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Dipolar Weyl semimetals
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In Weyl semimetals, Weyl points act as monopoles and antimonopoles of the Berry curvature, with a
monopole-antimonopole pair producing a net-zero Berry flux. When inversion symmetry is preserved, the two-
dimensional (2D) planes that separate a monopole-antimonopole pair of Weyl points carry quantized Berry flux.
In this work, we introduce a class of symmetry-protected Weyl semimetals which host monopole-antimonopole
pairs of Weyl points that generate a dipolar Berry flux. Thus, both monopolar and dipolar Berry fluxes coexist
in the Brillouin zone, which results in two distinct types of topologically nontrivial planes separating the Weyl
points, carrying either a quantized monopolar or a quantized dipolar flux. We construct a topological invariant—
the staggered Chern number—to measure the latter, and employ it to topologically distinguish between various
Weyl points. Finally, through a minimal two-band model, we investigate physical signatures of bulk topology,
including surface Fermi arcs, zero-energy hinge states, and response to insertion of a π -flux vortex.
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Introduction. Weyl semimetals (WSMs) constitute the
most well-known class of topological semimetals which has
guided the exploration of other topological semimetallic
phases [1–21]. The fact that band-crossing points or Weyl
points (WPs) are monopoles of the Berry curvature is one
of the most remarkable features of WSMs [1,22]. Arguably,
inversion-symmetric WSMs offer the simplest realization of
three-dimensional topological semimetals. In these systems,
the two-dimensional planes separating a pair of WPs, carry-
ing opposite Berry-monopole charges, are classified as Chern
insulators. The Weyl points, respectively, act as source and
sink of the quantized Berry flux passing through the Chern
planes. Furthermore, the edge states supported by each Chern
insulating layer stack up to give rise to the chiral Fermi-arc
states on the surface of WSMs. These notions have been
generalized by the discovery of higher-order WSMs, where all
topologically nontrivial planes are not Chern insulators, and
both Fermi-arc surface states and hinge-localized zero modes
are present at crystal terminations [23–26].

Recently, Nelson et al. [27] have shown that the topological
critical point separating Hopf and ordinary insulators realizes
a Berry dipole, which asymptotically act as both a source
and a sink of Berry curvature. In contrast to a WP, the net
Berry flux penetrating a Gaussian surface (GS) enclosing a
Berry dipole vanishes. Instead, the flux is staggered on the
GS, with its sign determined by the orientation of the dipole
relative to local normals on the GS. Therefore, in a hypo-
thetical semimetal, hosting at least a pair of Berry dipoles,
one may expect that the planes separating the dipoles would
be threaded by a staggered or dipolar Berry flux. Are these
“dipolar planes” topologically nontrivial, and, importantly,
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does the notion of Berry dipoles lead to hitherto unexplored
classes of WSMs?

In this Letter, we introduce a class of symmetry-protected
WSMs, coined “dipolar Weyl semimetals,” where Chern,
dipolar, and ordinary insulating planes coexist, as summarized
in Fig. 1(a). The WPs in such WSMs result from splitting
Berry dipoles, which distinguishes dipolar WSMs from both
conventional and higher-order WSMs [see Fig. 1(b)]. We con-
struct two-band models for describing dipolar WSMs, and
show that dipolar planes support a quantized, but staggered,
Berry flux, as exemplified by Fig. 1(c). Therefore, the WPs oc-
curring at the boundary between dipolar and Chern insulators
are distinguished from that at the boundary between Chern
and ordinary insulators. Remarkably, on surface terminations
perpendicular to the separation between WPs, both chiral
Fermi-arc states and hinge-localized zero modes are realized.
In order to characterize the bulk topology, we determine the
response of the bulk states to π -flux vortex insertions, and ap-
plied magnetic fields. In spite of its similarity to higher-order
WSMs [23,24], we note that dipolar WSMs require only two
bands, such that its bulk topology is completely determined
by the bands that cross at the WPs.

Model and phase diagram. We consider two-band models
of WSMs protected by a combination of n-fold improper
rotational (or rotoreflection) symmetry Sz

m = Mz ◦ Cz
m, and

two antiunitary mirror symmetries (M1 and M2). Here,
Mz is the mirror operator that sends z → −z, and Cz

m
generates m-fold rotations about the ẑ axis. We begin with the
single-particle Hamiltonian

H (k) =
3∑

j=1

n j (k)σ j, (1)

where σ j is the jth Pauli matrix, n1 = 2(u4u1 + u3u2),
n2 = 2(u4u2 − u3u1), and n3 = u2

4 + u2
3 − u2

1 − u2
2. We

require (u1, u2) [u3 and u4] to transform under an E [B and A,
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FIG. 1. Properties of the dipolar Weyl semimetal (WSM) phase.
(a) Four Weyl points (WPs) (black spheres) occur on the rotation
axis, with alternating monopole charges. The sign is deduced by
visualizing the Berry curvature B in the vicinity of the WPs (right).
Depending on their location relative to the WPs, the 2D planes
layered along k̂z are either dipolar (red), Chern (green), or ordinary
(unmarked) insulators. The red (blue) curves indicate points in the
Brillouin zone that map to n̂ = �n/|�n| = (0, 0, 1) [(0, 0, −1)], where
n̂ is defined in Eq. (1). The intersection of these curves along the
rotation axis marks the locations of band inversion (black spheres).
(b) In dipolar (higher-order [23]) WSMs, there exist pairs of WPs
with monopolecharge ±1 whose collision leads to a Berry dipole
(Dirac point). In conventional WSMs, any monopole-antimonopole
pair of WPs annihilate upon collision. (c) On the dipolar insulating
planes the distribution of Bz (color profile) is such that two Chern
insulators, with opposite Chern numbers, are embedded within the
same plane. In Eq. (4), we define the notion of “staggered Chern
number” to succinctly capture this pattern.

respectively] representation of Cz
m, and {u1, u2, u4} [u3] to be

even [odd] under Mz. Consequently, (n1, n2) [n3] transform
under an E [A] representation of Sz

m. Since n j’s do not yet
have the most general symmetry-allowed form, we modify
them as n j → n j + ν j , where ν j’s will be considered as
symmetry-allowed perturbations. Under Sz

m, the Hamiltonian
transforms covariantly:

Sz
mH (k)

(
Sz

m

)−1 = H (k′) = U †H (k)U, (2)

where k′ = (Rmk⊥,−kz ) with k⊥ = (kx, ky), Rm implements
m-fold rotation about k̂z, and U = exp[− iπ

m σ3]. Therefore,
[H (k),Sz

m] = 0 at high-symmetry points (HSPs) that satisfy
k′ ≡ k. Because of the constraints placed on u j’s and ν j’s
by Sz

m, n j=1,2 must vanish both at the HSPs and along
the rotation axis. The remaining component n3 is finite in
general, and it may change sign between a pair of HSPs

only if u2
4 + ν3 does not have a fixed sign throughout the

Brillouin zone (BZ) [28]. While the rotoreflection symmetry
guarantees a parameter window where the bands cross
along the rotation axis, the antiunitary mirror symmetries
protect quantized one-dimensional (1D) polarizations along
orthogonal high-symmetry axes.

For concreteness, we focus on m = 4, and choose

u1

tp
= sin kx,

u2

tp
= sin ky,

u3

td
= sin kz(cos ky − cos kx ),

u4 = ts{� − (cos kx + cos ky + γ cos kz )},
v1 = 2tstpδ⊥ sin kx; v2 = 2tstpδ⊥ sin ky; v3 = −t2

s δ2
3 . (3)

Here, {tp, td , ts,�, δ⊥, δz, γ } are model parameters. We note
that, at the critical points obtained by setting all ν j = 0,
the Hamiltonian reduces to a form that may be obtained
from a model of Dirac semimetal (DSM) with a Z2-chiral
symmetry, h(k) = �u · �� with � j’s being a set of four mutually
anticommuting matrices, by following the “Hopf mapping”
procedure in Ref. [29]. The antiunitary mirror symmetries
act as M1H (k)M−1

1 ≡ H∗(−k+, k−, kz ) = e−i π
4 σ3 H (k)ei π

4 σ3

and M2H (k)M−1
2 ≡ H∗(k+,−k−, kz ) = ei π

4 σ3 H (k)e−i π
4 σ3 ,

where k± = 1√
2
(kx ± ky). For simplicity, henceforth, we set

(γ , δ⊥) = (1, 0) and �, δ3 � 0, and note that relaxing these
constraints does not qualitatively alter our conclusions.

In the BZ of a tetragonal lattice, [H,Sz
4] = 0 at � ≡

(0, 0, 0), Z ≡ (0, 0, π ), M ≡ (π, π, 0), and A ≡ (π, π, π )
points. Bands invert with respect to Sz

4 around the � (Z)
point for δ3 > |� − 3| (δ3 > |� − 1|). As shown in Fig. 2(a),
in these regions conventional Weyl semimetallic phases are
realized. Since n3 obtains the same sign at all HSPs for
(1 + δ3) < � < (3 − δ3), no band inversion would be de-
tected by comparing the eigenvalues of Sz

4 at these points.
Thus, it may appear that in this parameter regime the system
is topologically trivial. This is false, however, because along
the �-Z line we identify two locations of band inversion with
respect to Sz

4 at non-HSPs, as shown in Fig 1(a). We refer to
these points as “hidden” band inversions, since their existence
cannot be deduced by consulting the HSPs alone. What are
the ramifications of such “hidden” band inversions?

Dipolar Weyl semimetal. In d dimensions, nontrivial
topology can be deduced from the texture of n̂(k). In
particular, n̂(k) maps the d-dimensional BZ (T d ) to the
2-sphere (S2) as a function of k. Valuable insights are obtained
by consulting the set of points in the BZ which get mapped
to a single point on S2 by n̂(k) [i.e., the preimages n̂(k)]. In
analogy to Hopf insulators [29], the preimages of individual
points on S2 are 1D curves in the three-dimensional BZ for
the dipolar WSMs. In contrast to Hopf insulators, however,
the preimages of two distinct points on S2 are not necessarily
linked in dipolar WSMs. Thus, the linking number or Hopf
invariant vanishes. In the DWSM phase, the preimages of
the “north” (red) and “south” (blue) poles of S2—defined
by the simultaneous vanishing of n1 and n2 with n̂3 = ±1,
respectively—intersect at kz = ± cos−1 (� − 2 ± δ3) along
the �-Z line, as shown in Fig. 1(a). Since H (k) commutes
with Sz

4 on the polar preimages, these intersections are
locations of band inversions with respect to Sz

4. The existence
of the intersections is symmetry protected, and remains robust
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FIG. 2. Characterization of the phases supported by H (k).
(a) Phase diagram. A dipolar Weyl semimetal (DWSM) phase ex-
ists in the range (1 + δ3) < � < (3 − δ3), while conventional WSM
phases (WSM-I and WSM-II) are found when δ3 > |� − 1| and
δ3 > |� − 3|. Here, TI (OI) indicate topological (ordinary) insulat-
ing phases. At δ3 = 0 and 1 < � < 3 the Weyl points in the DWSM
merge on either side of the kz axis, thereby forming Berry dipoles
[cf. Fig. 1(b)]. These critical points are marked in cyan. (b) Band
structure in the DWSM phase along high-symmetry paths in a tetrag-
onal Brillouin zone. Four Weyl points occur along the �-Z axis.
These are classified into two categories (A and B) based on the type
of 2D insulating planes they separate [see (c)]. (c) Distribution of the
Chern and staggered Chern numbers carried by (kx, ky ) planes, as a
function of kz.

against δ⊥ as long as |δ⊥| < δ3. Because �n(k) = �0 at the
intersection of the preimages of the north and south poles,
these locations correspond to the Weyl points [see Fig. 2(b)].

Topology of bulk states. By enclosing the band-crossing
points by GSs, we determine the net Berry flux emanating
from these band singularities to be 2π up to an overall sign,
as illustrated in Fig. 1(a). Therefore, the band-crossing points
are unit-strength monopoles of the Berry curvature, and we
identify them as WPs. When a GS encloses both WPs on a
fixed side of the kz axis, the net Berry flux passing through
this surface vanishes. The region within the GS is topologi-
cally nontrivial, however, as a nonzero net Berry dipole flux
pierces the surface. The existence of the dipole flux can
be understood by appealing to the topological critical point
at (δ3, δ⊥) = (0, 0): as δ3 → 0, the pair of WPs at |kz| =
cos−1 (� − 2 ± δ3) collide to yield a pair of band singularities
at |kz| = cos−1 (� − 2), which act as sources of the dipole
flux [i.e., Berry dipoles; see Fig. 1(b)]. On an infinitesimal
GS enclosing the latter band-crossing points, the Berry flux
obtains a staggered form with the northern (southern) hemi-
sphere supporting a 2π (-2π ) net flux. Thus, for δ3 > 0, when

a Gaussian surface encloses the monopole-antimonopole pair
at |kz| = cos−1 (� − 2 ± δ3), a net dipole flux survives. This
unusual behavior of the WPs in dipolar WSMs is summarized
with further details in Sec. II D of the Supplemental Material
(SM) [30]. The presence of both monopole and dipole fluxes
indicates that topologically nontrivial kz planes in the BZ are
not limited to being 2D Chern insulators.

Indeed, the kz planes between kz = ± cos−1 (� − 2 + δ3)
[red planes in Fig. 1(a)] support a dipolar version of the Berry
flux which reflects the presence of a skyrmionium texture
[31] for �n(k). Skyrmioniums are composed of two oppositely
charged but nonoverlapping skyrmions; consequently, they do
not support a finite Chern number. It is possible to define a
quantized topological invariant, however, that distinguishes a
skyrmionium-carrying plane from an ordinary 2D insulator.
In order to emphasize its origin in a staggered distribution
of Berry curvature on the k⊥ plane, we call this topological
invariant “staggered Chern number,” and define it as

Cstagg(kz ) = 1

2π

∫
dk⊥Bz(k⊥, kz ) fstagg(k⊥), (4)

where Bz(k⊥, kz ) is the k̂z component of the Berry curvature,
and fstagg(k⊥) is a weight function that is determined by H (k)
such that

∫
dk⊥ fstagg(k⊥) = 0. Since Cstagg is effectively the

difference of Chern numbers of the same magnitude but op-
posite signs, it equals the Chern number when the staggering
is absent. If a quantized staggering of flux is present, then
Cstagg will be an even integer, in analogy to familiar mirror
[32] or spin [33] Chern numbers. While on mirror- or spin-
Chern number carrying planes the Chern number is staggered
in an internal subspace, here, it is staggered in the momen-
tum space. An alternative formulation of Cstagg that does not
require an explicit knowledge of fstagg, but utilizes effective
Su-Schrieffer-Heeger [34] forms of the Hamiltonian on the
mirror axes, is provided in Sec. II B the SM [30].

We plot Cstagg as a function of kz in Fig. 2(c), and rel-
egate the details of the calculation to the SM [30], along
with the explicit form of fstagg(k⊥). We obtain Cstagg = 2
for all planes with |kz| < cos−1 (� − 2 + δ3), indicating in-
tertwining of two regions with opposite Chern numbers. We
note that the kz = 0 and π planes of the dipolar WSM are
identical to respective planes in the Moore-Ran-Wen class of
models of Hopf insulators [29]. Consequently, these special
planes in Hopf insulators are also characterized by a quantized
staggered-Chern number. The staggering of the Chern number
in dipolar WSMs, as well as Hopf insulators, originates from
nontrivial 2D winding numbers supported by corresponding
k⊥ planes of the system governed by h(k) = �u · ��. In the
present case, h(k) describes a Z2-chiral DSM with a pair of
band-crossings along the kz axis. The kz planes lying between
the Dirac points are characterized by the relative-Chern num-
ber [35], which is a Z-valued 2D bulk invariant and a variant
of the spin-Chern number, and it is protected by both bulk and
spin gaps [36,37]. The nontrivial Cstagg is thus a manifestation
of the nontrivial relative- or spin-Chern number supported by
the kz planes of chiral DSMs [35]. Thus, under the Hopf map,
the staggering of the Chern number in a Kramers degenerate
subspace maps to its staggering in momentum space.

The kz planes separating WPs on the same side of the
kz axis, i.e., cos−1 (� − 2 + δ3) < |kz| < cos−1 (� − 2 − δ3)
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(a) (b)

(c) (d)

FIG. 3. Spectra of surface and hinge localized states. (a) Spec-
tral density on the (100) surface as a function of kz. Zero energy
Fermi arcs are present between projections of the Weyl points on the
same side of the kz axis. The central region supports a dispersive,
nondegenerate, Dirac conelike feature centered at the �̄ point of the
surface Brillouin zone. (b) Spectra on (001) surface as a function of
kx fixing ky = 0, displaying a Dirac cone without a band-crossing
point. (c) Spectrum from exact diagonalization with periodic bound-
ary condition only along ẑ. The dispersionless midgap states (marked
in red) are localized at the corners of the (x, y) planes, shown in (d),
thereby forming dispersionless hinge modes.

[green planes in Fig. 1(a)], carry a Chern number C = −1, as
shown in Fig. 2(c). By contrast, all planes with |kz| > cos−1

(� − 2 − δ3) are topologically trivial with Cstagg = 0 = C.
Thus, the kz plane hosting a type-A (-B) WP [see inset in
Fig. 2(b)] may be interpreted as the topological critical point
separating a staggered-Chern and a Chern insulator (a Chern
and an ordinary insulator). Here, while the kz plane hosting a
type-B WP supports a half-integer Chern and staggered-Chern
number of equal magnitude, the kz plane hosting type-A WP
supports a half-integer Chern number and a distinct half-
integer staggered Chern number [30].

Surface and hinge states. The states on the (100) and (010)
surfaces are sensitive to the texture of n̂(k) in the bulk. As
a representative example, we portray the topologically pro-
tected states on the (100) surface in Fig. 3(a). Fermi arcs are
found to connect the projections of WPs on the same side
of the kz axis, indicating their origin in the nontrivial Chern
insulating planes. The staggered-Chern or dipolar planes have
a distinct topological response to surface terminations, which
is reminiscent of sp-Dirac semimetals [35,38]. In particular,
generic dipolar planes support a pair of gapped edge states.
On the kz = 0 (and π ) plane Sz

4 reduces to Cz
4, which allows

it to support gapless edge states. This leads to the single copy
of Dirac cone centered at the �̄ point of the surface BZ. The
pair of degenerate surface states at the �̄ point is protected by
a quantized 1D winding number in the bulk along the kx axis
[30]. The states on the (001) surface exist as long as the Sz

4

FIG. 4. Vortex-bound states as a diagnostic of bulk topology.
(a) Probability density (PD) at the location of vortex for 120 states
closest to zero energy. Left: PD for vortex flux φ = φ0/2 as a func-
tion of energy and kz. Here, φ0 is the quantum of flux. Zero modes
exist for all topologically nontrivial planes. Right: PD as a function
of φ and energy, fixing kz. Both Chern (top right) and staggered-
Chern planes (bottom right) support charge pumping. (b) Number
of vortex-bound zero modes upon insertion of magnetic flux tube
with φ = φ0/2. The distinct number of zero modes establishes the
different topological character of k⊥ planes as a function of kz.

symmetry is preserved. As shown in Fig. 3(b), these states
form a Dirac conelike feature about the zone center of the
(001) surface BZ, with the band-crossing point absent. The
center of the (001) surface BZ corresponds to the projection
of the rotation axis, which accounts for the lack of normaliz-
ability at this point [35].

While generic kz planes in the region |kz| <

cos−1 (� − 2 + δ3) support gapped edge states, they also
support corner-localized zero modes, which are protected by
the antiunitary mirror symmetries. These corner localized
modes stack along the ẑ direction to give rise to hinge local-
ized zero modes. In Figs. 3(c) and 3(d) we identify these hinge
states by exactly diagonalizing the Hamiltonian with periodic
boundary condition only along ẑ. In Sec. III of the SM [30]
(also see Ref. [39]) we detail the presence of a quantized,
one-dimensional winding number along the diagonal axes,
which protect the corner localized zero modes in accordance
with Ref. [40]. Thus, surface- and hinge-localized Fermi arcs
are simultaneously present in dipolar WSMs, which is remi-
niscent of higher-order topological semimetals [23,24,35,41].

Vortex-bound states. In the position space, field-theoretical
calculations have proven that the bulk topological invariant
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in the ground state can be computed through insertion of an
electromagnetic π -flux vortex. In particular, the number of
states bound to the vortex corresponds to the magnitude of the
quantized flux in the ground state of a 2D topological insulator
[35,42–46]. Moreover, as the magnitude of flux carried by the
vortex is tuned between zero and the flux quanta φ0 = h/e, the
vortex-bound modes are pumped across the bulk band gap.

To unambiguously examine the topological response of
the two-dimensional planes stacked along k̂z, we consider
them as independent layers of 2D insulators, labeled by
kz. In the position space for each layer, we insert a vortex
tube at the origin, carrying a flux φ. We exactly diagonalize
the resultant Hamiltonian on a 20×20 lattice, which yields
a kz-dependent energy spectrum, as shown in Fig. 4(a).
The unit strength Chern planes at cos−1 (� − 2 + δ3) <

|kz| < cos−1 (� − 2 − δ3) support a single vortex-bound
state, which is pumped across the bulk band gap as a
function of φ. The dipolar or staggered-Chern planes at
|kz| < cos−1 (� − 2 + δ3) support two states at the vortex,
each corresponding to a Chern sector. Since the Chern sectors
carry opposite Chern numbers, these vortex-bound states are
pumped in opposite directions as a function of φ, reminiscent
of spin-Hall insulators [42,43,47,48]. Importantly, as
demonstrated in Fig. 4(b), when the strength of flux is held
fixed at φ = φ0/2, the number of vortex-bound modes can
be used as a quantized diagnostic of the topology of the 2D
layers. Since both Cstagg and the number of vortex-bound zero
modes effectively count the number of Chern sectors in each
layer, they have an identical response [cf. Figs. 2(b) and 4(b)].

Conclusion. We introduced a class of WSMs where both
dipole- and monopole-flux carrying planes are present. A
topological invariant, the staggered Chern number, is for-
mulated for diagnosing the presence of quantized dipolar
flux. Through flux insertions, the dipolar planes are shown to
have a topological response that is analogous to generalized
spin-Hall insulators. With the help of a two-band model, we
demonstrated that surface and hinge states are reminiscent
of higher-order topological semimetals. A detailed compari-
son among dipolar, higher-order, and conventional WSMs is
presented in the SM [30], where we show that the clearest
distinction between a dipolar and a higher-order WSM arises
in the Landau level spectra.

The two-band model discussed here follows a similar prin-
ciple of construction as Hopf insulators. Therefore, we expect
it would be possible to simulate it within the same platforms
proposed for realizing the latter [49–55]. Further, it is possible
to construct variants of the same model, with potentially more
exotic topological singularities [56–59]. Both considerations
are left to future works.
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