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Chiral molecules cannot be superposed with their own mirror image. This yields two enantiomers of opposite
handedness that are made out of the same building blocks, but interact differently with their environment.
Hence, chiral sensing is of utmost importance for biology, chemistry, and life sciences. However, the impact
of the handedness and chirality is very weak in most sensing schemes. Nevertheless, it has been demonstrated
recently that chirality may result in strong coupling between resonant states with high quality factors. This is
achieved by spectrally overlapping two quasibound states in the continuum in a periodic array of nanostructures.
We demonstrate that this requires neither quasibound states in the continuum nor periodic arrays, which is
exemplified for three achiral systems: a sphere with equal permittivity and permeability, a single core-shell
structure, and a dielectric metasurface. For such achiral systems, we have shown previously that isolated resonant
states exhibit a quadratic energy shift in the Pasteur parameter. However, for quasidegenerate states, we observe,
using the rigorous resonant-state expansion and full-wave simulations, a linear energy shift and linear splitting
in the presence of a chiral medium or molecule. Thus, the splitting is more sensitive to low concentrations of
chiral molecules, which paves the way for novel chiral sensing schemes.
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The pivotal role of chirality in biology, chemistry, and life
sciences generates a wide interest in improving chiral sensors.
For instance, the interaction of chiral molecules with the hu-
man body may depend on the molecular handedness, which
is of utmost importance in drug development [1]. Common
optical sensors are based on chiral properties of light [2]. The
most prominent approach is to determine the so-called circu-
lar dichroism as the absorption difference between left- and
right-handed circularly polarized incident plane waves [3,4].
However, chiral light-matter interaction is rather weak. Hence,
designing chirality sensors essentially requires enhancing the
optical response of chiral substances.

Nanophotonic systems are known to resonantly enhance
light-matter interaction [5–9]. Quite naturally, researchers
started investigating the application of chiral and achiral
nanostructures for chiral sensing [10–12]. In 2010, Tang and
Cohen introduced local optical chirality as a measure for
the absorption difference of chiral molecules with opposite
handedness in nontrivial local environments [13]. Since then,
this quantity has been used to optimize chiral nanophotonic
sensors [14]. An interesting concept is suggested by Feis
et al., who designed a cavity with only one handedness of
local optical chirality [15]. More recently, we have developed
a rigorous theory of chiral sensing using the resonant states
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(RSs) of nanophotonic systems [16]. A major finding of this
work is that resonance shifts, which dominate in conventional
nanophotonic sensors [9], do not contribute to chiral sen-
sors in first order when considering achiral nanostructures.
However, we have not considered in our analysis a situation
that two or more RSs can be degenerate. Later on, Chen
et al. demonstrated [17] that nearly degenerate modes can be
strongly coupled even by a weak chirality if the initial energy
splitting is low and the quality factor (Q-factor) of the modes
is high. Such modes with high Q-factors can be obtained when
slightly perturbing a system that exhibits bound states in the
continuum. Under ideal conditions, these states do not couple
to the far field due to symmetry constraints or the radiative loss
is suppressed destructively by coupling several RSs [18,19].
The perturbation allows the bound states to couple to the far
field, so that they become effectively quasibound states with a
high Q-factor. However, bound states in the continuum can be
achieved mostly in periodic arrays of nanostructures, except
for some exotic situations [20].

We demonstrate now that neither periodic arrays nor ex-
tremely high Q-factors are necessary to achieve the strong
coupling of nearly degenerate modes. Moreover, using the
resonant-state expansion (RSE) based on the correct RS nor-
malization, we rigorously derive a linear energy splitting of
quasidegenerate RSs. Although our proposed designs do not
allow us to discriminate between the handedness of chiral
molecules, this does not diminish the practical significance
of our work, as one may need to measure the concentra-
tion of a known substance, with a known handedness. The
proposed designs result in a concentration-dependent linear
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energy shift, which can be used in chiral sensing. More specif-
ically, in a homogeneous chiral medium, the concentration
of chiral molecules with same handedness is proportional to
the so-called Pasteur parameter κ, which is usually extremely
small with the values of κ reaching 10−4–10−3 [2]. If the
chirality-induced energy shift is a second-order effect in κ,
the energy shifts scale as 10−8–10−6. However, if two or more
optical modes are spectrally very close, i.e., are quasidegener-
ate, the energy splitting becomes linear and therefore is much
more sensitive to chiral perturbations.

In this Letter, we employ quasidegenerate modes of three
optical systems to demonstrate a significant chiral energy
splitting of the modes and its linear dependence on the Pasteur
parameter κ. We start with a proof of principle for strictly
degenerate optical modes of orthogonal polarizations in a
homogeneous sphere with identical material permittivity and
permeability. Then, we provide practically more relevant ex-
amples of optical systems containing quasidegenerate modes,
such as a core-shell dielectric sphere [21,22] and a planar
metasurface, which has been initially introduced by Staude
et al. [23]. Using the RSE [24] and its recent generalization to
magnetic, bianisotropic, and chiral systems [25], we obtain
an analytic expression for the optical resonances. Accom-
panied by numerical simulations, we demonstrate a strong
linear chiral splitting of quasidegenerate modes of different
polarizations in the presence of a chiral medium or a chiral
molecule. The results presented below show that the chiral
sensitivity of optical systems can be enhanced in this way by
orders of magnitude.

The optical modes (also known as RSs or quasinormal
modes) of an electromagnetic system are the eigensolutions
of Maxwell’s equations (in Gaussian units),

∇ × E = ikB, ∇ × H = −ikD, (1)

satisfying outgoing boundary conditions. Here, E and H are,
respectively, the electric and magnetic fields of the RS, and k
is its complex wave number in vacuum. Assuming no spatial
dispersion of the medium, the electric displacement D and
magnetic induction B are given by

D = (ε̂ + �ε̂)E − i(κ̂̂κ̂κ + �κ̂̂κ̂κ)H,

B = (μ̂ + �μ̂)H + i(κ̂̂κ̂κ + �κ̂̂κ̂κ)TE, (2)

where frequency-dispersive and spatially dependent ε̂, μ̂, and
κ̂̂κ̂κ are, respectively, the permittivity, permeability, and chirality
tensors, the latter being a generalization of the Pasteur param-
eter for anisotropic media (T denotes the matrix transpose).
Furthermore, �ε̂, �μ̂, and �κ̂̂κ̂κ are arbitrary perturbations of
these tensors. Introducing a complete set of properly normal-
ized [24,25] unperturbed RSs with the wave number kn and
resonant fields En and Hn, satisfying Eqs. (1) and (2) for
�ε̂ = �μ̂ = �κ̂̂κ̂κ = 0, where n is an index labeling them, the
perturbed RSs can be expanded as

E =
∑

n

cnEn, H =
∑

n

cnHn, (3)

which effectively maps Eqs. (1) and (2) onto the linear matrix
eigenvalue problem [25]

(k − kn)cn = −k
∑

n′
Vnn′cn′ , (4)

where

Vnn′ =
∫

[En · �ε̂En′ − Hn · �μ̂Hn′]dr

−i
∫

[En · �κ̂̂κ̂κHn′ + En′ · �κ̂̂κ̂κHn]dr. (5)

For the sake of clarity, the expressions Eqs. (4) and (5) are
given for nondispersive and reciprocal systems, although per-
turbations included in Eq. (5) may be nonreciprocal, and a
generalization of Eq. (4) to dispersive systems has been de-
veloped [25,26].

To verify Eq. (4), we have taken a large number of basis
RSs for the analytically solvable problem of a homogeneous
achiral sphere with isotropic permittivity ε and permeability
μ, that is surrounded by vacuum. Then, we applied arbitrarily
strong (but finite) homogeneous perturbations of the sphere,
�ε, �μ, and �κ, also allowing exact analytic solutions.
Results demonstrate [27,28] a quick convergence of the RSE
to the exact solution, with the relative error in the RS wave
numbers k decreasing as inverse cubic law in the basis size,
which is the same as demonstrated for dielectric perturbations
of a sphere [24].

Then, we consider chiral perturbations of degenerate RSs
in an achiral homogeneous and isotropic sphere having the
same values for permittivity and permeability, resulting in
identical spectra of transverse electric (TE) and transverse
magnetic (TM) optical modes (in addition to the 2l + 1 de-
generacy of each mode due to the spherical symmetry). The
surrounding of the sphere is assumed to be vacuum, and we
select the permittivity and permeability of the sphere to be
ε = μ = 4. For the angular momentum quantum number of
l = 5, the spectrum of the degenerate TE and TM modes is
shown in Fig. 1(a). Focusing on the fundamental whispering-
gallery mode (WGM) for this l , we see in the right inset that
the electric field of the TE mode is identical to the magnetic
field of the TM mode and vice versa. This degeneracy is lifted
under permittivity or chirality perturbation (�ε or �κ = κ),
or both perturbations applied together, see the left inset in
Fig. 1(a). Both the unperturbed and perturbed problems have
exact analytical solutions. The exact real part of the wave-
number splitting of the formerly degenerate RSs is shown in
Fig. 1(b) when applying small chiral perturbations, with the
Pasteur parameter κ increasing up to nearly 10−3. We con-
sider three scenarios: homogeneous internal (over the entire
volume of the sphere, black lines) and external chiral per-
turbation (of the surrounding medium, blue lines), as well as
internal chiral perturbation of the RSs which are initially split
by a small permittivity perturbation �ε = 0.01 of the sphere
(green lines). While the black and blue lines exhibit a linear
splitting that is larger for internal perturbations due to higher
values of the mode fields inside the sphere, the green curve
starts quadratically in κ and approaches a linear dependence
when the chiral splitting exceeds the initial permittivity split-
ting of the degenerate modes. Defining the chiral sensitivity as
dkn/dκ, and calculating the ratio of this sensitivity between
the degenerate (black curve) and nondegenerate (green curve)
initial parameters, we obtained the sensitivity enhancement
(right axis) as the red curve in Fig. 2(b). It is large for small κ

values and reaches unity for κ ≈ 5 × 10−4.
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FIG. 1. (a) Wave numbers (magenta crosses) of strictly degener-
ate TE and TM RSs with angular momentum number l = 5 of a basis
sphere of radius R and ε = μ = 4, surrounded by vacuum. Right in-
set: radial dependence of tangential (‖) and normal (⊥) components
of the normalized electric and magnetic fields of the fundamental
WGM in TE (lines) and TM (triangles) polarizations, as defined in
Eq. (28) of Ref. [29]. Left inset: Unperturbed degenerate (magenta
cross) and perturbed split wave numbers of the fundamental WGM
due to the dielectric (�ε = 0.01, green crosses), chiral (κ = 10−3,
black squares), and simultaneous dielectric and chiral (�ε = 0.01,
κ = 10−3, blue squares) homogeneous perturbations of the basis
sphere. (b) Real part of the wave-number splitting, k+ − k− (left
axis), of the TE-TM degenerate fundamental WGM as a function of
the Pasteur parameter κ for chiral perturbations of the sphere (black),
vacuum (blue), and sphere with an additional perturbation �ε =
0.01 (green), with the black-to-green chiral sensitivity enhancement
factor (red, right axis, see main text for details) and the corresponding
sketches of the system given on the right. Solid lines and squares are,
respectively, the exact results and the RSE solution given by Eq. (7).

To better understand this behavior, we truncate the exact
RSE Eq. (4) to a 2 × 2 matrix problem, keeping in the basis
only two quasidegenerate RSs [30] having the unperturbed
wave numbers k1 and k2. This results in

k

(
1 + V11 V12

V21 1 + V22

)(
c1

c2

)
=

(
k1 0
0 k2

)(
c1

c2

)
. (6)

This truncation is justified by second-order perturbation the-
ory corrections [31] to the inverse wave number, |V 2

1n/(k1 −
kn)/4| and |V 2

2n/(k2 − kn)/4|, for all the neglected modes n
being small compared to the RS wave-number change |�k/k2|
due to the perturbation. The truncated eigenvalue problem

FIG. 2. (a) Real part of the wave numbers of l = 200 TE (blue)
and TM (red) WGMs of a basis core-shell system, surrounded by
vacuum, with ε1 = 4 in the core, shell thickness �R = 0.1R, and
system radius R, as functions of the shell permittivity ε2. (b) Real
part of the unperturbed (dashed lines) and perturbed (black solid
lines) wave numbers, and (c) square moduli of the TE (blue) and TM
(red) expansion coefficients in Eq. (6) of the perturbed lower branch
as functions of ε2, for a homogeneous chiral core perturbation of
κ = 10−3. (d) Real part of the normalized electric field of TE (blue)
and the imaginary part of the magnetic field of TM (red) WGMs of
the core-shell system at ε2 = 2. The wave numbers of the TE and TM
modes are, respectively, k1R = 179.409265396 − 3.08 × 10−7i and
k2R = 179.408443931 − 3.69 × 10−7i. (e) Real part of the wave-
number splitting, k+ − k−, of the TE-TM quasidegenerate WGMs in
(d), as a function of the Pasteur parameter κ for chiral perturbations
of the core (black), shell (blue), and vacuum (green), with the corre-
sponding sketches of the system given on the top. Note that the blue
curves in (d) and (e) and the green one in (e) have been rescaled for
the sake of clarity. The actual results can be obtained by multiplying
the curves with the same-color factors.

Eq. (6) has the explicit solution k = k±, where

k± = k̃1 + k̃2 ±
√

(k̃1 − k̃2)2 + 4k1k2V12V21

2(1 + V11 + V22 + V11V22 − V12V21)
(7)

with k̃1 = k1(1 + V22) and k̃2 = k2(1 + V11).
In general, in achiral (i.e., parity symmetric) systems,

the chirality κ does not contribute to the diagonal ma-
trix elements in Eq. (5) if the chiral distribution in space
does not break the parity symmetry of the system [16].
Furthermore, in spherically symmetric systems, the electric
and magnetic fields of the same RS are orthogonal at any
point. Therefore, the diagonal elements are present only due
to permittivity and/or permeability perturbations. Without
those perturbations, V11 = V22 = 0, and the solution Eq. (7)
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simplifies to

k± = k1 + k2 ±
√

(k1 − k2)2 + 4k1k2V12V21

2(1 − V12V21)
. (8)

Moreover, the mutual orthogonality of electric or magnetic
fields for different polarizations makes the off-diagonal el-
ements V12 in Eq. (7) dependent on the chirality only and
proportional to κ. As a result, for small κ, the splitting
changes quadratically with κ, as it is clear from Eqs. (7)
and (8). If the two basis modes are strictly degenerate, i.e.,
k1 = k2, Eq. (8) simplifies further to

k± = k1

1 ∓ V12
, (9)

using the general symmetry Vnn′ = Vn′n valid for reciprocal
systems. Clearly, for small perturbations, the mode splitting
k+ − k− ≈ 2k1V12 is linear in the Pasteur parameter κ. This
fact has been implicitly used by Chen et al. to demonstrate
strong coupling induced by κ [17].

The above analysis clearly explains the behavior of the
mode splitting in Fig. 1(b), in which the two-state RSE so-
lution given by Eq. (7) is shown by squares and has errors
compared to the exact solution (lines) that scale quadrati-
cally with the perturbation strength, in agreement with the
mentioned second-order corrections. Note that the RSE in its
original form of Eq. (4) works only for internal perturbations.
Nevertheless, external perturbations can be treated in the same
way to first order, as has been recently shown in Refs. [32,33],
provided that the divergent matrix elements are evaluated by
applying a proper (in the present case, analytical) regulariza-
tion [32].

Now we examine a more realistic optical resonator that also
allows exact analytical solutions. It consists of a dielectric
sphere with permittivity ε1 = 4 coated by a homogeneous
thin layer of thickness �R = 0.1R and variable permittivity
ε2, with R being the outer radius of this nonmagnetic (μ =
1) spherical core-shell system surrounded by vacuum. The
shell at least partially compensates the difference between
Maxwell’s boundary conditions in TE and TM polarizations,
which allows the real parts of the RS wave numbers of the
opposite polarization to approach each other or even cross,
see Fig. 2(a). If additionally the Q-factors of the RSs are high,
which is the case for WGMs with large angular momentum
(here, l = 200 and the Q-factors are about 3 × 108), these
TE and TM modes become quasidegenerate at selective val-
ues of the system parameters. Choosing such a TE-TM pair
of modes, having the splitting of |k1 − k2|R ≈ 8.2 × 10−4 at
ε2 = 2, we calculate, using Eq. (8), changes of their wave
numbers by homogeneous chiral perturbations of the core,
shell, and the surrounding medium (vacuum). The normalized
(according to Refs. [25,29]) electric field of the TE mode
and the magnetic field of the TM mode, shown in Fig. 2(d),
are in fact very similar, at least in the core region, with a
proportionality factor of 2 due to

√
ε1/μ = 2 affecting their

normalization.
In Fig. 2(b), we display the chiral splitting and anticrossing

of the selected pair of modes due to a chirality perturbation
of κ = 10−3 of the core. As chirality couples the electric
and magnetic fields, the perturbed modes are a mixture of

FIG. 3. (a) Real part of the wave-number splitting, k+ − k−, for
the TE-TM quasidegenerate WGMs in Fig. 2(d) with magnetic quan-
tum numbers m = 0 (black) and m = ±1 (red), perturbed by a chiral
molecule with effective volume Vp/V = 10−7 and κ = 1 placed near
the shell at a distance d , as a function of normalized center distance
(d + R)/R. (b) As in (a), but as a function of κ for d = −0.005R.

TE and TM polarizations. This is shown in Fig. 2(c) as the
absolute square of the expansion coefficients, both reaching
1/2 at ε2 = 2, where the basis mode splitting is minimized.
Interestingly, as the wave numbers do not cross, the expan-
sion coefficients do not exhibit the typical strong coupling
behavior which would be their crossing and exchange of the
mode properties as the detuning parameter (here, the shell
permittivity) changes. We see instead that their square moduli
stay either below or above 1/2 everywhere in spite of the
strong coupling. This is in stark contrast to the κ-mediated
strong coupling reported previously [17].

The mode splitting at ε2 = 2 is shown in Fig. 2(e) as a
function of κ for the core, shell, and surrounding-medium
perturbations, demonstrating that the chiral splitting falls ap-
proximately one order of magnitude in each case in this
sequence. The smaller values of the chiral mode splitting for
the shell and the surrounding-medium perturbations can be
understood, respectively, in terms of a smaller shell volume
and smaller values of the fields in the exterior, as it is clear
from Fig. 2(d). Consequently, the strong and the intermediate
splittings due to, respectively, the chiral core and shell are both
linear in the displayed range of κ, but the weak splitting for
the chiral surrounding appears quadratic at small κ where the
chiral perturbation of the modal wave numbers is smaller than
or comparable to the initial mode splitting, in agrement with
our analysis of Eq. (6).

We also looked at the same core-shell system at ε2 =
2, perturbed by a chiral particle, with distance d from the
sphere surface, see a sketch in Fig. 3(a). The perturbed
system has a cylindrical symmetry, so the RSs with differ-
ent magnetic quantum numbers m are perturbed differently.
However, owing to additional selection rules for TE and
TM modes with the same l , only m = 0 and m = ±1 states
are perturbed by the chiral molecule, with the matrix ele-
ments given, respectively, by V12 = −2iκVpβHTE

⊥ · ETM
⊥ and
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FIG. 4. (a) Schematic of a dielectric metasurface of high-index
disks (nr = 3.5) with diameter d , period a, height h, and interparticle
distance g. (b) Splitting of the wave number as a function of Pasteur
parameter κ. The splitting typically starts quadratically (gray lines),
except for the case of quasidegeneracy (black lines), for which we
have fine-tuned all parameters except for the refractive index of the
disk. (c) Real and (d) imaginary parts of the wave numbers of the
electric (red lines) and magnetic (blue lines) dipolar modes as a
function of aspect ratio h/d for d = 505.1 nm, g = 222.8 nm, and a
surrounding medium with nr = 1.498. The quasidegeneracy occurs
for h = 221.7 nm. Insets in (c) show the resonant magnetic (top) and
electric (bottom) fields of the magnetic and electric dipole mode,
respectively, at h = 219.7 nm, while arrows mark the aspect ratios
for the curves in (b).

V12 = −iκVpβ(ETE
‖ · HTM

‖ + HTE
‖ · ETM

‖ ), where Vp is an
effective molecule volume and β = (2l + 1)/(4π ) is a ge-
ometrical factor. The TE-TM mode splitting is shown in
Fig. 3(a) for κ = 1 and Vp/V = 10−7 (V = 4πR3/3 is the
system volume) as a function of normalized center distance
(d + R)/R. The splitting oscillates with d , as it is roughly
proportional to the square of the mode field, see Fig. 2(d).
The dependence of the splitting on the Pasteur parameter κ for
d = −0.005R (inside the core shell) is displayed in Fig. 3(b),
demonstrating qualitatively the same behavior as in the previ-
ous examples, but quantitatively different for different m.

As our last example, we consider a metasurface intro-
duced by Staude et al. [23]. The system consists of disks

with diameter d and height h, which are repeated periodically
with period a = d + g in both directions, where g denotes the
gap between two neighboring disks. The nonmagnetic disks
have a refractive index of nr = 3.5, and the surrounding is
glass with an index of nr ≈ 1.5. The geometry is depicted in
Fig. 4(a). At normal incidence, the system exhibits electric
and magnetic dipole resonances in close spectral vicinity for
h ≈ 220 nm, g ≈ 200 nm, and d ≈ 500 nm around a wave-
length of 1400 nm [23]. For these parameters, the real parts
of the resonant wave numbers match, while the imaginary
parts are slightly different. We have fine-tuned the param-
eters to achieve a quasidegeneracy even in the imaginary
part, which appears for h = 221.7 nm, g = 222.8 nm, and
d = 505.1 nm for a surrounding medium with nr = 1.498.
The quasidegeneracy is seen in Fig. 4, where we kept all
the parameters the same except for the aspect ratio, and
plotted the real and imaginary parts of ka in Figs. 4(c) and
4(d), respectively. The calculations have been carried out via
our in-house implementation of the Fourier-modal method
[7,34,35]. Next, we artificially added chirality in the form of
a Pasteur parameter κ to the disks. At the quasidegeneracy,
the energy splitting turns out to be linear in κ, see black
lines in Fig. 4(b), as expected from the previous analysis. In
contrast, if we increase the height in steps of 0.8 nm (gray
lines), an intial splitting arises and the splitting starts quadrat-
ically. Note that the Q-factor of the quasidegenerate modes
in this last example is of the order of 23. Therefore, this
example demonstrates strong coupling in spite of the fact
that the mode Q-factors are low. Nevertheless, high Q-factors
are preferred for a better spectral resolution of the mode
splitting.

In conclusion, we have demonstrated linear energy split-
ting of quasidegenerate modes with respect to the Pasteur
parameter κ. In the systems treated, the linear splitting is
much more sensitive to κ than the usual quadratic onset in
the absence of quasidegeneracy. Of course, our proposed sys-
tems comprise artificial materials such as solid chiral shells
or disks with high refractive index with geometrical parame-
ters that are potentially challenging to realize experimentally.
Nevertheless, our numerical and analytical calculations are in-
sightful for improving chiral sensors, and they lift constraints
for achieving κ-mediated strong coupling compared to the
previous work [17].
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