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Scattering expansion for localization in one dimension
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We present a perturbative approach to disordered systems in one spatial dimension that accesses the full
range of phase disorder and clarifies the connection between localization and phase information. We consider a
long chain of identically disordered scatterers and expand in the reflection strength of any individual scatterer.
As an example application, we show analytically that in a discrete-time quantum walk, the localization length
can depend nonmonotonically on the strength of phase disorder (whereas expanding in weak disorder yields
monotonic decrease). More generally, we obtain to all orders in the expansion a particular nonseparable form
for the joint probability distribution of the transmission coefficient logarithm and reflection phase. Furthermore,
we show that for weak local reflection strength, a version of the scaling theory of localization holds: the joint
distribution is determined by just three parameters.
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Introduction. The localization of waves by disorder (An-
derson localization) is a topic of enduring interest due to the
wide range of settings in which it occurs, including elec-
tron transport, classical optics, acoustics, and Bose-Einstein
condensates [1]. Progress in the general theory of localiza-
tion, independent of model details or of physical realization,
can have similarly broad implications. Another setting for
localization, of recent interest as a potential quantum com-
puting platform [2–4], is the quantum walk [5–7], which is a
quantum version of the classical random walk. Localization
has been demonstrated in quantum walks both experimentally
and theoretically [8–19] and could impact quantum comput-
ing proposals even in the idealized limit of no decoherence
[13,14,20,21].

A distinctive feature of localization in quantum walks is
the prominent role of phase disorder. Modern experimental
platforms allow a high degree of control over a spatially
varying phase which can be disordered [8–11]. Localization
in what is perhaps the simplest quantum walk, a discrete-time
quantum walk (DTQW) in one spatial dimension, has been
experimentally realized both for strong phase disorder [9] and
for a controllable range of phase disorder from weak to strong
[11]. However, existing analytical approaches seem to apply
only in the limiting cases when phase disorder is either weak
or strong [18,19]. Furthermore, there are several phases that
can appear in the quantum “coin” (see below) of a DTQW
[18,22], and a localization calculation that allows them all
to be disordered simultaneously seems to be lacking in the
literature.

In this Letter, we present a perturbative approach to lo-
calization in one spatial dimension. Our approach accesses
the full range of phase disorder and clarifies the connection
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between localization and phase information more broadly.
We use a general scattering setup [23] that is applicable to
DTWQs [24] and beyond. A central feature of our approach
is the relation between the localization properties and the
reflection phase of a disordered scattering region [23,25,26].
(This phase has been measured in a DTQW experiment [27].)
We calculate the localization length and the probability dis-
tribution of the reflection phase, and we extend the scaling
theory of localization [28] to include correlations between the
reflection phase and the transmission coefficient.

We now summarize our approach and results in more
detail. We consider a disordered region consisting of many
single-channel scatterers that are independently and identi-
cally disordered, and we expand in the magnitude of the
reflection amplitude of any individual scatterer [29]. Our first
main result is the expansion of the inverse localization length.
We construct this expansion recursively and show that all or-
ders depend only on local averages (that is, disorder averages
over any single site). We obtain a similar expansion of the
probability distribution of the reflection phase, and indeed use
this expansion in calculating the localization length.

As an example application of our first result, we calculate
the localization length analytically as a function of arbitrary
phase disorder in a two-component DTQW in one dimension.
We verify that our result interpolates between known results
for weak and strong disorder that were calculated without
reference to scattering [18], and we find that the localization
length can depend nonmonotonically on the strength of phase
disorder (similar to behavior seen numerically in [11,18])
[30]. Our expansion applies when the quantum “coin” is
highly biased (see below), which is a regime of interest for
optimizing quantum search [22]. Even if the coin is only mod-
erately biased, we find favorable agreement with numerics
using the first two nonvanishing orders of our expansion.

Our second main result concerns the joint probabil-
ity distribution PN (− ln T, φ), where T is the transmission
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FIG. 1. Schematic of our setup.

coefficient, φ the reflection phase, and N the length of the
disordered region. We use an ansatz to find that for large N
and to all orders in the scattering expansion, PN (− ln T, φ)
tends to a Gaussian function (of − ln T ) with mean, variance,
and overall scale all depending on φ and all calculable order
by order in terms of local averages. We further show that at
the leading order in the local reflection strength, a version of
the scaling theory of localization applies: the joint distribution
is determined by three parameters, which we may take to be
the mean of − ln T and the mean and variance of φ [31]. The
latter two reach constant values for large system size.

In a companion paper [32], we present further discussion
of the scaling theory and details of our calculations below.
We also present more applications, including a higher-order
calculation in the Anderson model (yielding the leading de-
pendence on the skewness of the onsite energy distribution)
and results for a quantum particle scattering on a broad class
of periodic-on-average random potentials (including as a spe-
cial case the “transparent mirror” effect [33] from classical
optics).

Setup. We consider a general model of scattering through
a disordered region (Fig. 1). The region consists of N sites
labeled as n = 1, . . . , N , where each site n is associated with
a unitary S matrix Sn parametrized as

Sn =
(

tn r′
n

rn t ′
n

)
, (1)

where tn and t ′
n (rn and r′

n) are the local transmission (reflec-
tion) amplitudes. We consider only the single-channel case,
i.e., these amplitudes are complex numbers and not matrices.
We take the disorder distribution of the S matrices to be
independently and identically distributed (i.i.d.) across the N
sites; correlation between the entries of each individual Sn is
allowed as long as every site has the same distribution.

The S matrix for the region is obtained in the usual way by
multiplying transfer matrices and is parametrized as in (1),
with (e.g.) t1...N ≡ √

T1...N eiφt1...N and r′
1...N ≡ √

R1...N e
iφr′1...N .

We define s1...N = − ln T1...N for convenience, and we write
the joint probability distribution of s and φr′ for the region
as PN (s, φr′ ) ≡ 〈δ(s − s1...N )δ(φr′ − φr′

1...N
)〉1...N , where angle

brackets indicate disorder averaging over the site or sites listed
in the subscript. (Except in PN , we use subscripts to indicate
dependence on the disorder parameters of the corresponding
site or sites.) Our task is to determine properties of PN (s, φr′ ),
including the localization length (a property of the marginal
distribution of s [31]), given the disorder distribution of the
parameters of the local S matrix (1).

A basic assumption of our calculation is that localization
occurs: that is, for large N the region reflection coefficient
R1...N ≈ 1 in all disorder realizations [34]. The well-known
exact recursion relations that determine s1...N+1 and φr′

1...N+1

from s1...N , φr′
1...N

, rN+1, and r′
N+1 then simplify for large N

to

s1...N+1 = s1...N + gN+1(φr′
1...N

), (2a)

φr′
1...N+1

= φr′
1...N

+ hN+1(φr′
1...N

) (mod 2π ), (2b)

where gn(φ) = − ln Tn + ln(1 − rneiφ − r∗
n e−iφ + Rn), hn(φ) =

π − i ln( 1−r∗
n e−iφ

1−rneiφ
rnr′

n
Rn

), Rn = |rn|2 = |r′
n|2, and Tn = 1 − Rn.

Equations (2a) and (2b) are the starting point for our analyt-
ical work, though we use the exact recursion relations in our
numerical checks.

Our scattering expansion consists of rescaling rn → λrn

and r′
n → λr′

n [35] in Eq. (1) (with tn and t ′
n also rescaled

to maintain unitarity), then expanding in the parameter λ

while simultaneously sending N → ∞ in a λ-dependent way
such that the system is always in the localized regime. In
particular, we suppose that for any fixed λ > 0 there is some
N0(λ) for which R1...N ≈ 1 for any N � N0(λ) in all disorder
realizations [36], and we always work in the regime λ > 0 and
N � N0(λ). Below, we suppress λ and refer informally to an
expansion in |rn|.

Scattering expansion of the localization length. We
start by expressing the localization length in terms of
the limiting form p∞(φr′ ) ≡ limN→∞

∫ ∞
0 ds PN (s, φr′ ) of

the marginal distribution of the reflection phase [37].
From Eq. (2a), we see that for sufficiently large N ,
〈s1...N 〉1...N increases by the same constant amount each
time N is increased by one: 〈s1...N+1〉1...N+1 − 〈s1...N 〉1...N =∫ π

−π
dφ p∞(φ)〈gN+1(φ)〉N+1 = 2/Lloc [38], where Lloc is (by

definition) the localization length [31]. There is in fact no
dependence on the particular site N + 1 because the (i.i.d.)
disorder average can be done over any site n [39]. Converting
to Fourier space yields the following series expression for the
inverse localization length in terms of the Fourier coefficients
p∞,� ≡ ∫ π

−π

dφr′
2π

e−i�φr′ p∞(φr′ ) and the moments of rn [32]:

2

Lloc
= 〈− ln Tn〉n − 4π Re

[ ∞∑
�=1

1

�
p∞,−�

〈
r�

n

〉
n

]
. (3)

Equation (3) recovers the uniform phase formula 2/Lloc =
〈− ln Tn〉n [23] in two nonexclusive special cases: (i) the local
reflection phase is uniformly distributed independently of the
local reflection coefficient (then 〈r�

n〉n = 0 for � > 0), or (ii)
the reflection phase distribution of the region is uniform. Case
(i) is an example of strong phase disorder. The difficulty of
applying Eq. (3), in the case that (i) does not hold, is that it
has been shown in many examples that the reflection phase
distribution can be nonuniform, and in general the distribution
is only known numerically (although Schrader et al. [40]
calculated p∞,±1 in an equivalent form) [41].

The key advance that we make is to apply the scattering
expansion to p∞(φr′ ), showing that its Fourier coefficients
may be written as a recursively defined series involving only
local averages. Our calculation relies on the disorder distribu-
tion being “reasonable” and the particular model parameters
chosen being “generic”; our precise assumptions are that lo-
calization occurs and that the inequality 〈ei�(φrn +φ′

rn +π )〉n �= 1
holds for all integers � �= 0 [42].

We focus here on the results of this calculation; see
[32] for details. It is convenient to define vn = rnr′

n/Rn,
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α� = 1/[1 − 〈(−vn)�〉n], and several constants deter-
mined by local averages (we use a superscript to
indicate the order of a given constant in the scat-
tering expansion): γ (1) = α1〈r′

n〉n, γ (2) = α2〈r′
n(r′

n −
2γ (1)vn)〉n, γ

(3)
1 = α1〈rn(γ (1)r′

n − γ (2)vn)〉n, and γ
(3)

3 =

α3〈r′
n(r′

n
2 − 3γ (1)r′

nvn + 3γ (2)v2
n )〉n. Then we have

2π p∞(φr′ ) = 1 + 2 Re[(γ (1) + γ
(3)

1 )e−iφr′ + γ (2)e−2iφr′ +
γ

(3)
3 e−3iφr′ ] + O(|rn|4) and our main result for the localization

length:

2

Lloc
= 〈Rn〉n − 2 Re

[ 〈rn〉n〈r′
n〉n

1 + 〈rnr′
n/Rn〉n

]

+ 1

2

〈
R2

n

〉
n
− Re

[
α2

(〈
r2

n

〉
n
− 2α1〈rn〉n〈rnvn〉n

)(〈
r′2

n

〉
n
− 2α1〈r′

n〉n〈r′
nvn〉n

) + 2α2
1〈rn〉n〈r′

n〉n〈rnr′
n〉n

] + O(|rn|6). (4)

The first two terms in Eq. (4) are the leading-order contri-
bution (second order in |rn|) and were found in an equivalent
form by Schrader et al. in [40]. The remaining terms are fourth
order, and indeed all odd orders vanish by symmetry [32].
The terms whose real parts are taken are the contributions
from the nonuniformity of the reflection phase distribution.
We emphasize that these nonuniform phase contributions are
parametrically of the same order as the uniform phase con-
tributions (〈− ln Tn〉n = 〈Rn〉n + 1

2 〈R2
n〉n + · · · ); in particular,

deviations from phase uniformity generally affect the inverse
localization length even at leading order [26,40,43].

Application to quantum walks. We next apply the gen-
eral result (4) to a single-step, two-component DTQW in
one dimension. The setup is an infinite chain with site in-
dex n and an internal “spin” degree of freedom (↑ or ↓).
The unitary operator Û that implements a single time step
is Û = ∑

n(|n + 1,↑〉〈n,↑ | + |n − 1,↓〉〈n,↓ |)Ûcoin, where
the “coin” operator is Ûcoin = ∑

n |n〉〈n| ⊗ Ucoin,n and Ucoin,n

is a general 2 × 2 unitary matrix (acting on the spin degree of
freedom at site n) parametrized as [18]

Ucoin,n = eiϕn

(
eiϕ1,n cos θn eiϕ2,n sin θn

−e−iϕ2,n sin θn e−iϕ1,n cos θn

)
. (5)

We take the parameters Dn ≡ (ϕn, ϕ1,n, ϕ2,n, θn) to be i.i.d.
across the sites n = 1, . . . , N (note that the components of
Dn may be correlated with each other), defining a disordered
region.

The S matrix of the region describes solutions of the
stationary state equation Û |�〉 = e−iω|�〉, where ω is the
quasienergy. There are in fact many possible scattering prob-
lems, corresponding to different choices for site-independent
values to be assigned to Dn in the nondisordered regions (the
sites n < 1 and n > N). It may be shown that all choices result
in a problem of the form we have been considering (i.e., there
is some S matrix Sn that depends only on Dn and ω) and that
the probability distribution of the transmission coefficient in
the localized regime is the same in all cases [32]. We con-
sider the simplest case of setting Dn = 0 in the nondisordered
regions [24], which results in Sn = eiωUcoin,n. Comparing to
Eq. (5), we see that the local reflection amplitudes are rn =
−ei(ω+ϕn−ϕ2,n ) sin θn and r′

n = ei(ω+ϕn+ϕ2,n ) sin θn. Then Eq. (4)
yields the inverse localization length for small sin θn, up to an
error of order |rn|6 = sin6 θn, with arbitrary phase disorder. In
particular, the distribution of Dn is arbitrary as long as sin θn

is always small.

Specializing to the case of ϕn uniformly distributed in
[−W,W ], with ϕ1,n = ϕ2,n = 0 and θn ≡ θ , we obtain the
inverse localization length for small sin θ and arbitrary phase
disorder strength W . We have verified that our result agrees
with the calculation of Vakulchyk et al. [18], in which θ

is arbitrary and W is either small (yielding 2/Lloc ∼ W 2) or
equal to π (in which case the uniform phase formula holds).
Our result thus interpolates between the known limits of weak
and strong phase disorder and analytically demonstrates non-
monotonicity in disorder strength [44]. We have verified our
result with numerics in the regime of small sin θ [32]; further-
more, in Fig. 2 we show that the agreement with numerics is
favorable even if sin θ is not particularly small.

Joint probability distribution. Returning to the general
case, we now summarize the results of applying the scattering
expansion to the joint probability distribution PN (s, φr′ ) [32].
We find that for large N this distribution takes a Gaussian form
defined as follows. There is a constant c and two functions
ŝ(φr′ ), η(φr′ ) for which we have

PN (s, φr′ ) = p∞(φr′ )
1√

2πσ (N, φr′ )2

× e− 1
2 [s− 2N

Lloc
−ŝ(φr′ )]2/σ (N,φr′ )2

, (6)

where the phase-dependent variance σ (N, φr′ )2 scales lin-
early with N with a subleading, phase-dependent correction:
σ (N, φr′ )2 = 2[cN + η(φr′ )]. The constant c is related to the
variance σ (N )2 of the marginal distribution of s by σ (N )2 =
2cN + O(N0). We can calculate the quantities c, ŝ(φr′ ), and

FIG. 2. The inverse localization length (2/Lloc) vs the strength of
phase disorder (W ) in the variable ϕn in the DTQW. We compare our
theoretical result (4) (lines) with numerics (points) for a moderately
biased coin (main plot) and for an unbiased coin (inset).
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η(φr′ ) order by order in the scattering expansion in terms of
local averages [except that the functions ŝ(φr′ ) and η(φr′ ) each
have an undetermined, φr′-independent additive constant], and
in particular we have obtained c = 2/Lloc + O(|rn|4) (which
was shown in an equivalent form in [40] with a third-order er-
ror term), ŝ(φ) = 2 Re{γ (1)e−iφ + [ 3

2γ (2) − (γ (1) )2]e−2iφ} +
O(|rn|3) + const, and η(φ) = Re{[γ (2) − (γ (1) )2]e−2iφ]} +
O(|rn|3) + const.

We now explain briefly how we arrive at Eq. (6). From
Eqs. (2a) and (2b), it is straightforward to show that the joint
probability distribution satisfies a recursion relation of the
form PN+1(s, φr′ ) = F[s, φr′ ; {PN }], where F is a linear func-
tional in its last argument. We take Eq. (6) as an ansatz and
require F[s, φr′ ; {PN }] = PN+1(s, φr′ ) + O(1/N2) for large N ;
this requirement fixes c, ŝ(φr′ ), and η(φr′ ) to all orders in the
scattering expansion [except for the constant offsets of ŝ(φr′ )
and η(φr′ )]. Since the ansatz itself is O(1/

√
N ), we can expect

that (6) is the leading term in an expansion in 1/
√

N of the
exact answer.

The correlation between s and φr′ in (6) is a finite-size
effect, as we now explain. We write the average of s as
〈s〉 = 2N/Lloc + O(N0), and we consider how accurate 〈s〉 is
as an estimate of the conditional average of s with fixed φr′

in (6). The phase-dependent variation of the mean introduces
a relative error of order ŝ(φr′ )/〈s〉 ∼ 1/N , while the finite
variance introduces a relative error of order σ (N, φr′ )/〈s〉 =
cLloc/

√
N + O(N−3/2), where the N−3/2 term contains the

contribution of the function η(φr′ ). Prior work has found the
joint probability distribution to factorize into a transmission
coefficient part times a phase part [45,46], in apparent contra-
diction to our Eq. (6); this suggests that the prior work only
accounted for the 1/

√
N term in the above discussion and ne-

glected the 1/N and N−3/2 terms that contain the correlations
between s and φr′ .

We next show that the scaling theory applies to the joint
distribution in the regime of weak local reflection strength.
Here we ignore η(φr′) (whose effect is subleading for large
N , as we have shown above) and expand the remaining terms
of (6) to leading order in the scattering expansion. A single
parameter [31] suffices to determine 2/Lloc and c since they
are equal at leading order [32,40]. Furthermore, the phase
distribution up to first order is determined entirely by two
parameters: the real and imaginary parts of γ (1), or by a simple
change of variables, the mean and variance of φr′ . The key
relation that implies that these three parameters suffice to
determine the joint distribution is that the first-order part of
the phase-dependent mean turns out to be essentially the same
function as the first-order part of the phase distribution:

ŝ(φr′ ) = 2π p∞(φr′ ) + O(|rn|2) + const, (7)

where the constant on the right-hand side is independent
of φr′ .

Conclusion. In a general problem of single-channel scat-
tering through an i.i.d. disordered region, we developed a
systematic expansion in the local reflection strength, which
we call the scattering expansion. We calculated the inverse
localization length to the first two nonvanishing orders in
this expansion, using an explicit expansion of the (generally
nonuniform) reflection phase distribution. We applied our re-
sult to calculate the localization length in a two-component

DTQW with a biased coin parameter and arbitrary phase
disorder, and we thus showed analytically that the localization
length can depend nonmonotonically on the strength of phase
disorder.

Returning to the general problem, we summarized the
results of applying the scattering expansion to the joint prob-
ability distribution of the transmission coefficient logarithm
and reflection phase: first, we found the general form of
the joint distribution to all orders in the scattering expan-
sion and, second, we showed that when the local reflection
strength is weak, the joint distribution is determined by three
parameters.

It would be interesting to explore implications that our
scattering-based approach might have for the more usual
DTQW setup, in which a walker starts in a spatially con-
fined initial state and evolves in time. Ballistic spread (i.e.,
variance increasing quadratically with time) is an important
property of DTQWs and is known to be suppressed by lo-
calization. However, if the localization length is sufficiently
large, then this suppression would be unimportant since the
walker can be expected to travel ballistically until reaching a
distance of order Lloc. (It has indeed been found in a particular
model that the maximum distance that can be reached by
the walker has the same scaling with disorder strength as the
localization length [13].) Our scattering-based results for Lloc

might yield an upper bound (after appropriate maximization
over quasienergy) on the maximum distance reached in the
time-dependent problem. Also, our technique for calculating
the reflection phase distribution might extend to the distri-
bution of the Wigner delay time (dφr′/dω), which would
characterize the time that a walker spends in being reflected
from a disordered region in an otherwise nondisordered
environment.

Another direction to explore would be applications of our
approach to other problems involving products of random
matrices, even outside the setting of scattering theory. For
instance, in the study of randomly driven conformal field
theories, Ref. [47] encounters a problem that seems to fit our
framework [a product of random SU(1, 1) matrices]; each
matrix represents a time step, and the Lyapunov exponent
(inverse localization length) is shown to be the rate of en-
tanglement entropy growth (and to be a lower bound on the
heating rate).

Finally, this work could be a step towards an analytical
treatment of the quasi-one-dimensional case (i.e., many scat-
tering channels rather than one). This would be significant
because the quasi-one-dimensional case can be used to study
delocalization transitions in dimensions higher than one; in
particular, one studies (usually numerically) the scaling, as
the number of transverse modes goes to infinity, of the largest
localization length [48]. If we can carry out our approach with
multiple scattering channels, then the possibility could arise
of taking this limit analytically. This could provide a per-
turbative handle on critical exponents in higher-dimensional
localization-delocalization transitions, such as the plateau
transition in the integer quantum Hall effect [49]. We note
that Ref. [50] finds in a particular model that departure from
(multichannel) phase uniformity is necessary for obtaining
a metal-insulator transition; this suggests that a quasi-one-
dimensional version of our approach would be useful.
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