identity (I) and semion (S) sectors in the
Gutzwiller projected states on the width Ny = 6 cylinder with PBC
and APBC, respectively. CTMRG boundary tensors with χ = 110
are used. The contents of the ES match the theoretical expectations
up to the fourth level, which are listed in the SM.

polarization σ . The SU(2)1 ground states in identity (I) and
semion (S) sectors can be constructed on the PBC/APBC
cylinder as [47]

|ψI〉 = PG|ψFS〉PBC,

|ψS〉σ,σ̄ = PGζ
†
L,σ ζ

†
R,σ̄ |ψFS〉APBC, (3)

respectively. Here, ζ †
L/R,σ creates the lowest particle excitation

at the left/right boundary as marked by the black circle, and
the superposition |ψS〉↑,↓ − |ψS〉↓,↑ forms a singlet. The two
topological sectors have a total spin difference �S = 1

2 in the
horizontal virtual space and can be distinguished by the y-
direction loop operator Peven/odd = (1 ± Z )/2 that projects to
the subspaces of integer spin (even charge parity) and half-
integer spin (odd charge parity) in the ES, respectively.

Figures 3(d)–3(e) show numerical results of the Gutzwiller
projected state on the width Ny = 6 cylinder for I and S
sectors obtained with PBC and APBC, respectively, where
the entanglement Hamiltonians [48] are built from CTMRG
boundary tensors [23,27,49]. Numerically, the integer (half-
integer) sector corresponds to the fixed point of the transfer
matrix with PBC (APBC), in agreement with the fact that,
for both cases, the unprojected edge modes are half-filled
[Fig. 3(c)]. The low-energy levels match the prediction of
SU(2)1 Wess-Zumino-Witten CFT (see SM [38]), including
the one marked by the dashed rectangle. We notice that, in
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contrast with the previous bosonic PEPS method [26,27], our
fermionic construction yields the correct number of chiral
branches in the ES. We also remark that we expect both
sectors can be obtained within a fixed boundary condition if
Ny is large enough with sufficient number of linear edge states,
as in Fig. 2(b).

Gutzwiller projected spin states with C = 2. The above
approach can be naturally generalized to parton states with
arbitrary Chern number. Here, we consider a C = 2 model
[50], which turns out to be nontrivial, as it shows that the
topological order of a generic projected parton state depends
not only on the Chern number before projection but also on
details of the wave functions.

The family of free fermion C = 2 Hamiltonians H� have
A, B sublattices in the unit-cell. At � = 0, it takes the form:

H�=0 =
∑
〈i, j〉x

t1(c†
j,Aci,B + c†

j,Bci,A)

+
∑
〈i, j〉y

t1(c†
j,Aci,A − c†

j,Bci,B)

+
∑
〈〈i,k〉〉

t2 exp(2iθik )(c†
k,Bci,A − c†

k,Aci,B)

+ H.c., (4)

where i, j, k denotes the sites on the x-y plane, and θik denotes
the angle between next-nearest-neighbor sites i, k. The model
at � = 0 can be viewed as two independent layers of Eq. (1)
that differ by a one-site translation Tx along the x direction:
By taking A sites for the even x coordinate and taking B sites
for the odd x coordinate, one obtains the first copy, and vice
versa for the second copy. Due to the Tx translation, the ESs
along the y direction cut contributed from two layers are iden-
tical but have π momentum difference, as shown in Fig. 4(a)
for optimized M = 2 GfPEPS with PBC and APBC (with
a string along the x direction inserted), respectively. Apply-
ing the local unitary U (�) = exp[

∑
i �(c†

i,Aci,B − c†
i,Bci,A)/2]

that acts inside each unit-cell, the family of Hamiltonian
H� = U −1(�)H0U (�) is obtained. At � = 0, the two C = 1
layers are independent, and at � = π/4, the two layers are
maximally mixed. The total Chern number and free fermion
ES do not depend on � since U (�) is local.

After Gutzwiller projection, a topological transition
emerges along the path � ∈ [0, π/4] (see SM [38]). At
� < �c, the projected state is the Abelian SU(2)1×SU(2)1

since the � = 0 gapped topological phase of the two de-
coupled layers should have a finite extension in parameter
space. We focus on the SO(5)1 CSL realized around the
maximally mixed limit � = π/4 which was predicted by the
effective field theory and verified recently by a matrix product
state calculation [50,51]. Before investigating the topological
properties of this non-Abelian CSL, we emphasize that cor-
relations of the projected GfPEPS [Fig. 4(b)] show a similar
crossover behavior as in Fig. 3(a), pointing toward the univer-
sality of such an artifact in chiral PEPSs.

In the free fermion edge spectrum on the left boundary
of the Ny = 6 cylinder, we denote ζ

†
L,1,σ , ζ

†
L,2,σ as the first

excited states with momentum difference π marked by the
black circles in Fig. 4(a) for both PBC and APBC. For the
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FIG. 4. Features of the unprojected and projected C = 2 states
with M = 2 at � = π/4. (a) Edge spectrum of the free fermion
correlation matrix on a width Ny = 6 cylinder with PBC and APBC.
(b) Correlation functions after Gutzwiller projection computed at dif-
ferent χ . [(c)–(e)] The ES of SO(5)1 CSL at � = π/4 with CTMRG
χ = 110. In (c) and (e), PBC is used, and in (d), APBC is used. The
contents of ES match theoretical expectations up to the third level,
which are listed in the SM.

SO(5)1 CSL, three MESs [51] can be constructed as

|ψIdentity〉 = PG|ψFS〉PBC,

|ψTwist〉σ,σ̄ = PGζ
†
L,a,σ ζR,a,σ |ψFS〉PBC,

|ψFermion〉 = PGζ
†
L,a,↑ζ

†
L,a,↓ζ

†
R,b,↑ζ

†
R,b,↓|ψFS〉APBC. (5)

Here, a, b ∈ {1, 2}. For the twist sector, due to the annihilation
operator ζR,a,σ , a single spin σ̄ edge mode is left at the right
boundary. The numerical results for the projected states at
� = π/4 are shown in Figs. 4(c)–4(e). With PBC and APBC,
the dominant integer spin sectors which have half-filled edge
modes are shown to be the identity and fermion sectors, re-
spectively. The half-integer (odd charge parity) sector with
PBC gives the twist sector. The �ky = π momentum splitting
of the chiral branches originates from the existence of two
edge branches shifted by π before projection. A key advan-
tage of the fermionic approach is that all topological sectors
can be explicitly constructed, which is not obvious to achieve
within the bosonic PEPS framework [23]. The level counting
of the numerically obtained ES shows a remarkable agreement
with the CFT prediction, which is given in the SM [38].

Conclusions. We have investigated the Gutzwiller-
projected Chern insulators in the GfPEPS representation. The
topological obstruction for chiral GfPEPS only leads to very
weak Gossamer tails in the correlation functions of pro-
jected GfPEPSs and thus brings no practical obstruction for
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numerical simulations. Within our framework, topological
sectors can be tuned conveniently by flux insertion without
explicit control of edge mode populations, and the projected
GfPEPSs provide faithful descriptions of the edge spectra in
both Abelian and non-Abelian CSLs, which would be inter-
esting to further analyze via a recently proposed generalized
Gibbs ensemble approach [52]. In the future, it would also
be interesting to study frustrated spin models using projected
GfPEPS as an initial variational Ansatz, where variational
parameters are elements of on-site tensors. After optimization,
the state is no longer a projected Gaussian state and becomes
a general PEPS, but the proper ES countings are expected
to be retained. Note that, without this parton construction,
the direct variational optimization of bosonic PEPSs always
yields Ansätze with redundant ES degeneracy. Note also that
the non-Abelian SO(5)1 CSL does not seem to have a simple
description in terms of bosonic PEPSs. One natural ques-
tion emerges: For spin systems, is there a difference in the

representative power of bosonic PEPSs and fermion PEPSs?
We leave this question to future research.
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