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Long-range magnetic textures, such as magnetic skyrmions, give rise to rich transport properties in magnetic
metals, such as the anomalous Hall effect related to spin chirality, aka topological Hall effect. In addition to the
topological Hall effect, recent studies on noncentrosymmetric magnets have found that the spin-orbit interaction
of itinerant electrons gives rise to unique contributions related to spin chirality, i.e., the chiral Hall effect. In
this paper, we discuss that the spin-orbit interaction has a distinct yet significant effect on the anomalous Hall
effect related to spin chirality in centrosymmetric magnets. Using a scattering theory method, we find that the
anomalous Hall effect related to scalar spin chirality in a two-dimensional Luttinger model is suppressed by more
than one order of magnitude compared to the quadratic dispersion, and the contributions similar to the chiral
Hall effect in Rashba models vanishes. At the same time, a unique term related to vector spin chirality occurs,
which gives different Hall conductivities for the Bloch and Neel skyrmions, thereby enabling detection of the
skyrmion helicity. The striking differences demonstrate the rich effect of crystal symmetry on the chirality-related
anomalous Hall effect in materials with strong spin-orbit interactions.

DOI: 10.1103/PhysRevB.109.L060407

Introduction. Noncollinear magnetic textures give rise to
rich transport phenomena, such as anomalous [1–7] and spin
[8,9] Hall effects, and electrical magnetochiral effect [10–12].
Theoretically, these phenomena are often related to spin chi-
rality: the anomalous Hall effect (AHE) is related to scalar
spin chirality of three spins Si · S j × Sk [1,4,13], whereas the
spin Hall effect [9] and electrical magnetochiral effects [12]
are related to the vector spin chirality of two spins Si × S j .
These phenomena play an important role in the transport prop-
erties of ferromagnetic materials with long-range magnetic
structures. The AHE related to scalar spin chirality has been
intensively studied in materials hosting magnetic skyrmions
[Figs. 1(a) and 1(b)], such as B20 compounds [14–16], py-
rochlore magnets [3,17], and Mn3Sn [18]. On the other hand,
the electrical magnetochiral effect has been reported in mag-
nets with helical magnetic order [10,11]. While most of the
early works ignored the effect of spin-orbit interaction (SOI)
of electronic bands, recent studies pointed out that the SOI
gives rise to nontrivial contributions to the AHE by skyrmions
[19–21], such as chiral Hall effect (CHE) and monopole con-
tributions. These studies revealed nontrivial effects of SOI in
noncentrosymmetric two-band models, such as Rashba and
Dresselhaus models.

AHE by magnetic textures also occurs in centrosymmetric
materials as skyrmion and magnetic helixes also appear in
centrosymmetric materials, such as in frustrated [22,23] and
itinerant magnets [24]. These mechanisms not only broaden
the list of candidate materials but are also favorable for
realizing a large chirality-related AHE. In the case of frus-
trated magnets, the size of the skyrmion stabilized by these
mechanisms is governed by the ratio of competing exchange
interactions, typically the nearest- and further-neighbor inter-
actions, and by the Fermi wave number in the case of itinerant
magnets. In both cases, the typical size of a skyrmion is
smaller than those stabilized by the Dzyaloshinskii-Moriya

interaction in noncentrosymmetric materials, in which case
the skyrmion radius λ is related to the ratio of ferromag-
netic exchange and Dzyaloshinskii-Moriya interaction, λ =
10 − 100 nm [25]. As the magnitude of AHE by skyrmions
is proportional to the density of the skyrmion [25], a smaller
skyrmion radius is favorable for realizing a larger AHE. In
fact, some centrosymmetric skyrmion materials show a very
large topological Hall effect [26]. As with noncentrosym-
metric materials, SOI may affect the chirality-related AHE
in centrosymmetric materials. However, while several works
have studied the effects of SOI on the AHE in coplanar mag-
nets [27,28], the role of inversion symmetry remains unclear.

In this paper, we theoretically study the AHE by magnetic
textures in a centrosymmetric magnet with SOI. Considering
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FIG. 1. Schematics of (a) Neel- and (b) Bloch-type magnetic
skyrmion and (c) Neel-type bimeron studied in this paper. (d) A
schematic of electron scattering by multiple local moments.
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FIG. 2. The band structure of the Luttinger model with α =
0.5, (a) m = 1/2, and (b) m = −1/2. (c) Helicity dependence
of chirality-related anomalous Hall conductivity in skyrmion and
bimeron crystals with Mz = α = 0, S = nsk = q = 1. In the figure,
sk and bm denote skyrmion and bimeron, respectively.

the two-dimensional Luttinger model [29] as the effective
Hamiltonian for itinerant electrons, we study the AHE in-
duced by long-range magnetic textures using a scattering
theory method. We show that the AHE related to scalar spin
chirality is suppressed by more than one order of magnitude
compared to the simple quadratic Hamiltonian without SOI,
and the contribution discovered in the Rashba model van-
ishes. On the other hand, a different contribution related to
vector spin chirality appears that gives rise to the difference
in the Hall conductivity in Bloch and Neel skyrmion crys-
tals, thereby enabling electrical distinction between the two
types of skyrmions [Fig. 2(c)]. The effect of SOI on AHE by
bimerons is also discussed.

Model and method.
a. Luttinger Kondo-lattice model. As an example of the

centrosymmetric semiconductor with SOI, we consider a
two-dimensional variant of the Luttinger model coupled to
classical spins. The Hamiltonian reads

H = H0 + HK , (1)

where

H0 =
∑
k,μ,ν

c†
μ(k)

[
k2

2M̃
+

5
4 k2 − (kxJx + kyJy)2

2m

]
μν

cν (k)

(2)

is the effective Hamiltonian for itinerant electrons described
by the Luttinger Hamiltonian [29] and

HK = JK

∑
i

c†
μ(Ri )(Si · J)μνcν (Ri ) (3)

is the Kondo coupling between the classical localized spins
and itinerant electrons. Here cμ(k) [c†

μ(k)] is the annihila-
tion [creation] operator of an electron with momentum k =
(kx, ky) and spin μ, k = |k|, J = (Jx, Jy, Jz ) is the vector of
J = 3/2 spin operators Ja (a = x, y, z), Si = (Sx

i , Sy
i , Sz

i ) is the
ith localized moment at position Ri = (Rx

i , Ry
i ), and JK is the

strength of exchange coupling between the itinerant electrons
and the localized moment. In H0, the first term is the ordinary
quadratic term and the second term is the effect of SOI as seen
from the k · J form.

The eigenstates of H0 consist of two doubly degenerate
bands [Fig. 2(a)]. When |m/M̃| = |α| < 1, one of the two
doubly degenerate bands is holelike and the other becomes
electronlike; the electron and hole bands touch at k = 0, form-
ing a zero-gap semiconductor state. Such a state is realized
in α-Sn [30] and in pyrochlore iridates [31,32]. On the other
hand, when |α| > 1, both bands are either electronlike (mα >

0) or holelike (mα < 0). In this paper, we focus on the |α| < 1
case, i.e., the case in which one of the two doubly degenerate
bands is electronlike and the other is holelike [Figs. 2(a) and
2(b)].

b. Anomalous Hall effect by skew scattering. To study the
AHE arising from coupling to magnetic textures, we compute
the anomalous Hall conductivity σxy focusing on the skew
scattering contribution [33]. In the Boltzmann theory, the
skew scattering is described by the asymmetry of the scat-
tering rate. The scattering rate Wkμ→k′ν is the rate of electrons
in the |kμ〉 state, the μth eigenstate of H0 with momentum k,
being scattered to the state |k′ν〉. The skew scattering AHE
is related to the difference of Wkμ→k′ν and its inverse process
Wk′ν→kμ. To study the asymmetry in the scattering rate, we
first define the symmetric w+

kμ→k′ν and antisymmetric w−
kμ→k′ν

terms of the scattering rate by

w±
kμ→k′ν = 1

2 (Wkμ→k′ν ± Wk′ν→kμ). (4)

In this paper, we focus on the asymmetric scattering w−
kμ→k′ν

by the magnetic scattering.
Within the second Born approximation, the antisymmetric

term w−
kμ→k′ν reads

w−
kμ→k′ν = 4π2

∑
p,λ

Im[〈k′ν | HK | kμ〉〈kμ | HK | pλ〉

× 〈pλ | HK | k′ν〉]δ(εkμ − εk′ν )δ(εkμ − εpλ). (5)

Here we considered H0 as the unperturbed Hamiltonian
and HK as the perturbation that causes electron scattering.
The Hall conductivity is calculated by combining Eq. (5)
with the semiclassical Boltzmann theory, as summarized in
Appendix A.

Results.
a. Hall conductivity for the electron-doped case. We first

consider the electron-doped case (εF � 0) assuming a positive
electron mass m > 0, where εF is the Fermi energy. The Hall
conductivity σxy reads

σxy = − σ0

210(1 + α)

× [9 f1({Sh}) + 58 f2({Sh}) + 30 f3({Sh})]. (6)

Here,

f1({Sh}) = 1

L2

∑
h,i, j

Sz
h

[
8Sz

i Sz
jRih · R jh

+ (Si · S j )
(
17Rih · R jh − 5R2

ih − 5R2
jh

)]
,

f2({Sh}) = 1

L2

∑
h,i, j

(Sh · Si × S j )(Rih × R jh · ẑ),
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FIG. 3. A schematic of (a) local spins on the square lattice and
(b) an example of skyrmion crystal.

f3({Sh}) = 1

L2

∑
h,i, j

(Sh · Ri j )[Si × S j · (Rih + R jh) × ẑ]

+ (Sh · Ri j × ẑ)[Si × S j · (Rih + R jh)],

and σ0 = τ 2e2|m|3J3
K ε2

F
2π

, where ẑ is the unit vector along the
z axis, Ri j = Ri − R j , L2 is the area of the system, τ is the
relaxation time for symmetric scattering, and e is electric
charge. Among three terms, f1({Sh}) corresponds to a gen-
eralization of the skew scattering AHE by magnetic scattering
[34] and f2({Sh}) is the skew scattering AHE related to the
scalar spin chirality Sh · Si × S j [13]. The third term f3({Sh})
is the AHE related to the vector spin chirality Si × S j , which is
the term describing the interplay of magnetic texture and SOI.

To see how the SOI affects the AHE, we compare Eq. (6)
to the anomalous Hall conductivity of a model without SOI.
To this end, we consider a quadratic Hamiltonian

H̃0 =
∑

k

cμ(k)† k2

2m̃
cμ(k). (7)

The dispersion of H̃0 is exactly the same as that of H0 when
m̃ = m/(1 + α). Therefore, comparing the anomalous Hall
conductivity of two models helps us clarify the effect of SOI.
The scattering rate and Hall conductivity for H̃0 reads

σ̃xy = − σ0

1 + α
f2({Sh}), (8)

when m̃ = m/(1 + α). The result resembles f2({Sh}) term
in σxy. However, the magnitude in Eq. (6) is reduced by
29/512 ∼ 1/18 compared to the case without SOI. The result
indicates that the AHE related to scalar spin chirality in the
Luttinger model is suppressed by more than one order of
magnitude compared to that without SOI.

b. Continuum limit for the electron-doped case. We next
turn to a spin texture slowly varying in space, such as
in ferromagnets with magnetic skyrmions. To be concrete,
we consider a square lattice magnet [Fig. 3(a)]. When the
spins vary slowly in space, Si near Sh can be approxi-
mated as Si ∼ Sh + (Rih · ∇)Sh + 1

2 (Rih · ∇)2Sh. To evaluate
the Hall conductivity, we assume that the contribution from
the multiple-spin scattering due to nearest-neighbor sites is
dominant. That is, we limit i and j to the nearest-neighbor
sites of h. By using the gradient expansion, replacing

∑
h by∫ dxdy

a2 and Sh by S = (Sx(r), Sy(r), Sz(r)), we obtain

σ (h)
xy = σ0

(1 + α)L2

∫
dxdy

45

32
SzS2 − 153

256
a2Sz(|∂xS|2 + |∂yS|2) + 45

64
a2SzS · �S − 9

32
a2Sz(|∂xSz|2 + |∂ySz|2)

− 29

64

σ0a2

(1 + α)L2

∫
dxdy S · ∂xS × ∂yS + 15

128

σ0a2

(1 + α)L2

∫
dxdy

(
Sx

[(
∂2

x − ∂2
y

)
S × S

]
y + Sy

[(
∂2

x − ∂2
y

)
S × S

]
x

)
,

(9)

where a is the lattice constant that defines the distance be-
tween nearest-neighbor spins and S = |S|.

Compared to noncentrosymmetric models [19,21], no term
with one spatial derivative of spin exists in Eq. (9), namely,
the contributions similar to CHE [19] and monopole [21]
contributions are absent. The absence of linear-in-gradient
terms is understandable from the symmetry of H . Phe-
nomenologically, Eq. (9) indicates that the Hall current
follows Jy = σ ′ f ({S(r)})Ex, where f ({S(r)}) is a functional
of spins. For concreteness, let us consider f ({S(r)}) =
(Sx )2∂xSx. In this case, the inversion operation transforms
Jy = σ ′ f ({S(r)})Ex → Jy = −σ ′ f ({S(r)})Ex. Hence, σ ′ =
0. The same argument holds for arbitrary f ({S(r)}) with one
spatial derivative. Hence, the AHE related to terms with one
spatial derivative, e.g., CHE and monopole contributions, is
prohibited in a centrosymmetric system. In contrast, two-
derivative terms, such as Sx[(−∂2

x + ∂2
y )S × S]y + Sy[(−∂2

x +
∂2

y )S × S]x and S · ∂xS × ∂yS, are allowed by symmetry.

Therefore, the absence of the CHE and monopole contribution
reflects the inversion symmetry of the model.

c. Magnetic skyrmions and bimerons. To gain insight into
how the unique term affects AHE in skyrmion materials, we
apply Eq. (9) to a skyrmion crystal state. Here we consider a
crystal of a magnetic skyrmion whose spin configuration is

S = S

(
2λr cos(qφ − φ0)

r2 + λ2
,

2λr sin(qφ − φ0)

r2 + λ2
,

r2 − λ2

r2 + λ2

)
,

(10)

where r is the distance from the skyrmion center, λ is the
skyrmion radius, φ is the azimuth angle [35], φ0 is the he-
licity of the skyrmion, and q = ±1 is the skyrmion charge
[25]. When φ0 = 0, π , the skyrmion is Neél type, and when
φ0 = ±π/2, it is Bloch type [see Figs. 1(a) and 1(b)]. A
periodic alignment, or a crystal, of skyrmions [see Fig. 3(b)] is
known to be stable in many magnetic materials [36,37], which
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has been intensively explored over the last couple of decades
[38–40].

By using Eq. (9), the anomalous Hall conductivity of the
skyrmion crystal reads

σxy = σ0S3

32(1 + α)
[45Mz + nsk[34q − 10 cos(2φ0)]], (11)

where Mz is the out-of-plane magnetization per area and nsk is
the skyrmion density. The term proportional to nskq contains
the contribution from Sz(|∂xSz|2 + |∂ySz|2) and scalar spin
chirality S · ∂xS × ∂yS, whereas the third term proportional to
nsk cos(2φ0) is the contribution from SOI. The cos(2φ0) de-
pendence of the third term indicates that the Hall conductivity
depends on the helicity; the term gives a negative contribution
to AHE in Neel-type skyrmion and a positive contribution
to Bloch type [Fig. 2(c)]. Hence, the f3 term, which arises
from the interplay of SOI and magnetic texture, enables the
detection of the skyrmion helicity.

As another example of nontrivial magnetic texture, we
consider a bimeron crystal whose spin orientation reads

[Fig. 1(c)]

S = S

(
r2 − λ2

r2 + λ2
,

2λr sin(qφ − φ0)

r2 + λ2
,−2λr cos(qφ − φ0)

r2 + λ2

)
.

(12)

Intuitively, magnetic bimeron is a skyrmion whose spins are
rotated by π/2 about the x or y axis [41]. The anomalous Hall
conductivity for the bimeron crystal reads

σxy = 29

16

σ0

1 + α
nskqS3. (13)

Unlike the magnetic skyrmion case, only the f2({Sh}) term
contributes to the AHE in the bimeron crystal.

d. Hole-doped case. We next consider the hole-doped case
(εF � 0), assuming m > 0. The Hall conductivity reads

σxy = 27σ0

29(1 − α)

[
f ′
1({Sh}) − 4 f2({Sh}) + 1

4
f3({Sh})

]
, (14)

where

f ′
1({Sh}) = 1

L2

∑
h,i, j

Sz
h[(Si · S j )(R

2
ih + R2

jh − 6Rih · R jh)].

In the continuum limit, the Hall conductivity reads

σxy = σ0

(1 − α)L2

∫
dxdy

27

16
SzS2 − 81

64
a2Sz(|∂xS|2 + |∂yS|2) + 27

32
a2SzS · �S − 27σ0

16(1 − α)L2

∫
dxdy S · ∂xS × ∂yS

− 27σ0

512(1 − α)L2

∫
dxdy

(
Sx

[(
∂2

x − ∂2
y

)
S × S

]
y + Sy

[(
∂2

x − ∂2
y

)
S × S

]
x

)
. (15)

Compared to the electron-doped case, the f2 term becomes
relatively large compared to f3, i.e., the topological Hall effect
becomes larger compared to the effect of SOI in the hole-
doped case.

By using this equation, the anomalous Hall conductivity of
the skyrmion crystal reads

σxy = 27σ0S3

32(1 − α)

[
2Mz + nsk

(
8q + cos(2φ0)

6

)]
, (16)

and the anomalous Hall conductivity of the bimeron crystal
reads

σxy = 27

4

σ0

1 − α
nskqS3. (17)

As expected from Eq. (14), the helicity dependence of σxy

for the skyrmion crystal becomes smaller compared to the
electron-doped case and with the opposite sign, as shown in
Fig. 2(c).

e. m < 0 case. When m < 0, the same calculation gives
Eqs. (14) and (15) for εF > 0, and Eqs. (6) and (9) for εF <

0, i.e., the result for electron- and hole-doped cases inverts
[Fig. 2(a)]. It reflects the fact that the orbitals for electron
and hole bands invert by changing the sign of m. Hence, the
behavior of AHE in the m < 0 case is qualitatively the same
as those discussed above.

Note that this behavior is distinct from the Rashba model
[19,21], where changing the sign of SOI changes the sign of

AHE. For the case of Rashba model, inverting the sign of
SOI only changes the spin texture in the momentum space;
the electron dispersion remains exactly the same. On the other
hand, the four bands in the Luttinger model are usually the
bands that split off from six or more degenerated bands in the
absence of SOI [42]. In such a case, changing the sign of SOI
inverts the orbitals, leading to a behavior more complicated
than the Rashba model. Hence, the AHE in Luttinger model
shows distinct behavior compared to the Rashba model.

Summary. In this paper, we studied the skew scattering
and AHE in a two-dimensional Luttinger model coupled to
localized moments by the Kondo coupling. Using a scat-
tering theory method, we derived a general formula for the
anomalous Hall conductivity, which consists of three terms:
the AHE proportional to the magnetization, topological Hall
effect (THE), and vector spin chirality term. The result shows
that THE in the Luttinger model is suppressed by more than
one order of magnitude compared to the quadratic band elec-
tron. On the other hand, the vector spin chirality term is a
contribution arising from the interplay of SOI and nontrivial
magnetic texture. This term, however, is distinct from those
known in noncentrosymmetric models such as CHE related
to vector spin chirality [19] and monopole contribution [21].
This is evident from the fact that only the second-order deriva-
tive of spins appears in the continuum limit, in contrast to the
vector spin chirality S × ∇S and magnetic monopole ∇ · S
terms in noncentrosymmetric magnets. These terms give rise
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to the helicity dependence of anomalous Hall conductivity
in the case of skyrmion crystals, hence enabling the electri-
cal distinction of Bloch and Neel skyrmions. In the case of
bimeron crystals, however, only the THE term contributes to
the AHE. Hence, there is no helicity dependence. The results
demonstrate the rich effect of SOI and crystal symmetry on
the AHE by nontrivial spin texture.

The helicity dependence of anomalous Hall conductivity
suggests that the AHE is a potential probe for detecting
skyrmion helicity. Compared to those using optical techniques
[43], the detection by transport phenomena has advantages
for applications, such as the simplicity of device structure.
Our result demonstrates that the anomalous Hall conductivity
changes depending on the type of skyrmion, Neel type or
Bloch type. For the application, if m > 0, the electron-doped
case might be a better candidate as the helicity-dependent con-
tribution is relatively large compared to other contributions.

Lastly, we briefly discuss the effect of anisotropy. In gen-
eral, a uniaxial anisotropy term proportional to (Jz )2 exists
in the two-dimensional Luttinger model. We, however, expect
that the anisotropy does not change the main conclusions of
this paper, such as the absence of linear-in-gradient terms,
as they are the consequences of inversion symmetry. We
also note that, if the anisotropy is sufficiently smaller than
the chemical potential μ, the wave function of the electrons
near the Fermi level remains almost the same as that without
anisotropy. Hence, the anisotropy term does not change the
scattering rate and the transport coefficients. Therefore, we ex-
pect our result to be quantitatively valid when the anisotropy is
small, and qualitatively the same even with a large anisotropy.

Acknowledgments. We are grateful for the fruitful discus-
sions with J. Fujii, N. Kanazawa, and J. Mochida. This work
was supported by JSPS KAKENHI (Grants No. JP19K14649
and No. JP23K03275).

Appendix A: Boltzmann theory. The calculation of Hall
conductivity follows a paper by one of the authors [13]. In the
Boltzmann theory, the electron distribution was evaluated by
the Boltzmann equation. In the presence of the uniform static
electric field in x direction, the Boltzmann equation reads

(1 + α)ek cos θkEx

m
f ′
0(εk)

= gkμ

τ
+ L2

4π2

∑
ν

∫
dk′dθk′ w−

kμ→k′νgk′ν, (A1)

where θk = tan−1(ky/kx ), Ex is the external electric field, and
f0(εk) and f ′

0(εk) are the Fermi-Dirac distribution function
and its energy derivative, respectively. Here, we assumed that
the electron occupation fkμ = f0(εk) + gkμ is close to that of
the Fermi-Dirac distribution and expanded to the equation up
to leading order in Ex, assuming gkμ = O(Ex ). In addition, in
Eq. (A1), we used the relaxation time approximation for the
symmetric part of the scattering rate w+

kμ→k′ν , i.e., w+
kμ→k′ν is

replaced by − gkμ

τ
, where τ is the relaxation time.

Here, we assume the form

w−
kμ→k′ν =

∑
n

cn sin nφ, (A2)

where φ = θk′ − θk is the angle between k and k′. This is a
generalization of the antisymmetric scattering term. Solving
Eq. (A1) up to leading order in w−

kμ→k′ν , gkμ reads

gkμ = (1 + α)τek cos θkEx

m
f ′
0(εk) + (1 + α)τeL2Ex

4π2m

×
∑
ν,n

cn

∫
k′ f ′

0(εk′ ) dk′
∫

sin nφ cos θk′ dθk′ . (A3)

Since
∫

sin nφ cos θk′ dθk′ = − sin θk
2 δn,1, only the c1 term in

Eq. (A2) remains, i.e., among the asymmetric scattering
terms, only those proportional to sin φ contribute to Hall con-
ductivity.

Appendix B: Anomalous Hall conductivity. Using Eq. (5) in
the main text, the antisymmetric scattering term w−

kμ→k′ν for
the hole-doped case reads

w−
kμ→k′ν = 27π |m|J3

K

29(1 − α)L4
Vμνδ(εkμ − εk′ν ), (B1)

where

V = V0σ0 + Vxσx + Vyσy + Vzσz, (B2)

and

V0 = Sz
h(Si · S j )(sin φ + 2 sin 2φ + sin 3φ)

+ k2Sz
h(Si · S j ) 1

4

[
R2

i j (sin φ − 4 sin 2φ − 3 sin 3φ) + Rih · R jh(−4 sin φ + 2 sin 2φ + 4 sin 3φ + sin 4φ)
]

+ k2(Rih × R jh · ẑ)[Sh · Si × S j (2 sin φ + sin 2φ) + Sz
h(Si × S j · ẑ) 1

4 (−4 sin φ + 2 sin 2φ + 4 sin 3φ + sin 4φ)]

+ k2[(Sh · Ri j ){Si × S j · (Rih + R jh) × ẑ} + (Sh · Ri j × ẑ){Si × S j · (Rih + R jh)}] 1
8 (3 sin φ − sin 3φ), (B3)

Vx = Sz
h(Si · S j )(− sin φ + 2 sin 2φ + sin 3φ)

+ k2Sz
h(Si · S j ) 1

4

[
R2

i j (−5 sin φ + 4 sin 2φ − sin 3φ) + Rih · R jh(20 sin φ − 20 sin 2φ + 8 sin 3φ − sin 4φ)
]

+ k2(Rih × R jh · ẑ)[Sh · Si × S j (2 sin φ − sin 2φ) + Sz
h(Si × S j · ẑ) 1

4 (4 sin φ + 2 sin 2φ − 4 sin 3φ + sin 4φ)]

+ k2[(Sh · Ri j ){Si × S j · (Rih + R jh) × ẑ} + (Sh · Ri j × ẑ){Si × S j · (Rih + R jh)}] 1
8 (−5 sin φ + 4 sin 2φ − sin 3φ), (B4)
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Vy = −ikSh × (Si × S j ) · Ri j (−3 cos φ + 4 cos 2φ − cos 3φ), (B5)

Vz = −k(Sh · Ri j )(Si × S j · ẑ)(5 sin φ + 4 sin 2φ + sin 3φ) + kSz
h(Si × S j · Ri j )(sin φ + 2 sin 2φ + sin 3φ). (B6)

Among the asymmetric scattering terms, only those proportional to sin φ contribute to Hall conductivity, as discussed in
Appendix A. Therefore, we focus on the terms proportional to sin φ,

w̃−
kμ→k′ν = 27π |m|J3

K

29(1 − α)L4
Ṽμν sin φδ(εkμ − εk′ν ), (B7)

where

Ṽ = Ṽ0σ0 + Ṽxσx + Ṽyσy + Ṽzσz, (B8)

and

Ṽ0 = Sz
h(Si · S j ) + k2Sz

h(Si · S j ) 1
4

[
R2

i j − 4Rih · R jh
] + k2(Rih × R jh · ẑ)

[
2Sh · Si × S j − Sz

h(Si × S j · ẑ)
]

+ 3
8 k2[(Sh · Ri j ){Si × S j · (Rih + R jh) × ẑ} + (Sh · Ri j × ẑ){Si × S j · (Rih + R jh)}], (B9)

Ṽx = − Sz
h(Si · S j ) + k2Sz

h(Si · S j ) 5
4 [−R2

i j + 4Rih · R jh] + k2(Rih × R jh · ẑ)
[
2Sh · Si × S j + Sz

h(Si × S j · ẑ)
]

− 5
8 k2[(Sh · Ri j ){Si × S j · (Rih + R jh) × ẑ} + (Sh · Ri j × ẑ){Si × S j · (Rih + R jh)}], (B10)

Ṽy = 0, (B11)

Ṽz = −5k(Sh · Ri j )(Si × S j · ẑ) + kSz
h(Si × S j · Ri j ). (B12)

By using these equations and the semiclassical Boltzmann theory, the Hall conductivity σxy for the hole-doped case reads

σxy = −27τ 2e2|m|mJ3
KεF

211π (1 − α)L2
(Ṽ0 + Ṽx )|k=√−2mεF

, (B13)

where

Ṽ0 + Ṽx = k2
[

f ′
1({Sh}) − 4 f2({Sh}) + 1

4 f3({Sh})
]
. (B14)

The Hall conductivity for the electron-doped case was calculated in the same way as in the hole-doped case. For the electron-
doped case, the Hall conductivity reads

σxy = τ 2e2|m|mJ3
KεF

211π (1 + α)L2
(Ṽ0 + Ṽx )|k=√

2mεF
, (B15)

where

Ṽ0 + Ṽx = −k2[9 f1({Sh}) + 58 f2({Sh}) + 30 f3({Sh})]. (B16)
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