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Interactions and integrability in weakly monitored Hamiltonian systems
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Interspersing unitary dynamics with local measurements results in measurement-induced phases and tran-
sitions in many-body quantum systems. When the evolution is driven by a local Hamiltonian, two types of
transitions have been observed, characterized by an abrupt change in the system size scaling of entanglement
entropy. The critical point separates the strongly monitored area-law phase from a volume law or a subextensive,
typically logarithmiclike, one at low measurement rates. Identifying the key ingredients responsible for the
entanglement scaling in the weakly monitored phase is the key purpose of this work. For this purpose, we
consider prototypical one-dimensional spin chains with local monitoring featuring the presence/absence of
U(1) symmetry, integrability, and interactions. Using exact numerical methods, the system sizes studied reveal
that the presence of interaction is always correlated to a volume law weakly monitored phase. In contrast,
noninteracting systems present subextensive scaling of entanglement. Other characteristics, namely integrability
or U(1) symmetry, do not play a role in the character of the entanglement phase.

DOI: 10.1103/PhysRevB.109.L060302

Introduction. Monitoring the otherwise unitary evolution
of a many-body quantum system substantially changes its
dynamical features [1–6]. Indeed, quantum measurements are
inherently stochastic and nonlinear, as they collapse the sys-
tem’s state onto the outcome eigenspaces, thus inducing a
nonequilibrium behavior that is nonunitary and described by
quantum trajectories [7–9]. When monitoring local variables,
measurements may disentangle degrees of freedom, thus com-
peting with the entangling unitary evolution. This tension
results in the hallmark phenomenon of measurement-induced
phase transitions (MIPT) in the structure of the typical quan-
tum trajectory, cf. Refs. [10–12] for reviews. Crucially, the
features of the typical trajectory are generally invisible in
the average dynamics, described by a master equation or
quantum channel, and revealable by nonlinear functionals of
the quantum state. For instance, the system size scaling of
the entanglement entropy has been extensively used to char-
acterize the various measurement-induced phases [13–20].
The strongly monitored phase generally presents an area-
law scaling, while the weakly monitored one exhibits either
(extensive) volume law or a subextensive, typically logarith-
miclike, scaling. More recently, in [21] it was shown that
one can use other quantities, like second-order cumulants, to
locate the transition point.
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At the same time, different unitary dynamics can lead to
different scalings of the entanglement. Random unitary cir-
cuits have been extensively investigated as a useful toy model
to understand key aspects of MIPTs [22–37]. Their random
and structureless nature allowed for essential breakthrough us-
ing replica methods [1,13,36,38,39] backed up by large-scale
numerical simulations [28,40–42]. Nevertheless, archetypal
many-body quantum systems evolve through a Hamiltonian,
whose conservation laws and structure constrain the explored
Hilbert space. For instance, without measurement, the station-
ary state of interacting systems locally thermalizes when only
energy is conserved [43–48], and relaxes to a grand-canonical
or generalized Gibbs ensemble when more (possibly infinite)
conservation laws are present [49].

A key open question is whether monitored integrable
Hamiltonians, even when interacting, have a subextensive or
extensive scaling of entanglement entropy at low measure-
ment strength [50].

Currently, a phase transition between volume and area-law
entanglement scaling has been observed in Refs. [50–52],
while Refs. [4,53–56] showed that noninteracting models can-
not sustain a stable volume law phase if nonpostselection
is present [57,58], with the weakly monitored phase having
a subextensive entanglement scaling fixed by the system’s
symmetries [59–73]. However, despite these early results, a
clear picture of the interplay between interaction, integrability,
and symmetry in monitored dynamics is missing.

This work elaborates in this direction by investi-
gating the measurement-induced evolution of archetypal
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one-dimensional spin chains. Varying the parameters, we
study all combinations of different scenarios: whether they are
integrable, interacting, have a U(1) symmetry, or not. Given
the computational complexity of these models, we use an
exact diagonalization approach [74] and study up to L = 28
spins. For the models and sizes studied, we observe that all
models with interactions, independent of whether they have a
U(1) symmetry or they are integrable, manifest a volume law
scaling weakly monitored phase. On the other hand, all non-
interacting models have a subextensive (logarithmic) scaling
of entanglement entropy.

Model and method. We study a generalized 1D Heisenberg
spin chain of length L with open boundary conditions and
Hamiltonian [75]

Ĥ =
L∑

l=1

⎡
⎣

⎛
⎝ ∑

α=x,y,z

Jασ̂ α
l σ̂ α

l+1

⎞
⎠ + hz(−1)l σ̂ z

l

⎤
⎦ . (1)

This Hamiltonian can become interacting (noninteracting),
integrable (nonintegrable), or U(1)-conserving (nonconserv-
ing) by simply varying the values of the couplings Jα and
of the staggered field hz. With Jz = 0 the Hamiltonian is
noninteracting [76–78], it is interacting and integrable when
hz = 0 [79–81], and it conserves the total magnetization Ŝz =∑L

i=1 σ̂ z
i when Jx = Jy. Following the literature, we refer to

these models with different names: XX when Jx = Jy and hz =
Jz = 0, XY for Jx �= Jy and hz = Jz = 0, XXZ for Jx = Jy,
Jz �= 0 and hz = 0, XYZ for Jx �= Jy �= Jz �= 0, and hz = 0,
XXZz for Jx = Jy, Jz �= 0 and hz �= 0, and XYZz for Jx �=
Jy �= Jz �= 0 and hz �= 0 [82].

We consider the system coupled to independent homodyne
detectors on the local operators Ôl such that Ôl = Ô†

l and
Ô2

l = 1. The resulting quantum evolution is given by the
stochastic Schrödinger equation [8,9]

d|�t 〉 = −iĤdt |�t 〉 − 1

2
γ dt

∑
l

(Ôl − 〈Ôl〉t )
2|�t 〉

+
∑

l

dξl (t )(Ôl − 〈Ôl〉t )|�t 〉 , (2)

where γ is the measurement rate and 〈O〉t ≡ 〈�t |Ôl |�t 〉 is
the expectation value on the trajectory |�t 〉 ≡ |�t (ξ )〉 at time
t , and the dξl are Îto Gaussian noise with average dξl = 0
and dξl (t )dξl ′ (t ′) = δl,l ′δt,t ′γ dt . In this work, we study the
monitoring of local or nearest-neighboring operators. Specifi-
cally we choose Ôl = σ̂ α

l with l = 1, . . . , L or σ̂ α
l σ̂ α

l+1 with
l = 1, . . . , L − 1. The choice of operators for the various
Hamiltonian models is summarized in Fig. 1. It is important
to stress that a noninteracting Hamiltonian may lead to inter-
acting (non-Gaussian) dynamics depending on the measured
operators. For instance, interspersing the XX unitary evolu-
tion with σ̂ z

l σ̂ z
l+1 measurements leads to interaction effects.

We also note that monitoring the σ̂ x
l during the XY dynamics

also leads to interactions, as it can be understood via the
Jordan-Wigner transformation (σ̂ x

l is a string of fermions).
Instead, monitoring σ̂ x

l σ̂ x
l+1 preserves the noninteracting char-

acter of the XY model. In all our investigations we use a
monitoring rate γ = 0.1, for which a behavior different from
area law can be observed. At even smaller γ , the nonvolume

FIG. 1. (a) F-test P value of the models considered in this work,
grouped in the table below. A value of F-test P → 1 gives a high
confidence that the underlying statistical model grows linearly with
L (volume law). Conversely, P → 0 suggests that the fit is more
likely to be linear in ln L (logarithmic law). The regions correspond-
ing to nonvolume law and volume law are enlarged in (b) and (c),
respectively.

law phase would appear as a volume law for the system sizes
analyzed. On the other hand, for higher γ , the measurements
become too strong to allow the volume law phase to emerge.

Starting from an initial random product state, we evolve
the wavefunction using Eq. (2), for systems reaching up to
L = 28 spins. In our implementation, we exponentiate Eq. (2)
using Îto calculus and trotterize up to second order in dt [8].
The resulting implementation is, therefore, a quantum circuit,
where each layer is composed of a unitary step and a mea-
surement step. At the time t = T we compute the half-chain
entanglement entropy for each trajectory [83,84]

Sξ (L/2) ≡ −tr
(
ρ̂sub

t ln ρ̂sub
t

)
, (3)

where ρ̂sub
t = trL/2+1,L(|�t 〉〈�t |) is the reduced density ma-

trix obtained tracing out spins from L/2 + 1 to L. Being a
fluctuating quantity, we study the mean S(L/2) ≡ Sξ , with
the average being over the Ntj initial random product states,
the corresponding Ntj evolutions (Ntj � 160 for L � 24 and
Ntj � 80 for L > 24), and over the NT = 5 chosen values of
T = (25 + k)/Jx with k = 1, . . . , NT . (We have preliminarily
checked that at the time T = 25/Jx the average entanglement
entropy is converged to its stationary value. If S(L/2) grows
linearly with L [ln(L)], the entanglement entropy obeys the
volume law (logarithmic law).

We corroborate the scaling of S(L/2) in a systematic fash-
ion by using the F test [85] to quantitatively determine the
statistical likelihood of a model presenting a volume law
phase or not. The F -test is a likelihood-ratio test that assesses
the goodness of fit of two competing statistical models. This
likelihood ratio is obtained by evaluating a test statistic equa-
tion that follows the F -distribution. For each set of S(L/2) of
a model, we produce two curves S̃L and S̃ln(L), which are linear
best-fits curves of S(L/2) in L and ln(L), respectively. These
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FIG. 2. (a), (c) The entanglement entropy S(L/2) (solid line) and
the linear best-fit curve in L, S̃L (dashed line), versus L in linear-linear
scale. (b), (d) S(L/2) (solid line) and the linear best-fit curve in ln(L),
S̃ln(L) (dashed line), versus L in log-linear scale. (a) and (b) feature the
noninteracting model, and (c) and (d) feature the interacting models.
All models shown in this figure preserve the U(1) symmetry.

best-fit lines help us compute the F -test statistic,

F = ẼL

Ẽln(L)
, (4)

where ẼL (Ẽln(L)) is the sum of the squared errors between
S(L/2) and S̃L (S̃ln(L)). Since we expect the most likely statis-
tical model to have a lower Ẽ , a lower F will favor the null
hypothesis (volume law), and a higher F will favor the new
hypothesis (logarithmic/area law). The probability of finding
a test statistic as high, or higher than F is thus referred to as
the P value. The smaller the P value, the more significant the
new hypothesis becomes.

Results. This section studies the effect of integrability. To
this aim, we consider different interaction terms, and also the
role of U(1) symmetry. It is important to note that when
discussing integrability, we are always referring to the Hamil-
tonian dynamics alone. For each combination of model and
measurement operator, we measure the steady-state entan-
glement entropy S(L/2) for 12 � L � 28. Being interested
in the weakly monitored phase, we fix γ = 0.1 in all our
simulations. Our main results summarizing the key aspect of
our work are collated in Fig. 1. In Fig. 1(a), we show the
F -test P values for all the models studied. The regions close
to P → 0 and P → 1 are enlarged in Figs. 1(b) and 1(c),
respectively. We see clearly that all three setups with P → 0
are noninteracting, suggesting that they obey a subextensive
scaling behavior. All interacting setups, regardless of their
integrability or U (1) symmetry, are found close to P → 1,

FIG. 3. (a), (c) The entanglement entropy S(L/2) (solid line) and
the linear best-fit curve in L, S̃L (dashed line), versus L in linear-linear
scale. (b), (d) S(L/2) (solid line) and the linear best-fit curve in ln(L),
S̃ln(L)) (dashed line), versus L in log-linear scale. (a) and (b) feature
the noninteracting setup, and (c) and (d) feature the interacting se-
tups. All setups shown in this figure break the U(1) symmetry.

suggesting that they obey volume law scaling. In the absence
of interaction, we can expect to see a transition from volume
law to nonvolume law at finite γ . We attribute the fact that
some of the models are less close to the extreme points zero
or one to finite-size effects.

In the rest of this section, we show the details of S(L/2)
scaling for various setups. For most data points, the error bar is
invisible because it is smaller than the symbols used. We plot
S(L/2) of the XX, XXZ, and XXZz models with two different
measurement operators σ̂ z

i and σ̂ z
i σ̂ z

i+1 in Fig. 2. These setups
have one notable similarity: they preserve the U(1) symmetry.
In Figs. 2(a) and 2(c) we plot both the steady-state entangle-
ment entropy S(L/2) (solid line) and S̃L (dashed line) against
L in linear-linear scale. In (b) and (d), we plot S(L/2) (solid
line) and S̃ln(L) (dashed line) against L in log-linear scale. We
see that the only setup that deviates from the S̃L but follows
the S̃ln(L) is the XX model with σ̂ z

i monitoring, which is also
the only noninteracting setup in this figure. Conversely, all
interacting setups appear to grow linearly in L and faster than
linear in ln(L), regardless of their integrability.

Next, we look at setups that break the U(1) symme-
try, namely the XY, XYZ, and XYZz models with σ z

i and
σ z

i σ z
i+1 measurements. In Figs. 3(a) and 3(c) we plot S(L/2)

(solid line) and S̃L (dashed line) against L in linear-linear
scale. In (b) and (d), we plot S(L/2) (solid line) and S̃ln(L)

(dashed line) against L in log-linear scale. The only setup
that deviates from S̃L but follows S̃ln(L) is the noninter-
acting setup XY model with σ̂ z

i measurements. Combining
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FIG. 4. (a), (c) The entanglement entropy S(L/2) (solid line)
and the linear best-fit curve in L, S̃L (dashed line), versus L in
linear-linear scale. (b), (d) S(L/2) (solid line) and the linear best-fit
curve in ln(L), S̃ln(L)) (dashed line), versus L in log-linear scale.
(a) and (b) feature the noninteracting setup, and (c) and (d) feature
the interacting setups. All setups shown in this figure break the U(1)
symmetry.

these findings, we conclude that the presence or absence of
the volume law is not affected by the U(1) symmetry, as
S(L/2) is not qualitatively affected by the total magnetization
conservation.

Lastly, we consider a slightly different but equally in-
teresting scenario. In Fig. 4, we study the XY model with
measurements on σ̂ x and σ̂ x

i σ̂ x
i+1. As previously highlighted,

the XY model becomes interacting with σ̂ x
i measurements,

but not when monitoring σ̂ x
i σ̂ x

i+1. In Fig. 4 we see that the
noninteracting XY model with σ̂ x

i σ̂ x
i+1 probes deviates from

S̃L while following S̃ln(L). Conversely, the interacting case, XY
with σ x

i probes, follows S̃L and deviates from S̃ln(L). Again,
volume law scaling is ensured by the sole presence of interac-
tion in the system and measurement.

Conclusions. We have studied a class of prototypical lo-
cal spin chains to investigate the role of interactions, U(1)

conservation, and integrability in affecting the character of
the weakly measured Hamiltonian phases. In our study we
focused on one-dimensional models considering systems up
to 28 spins, limiting our focus on the weakly monitored
phase. Our differentiation of the type of measurement-induced
phases is based on the F test and the corresponding P values.

Our findings demonstrate that the scaling is extensive
(subextensive) depending solely on the presence (absence) of
interactions. Whereas the interactions are integrable or not,
and if a U(1) conservation is present or not, does not affect
the entanglement entropy scaling in the volume law phase.
Instead, as pointed out by recent works on monitored free
fermions, symmetry plays a crucial role in determining the
underlying weakly measured phase in noninteracting systems.
This aspect deserves further investigation in one and higher
dimensions which we leave as an outlook for future work.

This work considered the homodyne stochastic
Schrödinger equation. It would be interesting to explore
how the quantum jump type of evolution is affected by
integrability, interactions, and symmetry. In that case,
certain setups we consider may be interacting or not
while having the same no-click (non-Hermitian) evolution
dynamics [50,86–90]. From our study, we expect that
measurements can lead to highly nontrivial dynamical
features compared to the post-selected no-click limit.
A more systematic study in this direction is left for
future work.

Lastly, locality plays a crucial role in determining the spec-
tral and structural properties of the Hamiltonian. It would be
interesting to investigate symmetry and integrability in this
type of model, where the current contributions are mostly lim-
ited to power-law decaying [91–94] and all-to-all interactions
[95–101].
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