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Disorder-free localization (DFL) is an ergodicity-breaking mechanism that has been shown to occur in lattice
gauge theories in the quench dynamics of initial states spanning an extensive number of gauge superselection
sectors. Whether this type of DFL is intrinsically a quantum interference effect or can arise classically has hith-
erto remained an open question whose resolution is pertinent to further understanding the far-from-equilibrium
dynamics of gauge theories. In this work, we utilize cellular automaton circuits to model the quench dynamics of
large-scale quantum link model (QLM) formulations of (1 + 1)D quantum electrodynamics, showing excellent
agreement with the exact quantum case for small system sizes. Our results demonstrate that DFL persists in
the thermodynamic limit as a purely classical effect arising from the finite-size regularization of the gauge-field
operator in the QLM formulation, and that quantum interference, though not a necessary condition, may be
employed to enhance DFL.
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Introduction. The pursuit of a general theoretical frame-
work of the nonequilibrium dynamics of quantum many-body
systems is a major goal in condensed matter physics [1–4].
Whereas generic interacting many-body models are expected
to thermalize according to the eigenstate thermalization hy-
pothesis (ETH) [5,6], it has become clear that several ETH
violations exist. Examples include integrable systems [7],
systems with quantum many-body scars [8,9], Hilbert space
fragmentation [10,11], and many-body localization (MBL)
[12–16]. The latter was first predicted to exist in disordered
systems. However, it is now known that the presence of
disorder is not a necessary ingredient, and without it, lo-
calization can still arise. For example, so-called Stark MBL
involves adding a strong tilted potential in a clean system
of interacting fermions [17,18], which has also been exper-
imentally demonstrated to lead to strong suppression of the
dynamics in cold-atom and trapped-ion quantum simulators
[19,20]. Another mechanism for generating MBL without
disorder appears in models with local constraints, known as
gauge theories, which are fundamental frameworks of modern
physics that describe the interactions of elementary particles
as mediated by gauge bosons [21,22]. The principal property
of gauge theories is their local gauge invariance, which en-
codes the laws of nature through intrinsic relations between
the local distribution of matter and the surrounding electric
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fields, as exemplified through Gauss’s law in quantum elec-
trodynamics (QED). Upon preparing the system in a linear
combination of an extensive number of gauge superselection
sectors and subsequently performing a global quench, local-
ized dynamics can emerge where the system retains memory
of its initial state [23,24]. This appears to occur even when
the quench Hamiltonian is nonintegrable, disorder-free, and
translation-invariant with a homogeneous initial state. This
ergodicity-breaking mechanism, known as disorder-free lo-
calization (DFL), has been demonstrated in various models
[25–38], and has generally been attributed to an emergent
effective disorder associated with the background charges cor-
responding to the spanned gauge superselection sectors.

In Brenes et al. [24], DFL was studied in the Schwinger
model, where Gauss’s law was employed to integrate out
the gauge fields, resulting in a purely fermionic model with
long-range Coulomb interactions and an explicit correlated-
disorder term related to the background charges. Soon
thereafter, it was shown that DFL also persists, at least for
small system sizes, at zero gauge coupling for quantum link
model (QLM) regularizations of the Schwinger model, where
the gauge and electric-field operators are represented by spin-
S operators [39]. Lattice QED is then approached in the limit
S → ∞, although the low-energy physics is faithfully repro-
duced already for small values of S [40,41]. Interestingly, it
was recently shown that starting in thermal ensembles span-
ning an extensive number of gauge superselection sectors,
quench dynamics can give rise to DFL in QLMs and in Z2

gauge theories [42]. These works suggest that DFL can occur
without explicit disorder and perhaps without the need of
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quantum interference. This has raised the question as to the
origin of DFL. The fact that quantum simulation of gauge
theories has recently become a very active research area in
quantum many-body physics, and experimental realizations
abound [43–57], motivates a better theoretical understand-
ing of exotic nonergodic gauge-theory dynamics that can be
probed on such platforms.

In this work, we ask whether DFL in lattice gauge theories
can arise purely classically, i.e., in the absence of any quantum
interference effect. We approach this question by modeling
the dynamics of spin-S U(1) QLMs using cellular automaton
circuits (CACs), which have been employed in several recent
works on systems with unconventional symmetries [58–66].
Here we show that DFL persists in the thermodynamic limit as
a purely classical effect. We attribute this form of DFL to the
regularized finite structure of gauge superselection sectors in
QLMs, leading to reducible dynamics as in systems showcas-
ing Hilbert space fragmentation, here explicitly given by the
local gauge invariance [10,11,67–69]. Furthermore, we show
excellent quantitative agreement of the saturation values of
the imbalance and infinite-temperature correlations with the
quantum case through exact diagonalization (ED) on small
system sizes. We argue that this type of DFL is distinct from,
though can occur concomitantly with, the type connected to a
finite gauge coupling in the Schwinger model.

Cellular automaton circuits. In a QLM, the matter and
gauge degrees of freedom are represented by a spin-1/2 vari-
able σ̂ α

j and a spin-S variable ŝα
j, j+1, respectively. Here j =

1, . . . , L labels the sites of a chain of length L with periodic
boundary conditions and α = x, y, z is the spin component.
The matter fields live on the sites, and the gauge variables, i.e.,
the discretized local electric field, live on the links between
two sites. The states of the computational basis are the strings
C = (σ z

1 , sz
1,2, σ

z
2 , . . . , sz

L−1,L, σ z
L, sL,1), where σ z

j ∈ {−1,+1}
and sz

j, j+1 ∈ {−S, . . . , S}. The standard QLM dynamics, which
we will introduce later, commutes with the Gauss’s law
operator

Ĝ j = (−1) j
[
ŝz

j−1, j + ŝz
j, j+1 + (

σ̂ z
j + 1

)
/2

]
. (1)

Since this operator is diagonal, gauge invariance can be en-
coded into a classical cellular automaton, namely a particular
kind of dynamics which maps computational basis states into
computational basis states. In this setting, the quantum spins
are demoted to classical variables σ j and s j, j+1, and the state
of the system at any time t is given by a string configu-
ration C(t ). The conservation law (1) is enforced by only
allowing symmetric updates of this string. A similar approach
has been employed to probe the hydrodynamic behavior of
classical systems with kinetic constraints and different kinds
of unconventional conservation laws such as dipole-moment
conservation [58–66].

The dynamics of the classical CAC considered here is
schematically depicted in Fig. 1(a): local gates Pj, j+1 act on
pairs of neighboring sites ( j, j + 1) and their intermediate
link, and the matter and gauge degrees of freedom are updated
as σ j → σ j ± 2, σ j+1 → σ j+1 ± 2, and s j, j+1 → s j, j+1 ∓ 1,
respectively. These updates are randomly applied among those
for which |σ j ± 2| = 1, |σ j+1 ± 2| = 1, and |s j, j+1 ± 1| � S,
with symmetric transition rates such that detailed balance
is satisfied on the uniformly random ensemble of string

FIG. 1. Disorder-free localization as a purely classical effect.
(a) Schematic of the cellular automaton implementation of the spin-
S U(1) QLM (3) and the enforcement of Gauss’s law. Purple straight
lines and green wiggly lines indicate the discrete time evolution of
matter sites and gauge links, respectively. A matter site is either
empty (◦) or occupied (•), while the electric field takes on values
in {−S, . . . , S}. (b) Dynamics of the imbalance starting in a domain-
wall state of L = 500 sites and averaging over N = 8000 randomly
chosen electric-field configurations, modeling a superposition of an
extensive number of gauge superselection sectors in the quantum
case. Disorder-free localization arises for all considered values of
S. Throughout this Letter, we have used N = 10 000 for system
sizes L < 200 and N = 8000 for L � 200. (c) Infinite-time value
of the imbalance shows convergence with system size for L � 400,
indicating persistence in the thermodynamic limit with a power-law
behavior in S, as shown in the inset.

configurations C. As a result, a local gate Pj, j+1 simply im-
plements a random permutation between two allowed strings
C → Pj, j+1C. A time step is then given by a sequence of
such non-overlapping gates acting on neighboring sites and
the links in between, as shown in Fig. 1(a). The full time
evolution follows from the application of several such layers
of gates.

One can see that Gj (Pi,i+1C) = Gj (C) for any configura-
tion C and for all i, j = 1, . . . , L. This is trivially true for
i �= j − 1, j. In the remainder cases, one finds Gj (Pi,i+1C) =
Gj (C) ± (1–2 1

2 ) = Gj (C). Hence, the CAC introduced above
leaves Gj invariant for all j and at all times. Its eigenval-
ues g j are the so-called background charges, and (−1) jg j

are integers in {−2S, . . . , 2S + 1}. Gauge superselection sec-
tors Cg are defined as unique sets of these eigenvalues g =
{g1, g2, . . . , gL}. It is worth noting here that not all charge
configurations are physical, and, as we will see later, this trun-
cation of the gauge and electric fields will have consequences
on DFL that get more pronounced with smaller S. Overall,
this leads to reducible classical dynamics whose sectors cor-
respond exactly to the gauge superselection sectors of the
spin-S QLM. This motivates us to investigate whether DFL,
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well-established for the QLM, can also arise in this purely
classical setting.

Localized dynamics from CAC. We now probe DFL in the
CAC dynamics outlined above by computing the long-time
saturation value of two different quantities: (i) the matter im-
balance I (t ) = ∑L

j=1〈σ̂ z
j (0)〉〈σ̂ z

j (t )〉/L, and (ii) the two-point
unequal-time matter correlation function 〈σ̂ z

j (t )σ̂ z
0 (0)〉. Both

(i) and (ii) rely on the calculation of diagonal observables,
and can thus be computed in the classical CAC framework
by simply replacing σ̂ z

j with the classical variable σ j . The ex-
pectation value 〈A〉 for a diagonal observable A corresponds to
the average over N different initial conditions C(0): 〈A(t )〉 ≡∑

{C(t )} A[C(t )]/N . For (i), we prepare initial strings C(0) with
a domain-wall structure in the matter degrees of freedom, i.e.,
σ j (0) = ±1 on the left (right) half of the chain, and a uniform
random configuration of the electric field variables s j, j+1. For
(ii), instead, both matter and gauge fields are initialized ran-
domly. In the following, we refer to random initial conditions
as “infinite temperature.”

The imbalance dynamics (i) is shown in Fig. 1(b) for a
system of L = 500 and N = 8000 for various values of S.
The imbalance settles into a plateau at intermediate times that
persists for all investigated timescales (t � 104 time steps),
indicating clear features of DFL. These results can be con-
sidered to be in the thermodynamic limit, as shown by the
finite-size scaling of the plateau value of I (t ) in Fig. 1(c),
which demonstrates convergence with system size for L �
400 at all considered values of S. The plateau also exhibits
a power-law decay with S at sufficiently large S, as shown in
the inset of Fig. 1(c) for L = 500, indicating a vanishing value
in the limit S → ∞.

We now turn to the computation of the matter two-time
correlation function (ii) 〈σ j (t )σ0(0)〉, where we initialize the
circuit in a state with both matter and gauge degrees of free-
dom at infinite temperature. The discrete dynamics of the
equal-space ( j = 0) two-time function for S = 1/2 and S = 1
is plotted for various values of L, indicating convergence to
the thermodynamic limit as shown in Figs. 2(a) and 2(b). Its
long-time value is shown in Fig. 2(c) for L up to 400 sites as a
function of S. The saturation value attained by the correlation
function for t → ∞ can be lower-bounded by making use of
the conserved quantities via Mazur’s bound MS [70]. Such a
bound holds for both quantum and classical systems as long as
the correlation function is evaluated on stationary states of the
dynamics [70,71] and the same set of conserved quantities is
considered. Generically, this bound vanishes in the thermody-
namic limit for standard conserved quantities like e.g., particle
number. However, for the Gauss’s law Eq. (1) it leads to the
finite value MS = 3/[4S(S + 1)] for any finite S [72]. We
can improve this bound by taking the projectors P̂g onto the
superselection sectors Cg labeled by the background-charge
distribution g as conserved quantities, yielding

lim
T →∞

1

T

∫ T

0
dt〈σ0(t )σ0(0)〉�

∑
g

Tr{σ0P̂g}2

Tr{P̂g}
≡ MS, (2)

where Tr{AP̂g} ≡ ∑
C∈Cg

A(C). The same approach was used
to show a finite saturation value of infinite-temperature corre-
lations in the presence of strong fragmentation of the Hilbert
space [10], as well as for boundary correlations [66,73,74].
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FIG. 2. Localized dynamics of the matter autocorrelator. Model-
ing of the dynamics of the matter autocorrelator for (a) S = 1/2 and
(b) S = 1, using cellular automaton circuits. The black horizontal
line demarcates the corresponding Mazur bound (2). (c) Infinite-time
value of the matter autocorrelator, showing a monotonic decrease
with S, and convergence to the thermodynamic limit for system sizes
L � 200 sites. Diamonds represent the finite-size Mazur’s bounds
obtained from Eq. (2).

In practice, we numerically compute MS by scanning over
all superselection sectors. We observe that its value mildly
depends on the system size L and provides a tight bound on
equal-space two-time correlations, as shown in Fig. 2. We also
note that the saturation value scales as S−0.66 [72].

Comparison to DFL in QLM. We now compare the CAC
results to those obtained from exact diagonalization for the
quantum dynamics. The spin-S quantum link model Hamilto-
nian [75–78] takes the form

Ĥ =
L∑

j=1

[
J

2
√

S(S + 1)
(σ̂−

j ŝ+
j, j+1σ̂

−
j+1 + H.c.)

+ μ

2
σ̂ z

j + κ2

2

(
ŝz

j, j+1

)2
]
, (3)

where σ̂ α
j and ŝα

j, j+1, α = x, y, z, are Pauli matrices and spin-S
operators ŝα

j, j+1, respectively, σ̂± = σ̂ x ± iσ̂ y, and ŝ± = ŝx ±
iŝy. The coupling constant J = 1 sets the overall energy scale,
μ is the mass of the matter particles, and κ is the gauge-
coupling strength. The spin-1/2 formulation of Eq. (3) has
been experimentally realized in large-scale implementations
using Rydberg atoms [43,79] and tilted Bose–Hubbard super-
lattices [52,53,57]. The QLM Hamiltonian (3) hosts a U(1)
gauge invariance with generators given in Eq. (1).

We start comparing the results when μ = κ = 0 in Eq. (3)
for the two-point matter classical and quantum correlators,
namely 〈σ j (t )σ0(0)〉 and 〈σ̂ z

j (t )σ̂ z
0 (0)〉 = Tr[σ̂ z

j (t )σ̂ z
0 (0)], re-

spectively, for t → ∞. These are shown in Fig. 3(a) for L = 8
sites and several values of S. For the computation of quan-
tum correlators, we exploit dynamical typicality and obtain
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FIG. 3. Correlation spatial profile. (a) Spatial profile of the two-
point unequal-time correlator at t → ∞, obtained through CAC (ED)
for the classical (quantum) case. For all considered values of S, we
find excellent agreement between the classical and quantum cases.
(b) Spatial profile of the two-point unequal-time correlator calcu-
lated from CAC at t → ∞ for L = 200 sites, showing exponential
localization for all considered values of S. The inset shows that
localization is more prominent with decreasing S.

infinite temperature averages starting from random initial pure
states [72,80]. We observe excellent agreement between the
stationary states of the classical and quantum cases saturating
to the common finite Mazur bound MS for sufficiently large
system sizes. Furthermore, we employ CAC to calculate the
spatial profile for L = 200 sites and several values of S in
Fig. 3(b), showing exponential localization in all considered
cases. This quantitative agreement corroborates the equivalent
propagation of local perturbations under CAC and quantum
evolution at infinite temperature, which is halted due to the
interplay of an extensive number of superselection sectors in
the dynamics. Moreover, we note that the imbalance dynamics
(i) approaches the same value for t → ∞ in the classical CAC
and quantum model (3) upon breaking energy conservation in
the latter [72].

Given that the CAC computation is inherently classical,
and yet we see DFL for all S, we are led to conclude that
the occurrence of DFL in spin-S U(1) QLMs does not re-
quire quantum interference. Instead, it is in this case a purely
classical effect that can be attributed to the regularized finite
structure of gauge sectors at finite S. Indeed, Figs. 1(b) and
1(c) show that the imbalance plateau takes on a value that
decreases with S, while Figs. 2(c) and 3(b) show that the
peak in the long-time spatial profile of the matter two-time
function is also a decreasing function of S. These observations
indicate that in the limit of S → ∞, DFL originating due to
this classical effect is not expected to emerge.

We have found that the CAC computation employed
here faithfully models the stationary state of the infinite-
temperature correlation-function dynamics generated by the
Hamiltonian (3) for μ = κ = 0. In the lattice Schwinger
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FIG. 4. Effect of gauge coupling. (a) Plateau value of the imbal-
ance as a function of the gauge coupling κ for S = 1 in the quantum
case, calculated in ED. At sufficiently large system size L, we find a
monotonic increase with κ in the plateau value. (b) The equal-space
two-time correlator at t → ∞ as a function of κ as computed in ED
for the quantum case. Similarly to the imbalance plateau, it shows a
monotonic increase with κ at sufficiently large L. Mazur’s bound M1

is the black horizontal line.

model limit S = ∞, it was argued that a finite κ is a necessary
condition for DFL to emerge [24]. We have shown that, for
finite S, this is not the case, and the finite regularization of
the gauge sectors in the spin-S QLM suffices for DFL to
emerge.

We now study the effect of finite κ on DFL. For this pur-
pose, we focus on S = 1 in Fig. 4 [81]. Using ED, we calculate
the quench dynamics of the imbalance starting in an initial
state with a domain-wall structure in the matter fields and
gauge degrees of freedom at infinite temperature. We find that
the plateau value of the imbalance [Fig. 4(a)] increases with κ

from the saturation value at κ = 0. Similarly, the equal-space
two-time correlator at t → ∞ increases with κ [Fig. 4(b)].
This confirms the conclusion of Ref. [24] that κ acts as disor-
der strength enhancing the localization. However, we note that
at finite S their mapping from the lattice Schwinger model to
an interacting fermionic system with correlated disorder is no
longer exact.

Discussion and outlook. Using CAC, we were able to show
that DFL can arise in the spin-S U(1) QLM solely from the
finite regularization of its gauge sectors, without the need for
finite gauge coupling, which is necessary only for having DFL
in the limit S → ∞. We validated our conclusions by model-
ing the dynamics of the imbalance and infinite-temperature
two-point unequal-time correlation functions, showing excel-
lent agreement with results from the exact diagonalization of
the full quantum model at small system sizes.

Since CAC is an inherently classical setup, our results
show that quantum interference is not a necessary condition
for localization when combining extensively many superse-
lection sectors. This is related to other forms of localization
in the absence of disorder, such as in the context of Hilbert
space fragmentation. Since DFL has been established as an
ergodicity-breaking paradigm in gauge theories, a thorough
understanding of its origin can shed light on the nonequilib-
rium dynamics of such models.

An interesting avenue for future work would be to under-
stand how prominent classical DFL is in higher dimension
[82], and to explore the role of the emergent random potential
in the Schwinger model in competition with the long-range
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Coulomb potential [24]. It would be also interesting to
understand the thermal properties of each of the involved
superselection sectors, which combined lead to finite correla-
tions, and investigate the specific constrained structure arising
at finite S. In dipole-conserving systems, the cause of this
behavior has been associated with the presence of statistically
localized degrees of freedom that label all Krylov subspaces
left invariant by the dynamics [73,83].
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