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Evanescent wave spectral singularities in non-Hermitian photonics
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Spectral singularities (SSs) emerge at isolated real frequencies when the scattering coefficients of a system
diverge, producing scattering anomalies in non-Hermitian systems. Here, based on parity-time symmetry, we
introduce SSs for evanescent waves, and explore their exotic features. We show that evanescent wave SSs
can realize highly reconfigurable unidirectional lasers and absorbers, and offer the opportunity to observe
extreme scattering anomalies associated with SSs in fully passive platforms, decoupling their extreme scattering
responses from energy considerations. More broadly, our study opens avenues for non-Hermitian wave engineer-
ing, showcasing a link between non-Hermitian physics and structured waves, with implications in nano-optics
for extreme wave-matter interactions and functional devices.
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Introduction. Structured waves with inhomogeneous wave-
fields underpin modern optics and photonics, crucial in
various technical areas of physics, such as microscopy, imag-
ing, and communications [1]. Arguably, the most common
form of structured waves are evanescent plane waves, i.e., os-
cillating fields with amplitude modulation due to an imaginary
wavevector component. They play an important role in pho-
tonic systems, from conventional near-field interactions, to
more exotic responses, such as super-Planckian thermal emis-
sion [2–9] and subdiffraction imaging [10,11]. Evanescent
wave engineering can also be used to modify the local bound-
ary conditions at an interface, enabling extreme asymmetry in
metasurfaces [12,13], enhanced propagation through opaque
media [14], and the formation of exotic frozen mode regimes
for slow light [15–19]. Recently, the complex-field nature of
evanescent waves was used to realize a gain-free platform
for parity-time (PT) symmetry in photonics [20], enabling
features typical of PT-symmetric systems, such as phase tran-
sitions and anisotropic transmission resonances (ATRs) [21].

Non-Hermitian physics has unveiled a new paradigm for
wave engineering by utilizing tailored spatial distributions
of gain and loss [22–28]. In non-Hermitian photonic sys-
tems, spectral singularities (SSs) can emerge, associated with
diverging scattering coefficients at real frequencies [29]. In
optics, SSs correspond to lasing at threshold [30] and, when
combined with PT symmetry, can yield laser-absorber pairs
[31,32]. By incorporating Fano resonances, a laser-absorber
pair can support unidirectional SSs, enabling simultaneously
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infinite and zero reflection coefficients when excited from op-
posite sides [33], of great interest for directional wave-matter
interactions.

So far, the emergence of these exotic SSs has been re-
stricted to propagating waves [34–40]. Here, we extend them
to evanescent waves and show that, due to the decoupling be-
tween energy transport and scattering strength for evanescent
waves, an evanescent wave SS with diverging scattering coef-
ficients can support arbitrary magnitude (infinite or finite) and
reversible energy flow, depending on how the evanescent wave
SS is approached in parameter space. To this end, we construct
a non-Hermitian framework to implement both unidirectional
and ordinary SSs for evanescent waves, providing a strategy
for unidirectional lasing and absorption, and enabling extreme
scattering responses even in purely passive settings.

Evanescent waves in coupled-resonator optical waveg-
uides. Evanescent wave propagation is ubiquitous in photon-
ics. As a canonical platform, we consider a coupled-resonator
optical waveguide (CROW), consisting of an array of cou-
pled resonators with individual eigenfrequency uc, coupling
strength κc, and periodicity a [41], with dispersion ω =
uc−2κc cos qa. For convenience, we choose a frequency ref-
erence by setting uc = 0, and adopt a natural unit system
assuming κc = a = 1. For excitation frequency ω > 2 (or ω <

−2), the wave number q with Re(q) = π (or 0) picks up a
nonzero imaginary part, and evanescent waves emerge [42].
Their time-dependent energy-normalized complex amplitude
ψ (n, t ) in steady state reads

ψ (n, t ) = Fejωt− jqn + Bejωt+ jqn, (1)

where the integer n labels CROW sites, and sin q =
∓√

ω2−4/(2 j) when ω > 2 (ω < −2), involving forward
(backward) evanescent waves of amplitude F (B) decaying
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FIG. 1. (a) Upper panel: schematic of the geometry formed by
a three-site defect (dashed red box) embedded in a CROW. Lower
panels: logarithm of the (normalized) field profiles |ψ/F (α)| in the
scattering setup with (without) the scatterer for evanescent wave
excitation at ω = ω0 from left (α = L) (left panel) and right (α = R)
(right panel), respectively, near the evanescent wave unidirectional
SS with detuning εγ0 = ε(+)

γ0
= 0.005 of the conditions s(uSS). The

locations of the excitation sources are indicated by purple arrows,
and the insets depict the scatterer-related field profiles at sites −,
0, and +. (b) Upper panel: one circuit analog of the theoretical
model in (a). Lower panels: normalized energy flux Ĵα at the ex-
citation port α = L, R versus the frequency detuning εω when εγ0

switches from ε(+)
γ0

(left panel) to ε(−)
γ0

= −0.005 (right panel), with
the associated left (right) reflectance RL(R) in the middle panel. The
colored background in the right panel highlights the negative sign
of Ĵα , and the results of the theoretical model (lines) match well with
those of circuit simulations (symbols) [44]. Other free parameters are
g = γ = 0.1, c = 1, and ω0 = 3.

towards the sites of larger (smaller) n. Associated with Eq. (1),
the energy flux from site n to n + 1 is [16,18,20]

Jn→n+1 = 4 j sin q Im (FB∗), (2)

independent of position n, where ∗ represents complex
conjugation. In contrast with propagating waves, a single
evanescent wave does not carry energy [11], and the energy
flux Jn→n+1 in Eq. (2) is nonzero only when two evanescent
waves decay in opposite directions and interfere, i.e., F and B
in Eq. (1) are simultaneously nonzero (see also Ref. [43]).

PT-symmetric scattering for evanescent waves. When en-
countering a defect in the direction of decay, an evanescent
wave experiences scattering, like propagating waves. Con-
sider the setup shown in Fig. 1(a), where a scatterer composed
of three coupled resonators is embedded in the CROW. The
left and right uniform sections of the CROW constitute two
ports, and the coupling strengths between the two ports and
the scatterer are c. To implement a PT-symmetric response for
evanescent waves [20], we engineer the effective Hamiltonian
Heff for wave evolution within the three coupled resonators

(n = 0, ∓) as

Heff =

⎡
⎢⎣

ω− + jγ− jg jβg

jg ω0 + jγ0 jg

jβg jg ω+ + jγ+

⎤
⎥⎦, (3)

where the diagonal terms are complex resonant frequencies
with real parts {ω0, ω∓} denoting resonance frequencies and
imaginary parts {γ0 > 0, γ∓ = γ > 0} capturing the damp-
ing, while the off-diagonal elements jg, jβg represent the
imaginary couplings [Fig. 1(a)]. Due to the assumed imagi-
nary couplings, the scatterer described by Heff is passive when
passivity constraint conditions (PCCs) hold, i.e., γ � βg �
2g2/γ0−γ [44]. We also assume ω0 = ωavg/(1 − c2/2) >

2, where ωavg ≡ (ω+ + ω−)/2. The corresponding setup in
Fig. 1(a) supports Fano resonances due to the coupling of
the localized state in resonator n = 0 with the resonator chain
states [33,47].

Different from Ref. [20] using an anti-PT-symmetric scat-
terer, the Hamiltonian Heff in Eq. (3) when ω0 �= ωavg does
not anticommute with a joint PT operation [48]. Nevertheless,
the engineered non-Hermitian configuration in Fig. 1(a) can
enable a PT-symmetric response for evanescent wave exci-
tations. To show this, we label the sites in the left and right
CROW ports symmetrically, and calculate the generalized
scattering matrix S(ω) [49] defined via (B(L)

B(R) ) = S(ω)(F (L)

F (R) ) ≡
( rL tLR

tRL rR
)(F (L)

F (R) ), which relates the amplitudes B(α) and F (α)

of the backward and forward evanescent waves in the left
(α = L) and right (α = R) CROW ports [see Eq. (1)]. By
setting the excitation frequency ω > 2, and thus operating in
the band gap, the explicit form of S(ω) reads [44]

S(ω) = −I2 + 2 jcr (ω)M[Hev (ω) + jcr (ω)MT M]
−1

MT ,

(4)

where cr (ω) ≡ c2
√

ω2−4/2, IN is the N × N identity matrix,
the matrix M ≡ [1 0 0

0 0 1] (and its transpose MT ) describes
the connectivity between ports and scatterer, and the effec-
tive Hamiltonian of the scatterer becomes Hev (ω) = H (PT ) +
j(ω − ω0)(I3 − MT Mc2/2) with

H (PT ) =
⎡
⎣

γ + j
ω g βg

g γ0 g
βg g γ − j
ω

⎤
⎦, 
ω ≡ ω+ − ω−

2
.

(5)

This transformation implies that the response of a scat-
terer is attributed to both the system and the impinging
wave. It follows the transformation in Ref. [50] to in-
duce PT symmetry in the absence of gain using a transient
response, but now for operation in stationary states. In-
deed, the effective Hamiltonian Hev (ω0) = H (PT ) ensures
that the scattering response of evanescent wave excitations
at real-valued ω = ω0 is PT symmetric, since the commu-
tator [H (PT ), PT ] = 0, with parity operator P exchanging
resonators n = ∓ and time-reversal operator T performing
complex conjugation. Consequently, S(ω) in Eq. (4) satisfies
the fundamental relation PT S(ω0)PT = S(ω0)−1 describing
PT-symmetric scattering in the stationary state [32], and the
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effective gain and loss parameters 
ω are determined by the
frequency detuning between resonators n = ± [Eq. (5)].

Unidirectional SSs for evanescent waves. Following from
the PT symmetry of S(ω0) in Eq. (4) and the reciprocity
tLR = tRL ≡ tS [51], the scattering coefficients of the structure
in Fig. 1(a) satisfy the pseudo-unitary conservation (PUC)
relation

√
RLRR = |TS−1| at ω0 for evanescent wave excita-

tions, where the left (right) reflectance RL(R) ≡ |rL(R)|2 and
the transmittance TS ≡ |tS|2. Unlike propagating waves, the
reflectances RL(R) and transmittance TS for evanescent waves
do not correspond to power ratios, due to the inherent absence
of energy transport in individual evanescent waves. Notably,
the squared amplitudes |F |2 (|B|2) of forward (backward)
evanescent waves do not correspond to the power Jn→n+1 ∝
Im (FB∗), as described in Eqs. (1) and (2). Nevertheless,
the metrics RL(R) and TS , derived from the squared ampli-
tudes here, are intrinsically linked to the scattering strength
of evanescent wave excitation upon encountering a scatterer.
This connection enables us to introduce the concept of evanes-
cent wave SSs when RL(R) and/or TS diverge, resembling the
behavior of SSs observed in propagating waves.

The PUC relationship supports an exotic unidirectional SS
[33], when the finite-valued transmittance TS �= 1 and thus
one reflectance RR(L) → 0 implies that the other reflectance
RL(R) → ∞, or vice versa. This phenomenon is dramatically
different from that of ATR in PT-symmetric systems for which
one between finite RL and RR vanishes, and thus TS = 1 [21].
We confirm this finding in the setup of Fig. 1(a): to facilitate
searching for a unidirectional SS, we employ the decimation
procedure [52], initially introduced in the renormalization
techniques for statistical mechanics [53], to reduce the di-
mension of the effective Hamiltonian Heff in Eq. (3) of the
scatterer without altering its physical properties. Accordingly,
the generalized S(ω) matrix for evanescent waves [see Eq. (4)]
reads [44]

S(ω) = −I2 + 2 jcr (ω)[H̃ev (ω) + jcr (ω)I2]
−1

, (6)

Involving the reduced 2 × 2 Hamiltonian H̃ev (ω) =
H̃ (PT )(ω) + jεω(1 − c2/2)I2, equivalent to the 3 × 3
effective Hamiltonian Hev (ω), but in which the renewed
PT-symmetric part H̃ (PT )(ω) = [γ̃ (ω) + j
ω β̃g(ω)

β̃g(ω) γ̃ (ω) − j
ω
] [with

renormalized parameters β̃g(ω) = βg + jg2/(εω− jγ0) and
γ̃ (ω) = γ + jg2/(εω− jγ0)], and the frequency detuning
εω ≡ ω − ω0.

For PT-symmetric scattering at ω = ω0, i.e., εω = 0, a
specific nonunitary transmittance TS = 0 is obtained when
βg = g2/γ0, and thus the renormalized coupling β̃g(ω0) = 0,
corresponding to decoupled resonators at n = ∓, and enabled
by the Fano resonances. In this case, the right reflectance
RR ∝ (
ω + cr (ω0))2 + (βg−γ )2 vanishes when βg = γ and

ω = −cr (ω0), simultaneously leading to infinite left re-
flectance, i.e., RL → ∞, due to the PUC relation at PT
symmetry. Hence, we find an evanescent wave unidirec-
tional SS at ω0, supported under the conditions s(uSS) =
{βg = γ , γ0 = g2/γ , 
ω = −cr (ω0)}. We can verify this
unidirectional SS by studying the frequency response around
ω0. Specifically, we impose the conditions s(uSS), and examine
the behavior of the scattering coefficients as the frequency

detuning εω → 0. By employing Eq. (6), we find that the
right reflection rR ∝ εω → 0, while the left reflection rL ∝
1/εω → ∞, and the finite transmission amplitude limit tS =
γ 2/[(c2/2−1 − c′

r (ω0))g2 − γ 2]. Therefore, the defining fea-
tures of a unidirectional SS for evanescent waves are exhibited
as ω → ω0, although, due to the absence of precise PT sym-
metry away from ω0 [54], the limiting values of the scattering
coefficients rR(L) and tS do not obey the PUC relation.

Properties of evanescent wave SSs. In contrast to SSs
for propagating waves [29], evanescent wave SSs exhibit in-
triguing features, in particular, in the context of energy flow
[see Eq. (2)]. For excitation from one port, the transmitted
evanescent wave does not carry energy, while the infinite
reflection at the SS enables energy flow of arbitrary mag-
nitude (infinite or finite) and reversible direction, depending
on the varying interaction between incident and the reflected
evanescent waves as the system approaches the SS from dif-
ferent paths in parameter space. At a unidirectional SS driven
by PT symmetry, the zero reflection for excitation from the
opposite port ensures complete suppression of energy flow,
so that the scatterer cannot be detected from one side, while
yielding large reflections from the other side, with intriguing
applications for sensing.

To demonstrate these features, we first vary the damping
coefficient γ0 of resonator n = 0 around the conditions s(uSS),
so that γ0 = g2/γ + εγ0 . Interestingly, the right reflection
rR(ω0) ≡ 0 in this case, leads to the unitary transmit-
tance (TS = 1) based on the PUC relation, while the left
reflection rL(ω0) = [2 jcr (ω0)/γ ][1 + g2/(γ εγ0 )] approaches
infinity as εγ0 → 0 due to the approached unidirectional SS.
The corresponding normalized field profile, ln|ψ/F (α)|, in the
stationary state for left (α = L) [and right (α = R)] excitation
of the scatterer, is shown in the lower left (and right) panel of
Fig. 1(a), where a small detuning εγ0 = 0.005 was assumed,
plus free parameters γ = g = 0.1, c = 1, and ω0 = 3. The
excitation source is positioned at the site n = −3 (purple
arrow) in either the left or the right port. Without a scat-
terer, evanescent waves decay exponentially in both directions
from the source (empty circles). Introducing the scatterer
with unidirectional SS, left and right impinging evanescent
waves experience dramatically different scattering phenom-
ena. Under left incidence, the total field (filled symbols) grows
towards the scatterer due to large reflection (lower left panel),
while right incidence results in alignment with the incident
wave (lower right panel) since rR(ω0) = 0. In both cases,
transmitted evanescent waves remain unchanged due to uni-
tary transmittance, and scatterer-related field profiles at the
sites n = −, 0, + are exhibited in insets.

If the detuning εγ0 switches sign, the large left reflectance
RL and small right reflectance RR are not affected [Fig. 1(b),
lower middle panel]. Remarkably, however, the (normalized)
energy flux Ĵα ≡ J (α)

n→n+1/|F (α)|2 = 2
√

ω2−4 Im(rα ) [using
Eq. (2)] flowing at the excitation port α = L, R swaps sign
near frequency ω = ω0 [Fig. 1(b), lower left and right panels],
so that the direction of the energy flow is reversed and the
operation switches from a unidirectional absorber [ĴL(ω0) →
+∞, as εγ0 → 0+] to a unidirectional laser [ĴL(ω0) →
−∞, as εγ0 → 0−]. The performance of the unidirectional
absorber and laser here is ideal, in the sense that, in addition
to zero-energy leakage at the opposite port, neither unwanted
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FIG. 2. Density plot of the base-10 logarithm of the reflectance
(a) RL [(b) RR] and the (normalized) energy flux magnitude (c) |ĴL|
[(d) |ĴR|] at the excitation port versus the detuning (εω, εγ0 ) of the
unidirectional SS, in the case for left (right) impinging evanescent
waves. The shaded portions in (c) and (d) differentiate the negative
energy fluxes from the positive ones of the rest. Other parameters are
the same as in Fig. 1.

energy absorption nor emission emerge [i.e., ĴR(ω0) = 0], nor
is the scatterer detected from the unwanted port [i.e., rR(ω0) =
0]. Our predictions are verified by realistic circuit simulations
using COMSOL MULTIPHYSICS (see the symbols in Fig. 1),
where the sites in the upper panel of Fig. 1(a) are modeled
with RLC resonators and the real and imaginary couplings
are implemented via series inductors Lc and negative resistors
−Rg,βg , respectively [see Fig. 1(b), upper panel and [44]].

The above features persist as εγ0 grows [see Fig. 2 for
density plots (with saturated color bars at extreme values) of
the reflectance (a) RL and associated energy flux (c) ĴL on a
base-10 logarithmic scale for left excitation, and of (b) RR

and (d) ĴR for right excitation]. The flux Ĵα < 0, α = L, R in
the shaded areas of Figs. 2(c) and 2(d), whose boundaries are
given by ε2

ω = −εγ0 (εγ0 + g2/γ ) and determined from Ĵα = 0.
The power output is enabled since the scatterer becomes active
when the detuning εγ0 < 0 [and thus Heff in Eq. (3) violates
PCCs]. In the circuit analog [Fig. 1(b), upper panel], this tran-
sition is emulated by increasing the resistance R0 (inversely
correlated with γ0) above a threshold value so that the ports
can draw energy from the fixed negative coupling resistors.
We can expect that, once crossing the SS by changing the sign
of εγ0 and thus working past the lasing threshold, the response
will be taken over by nonlinear dynamics [56,57].

Next, we explore the response as we vary the effective gain
and loss parameter 
ω [Eq. (5)] around the same evanescent
wave SS as before so that 
ω = −cr (ω0) + ε
ω. Different
from the previous scenario, this scheme, dictated by Heff in
Eq. (3) adhering to PCCs, can be supported within a fully
passive setting. In Fig. 3, we show the density plots as in
Fig. 2 but against ε
ω and the frequency detuning εω. As
ε
ω → 0, the left [RL(ω0) → ∞] and right [RR(ω0) → 0]
reflectances are dramatically different [Figs. 3(a) and 3(b)],
yet the energy flux Ĵα (ω0) vanishes identically for both the
left (α = L) and the right (α = R) excitations [Figs. 3(c) and
3(d)]. For each excitation frequency ω �= ω0, the local minima

FIG. 3. Density plot of the logarithm of the reflectances (a),(b)
RL, R and the energy fluxes (c),(d) ĴL, R > 0 (see Fig. 2), versus the
detuning (εω, ε
ω ) of the evanescent wave unidirectional SS. The
white dashed lines trace the trajectories of the local minima of |Q|
regarding ε
ω, and the red arrow indicates their crossing point where
Q = 0. Other parameters are the same as in Fig. 2.

of the magnitude of Q ≡ det[H̃ev (ω) + jcr (ω)I2] [see Eq. (6)]
follow the white dashed lines in Fig. 3. An ordinary SS for
evanescent waves is found at (εω, ε
ω ) = (−5/6,

√
5/2) (red

arrow), where two white dashed lines cross, and Q = 0, as-
sociated with a real-frequency pole of the S matrix in Eq. (6)
[58]. At the ordinary SS, both reflectances RL(R) and trans-
mittance TS (not shown) become infinite, like those occurring
at conventional SS for propagating waves but now associated
with surface wave resonances (see Refs. [59,60]), with van-
ishing spectral width. Thanks to the intriguing decoupling of
the energy fluxes Ĵα ∝ Im (rα ) [Figs. 3(c) and 3(d)] from the
reflectances Rα = |rα|2 [Figs. 3(a) and 3(b)], however, this
scheme enables observing SSs in a fully passive platform,
somewhat consistent with [61–63].

Conclusions. In this Letter, we extended the concept of
SSs to evanescent waves and explored their unique features in
terms of energy flow. By generalizing gain-free PT symmetry
for evanescent waves to a regime in which gain and loss may
occur, we have constructed a non-Hermitian model supporting
both unidirectional SSs with suppressed reflection from one
side and ordinary SSs without directionality. Depending on
how we approach the SS in parameter space, the infinite re-
flection at the SS can induce infinite outgoing (incoming) and
zero-energy flow with extreme tunability, providing a strategy
for flexible unidirectional lasing and absorption, and also en-
abling the observation of SSs in passive (and thus inherently
stable) physical platforms. We have verified our concept in
full-wave circuit simulations, shedding light on the opportu-
nity to manipulate structured waves for extreme wave-matter
interactions based on non-Hermitian physics, which may be
extended to nanophotonics and acoustics [64].
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[28] I. Krešić, K. G. Makris, U. Leonhardt, and S. Rotter, Transform-
ing space with non-Hermitian dielectrics, Phys. Rev. Lett. 128,
183901 (2022).

[29] A. Mostafazadeh, Spectral singularities of complex scattering
potentials and infinite reflection and transmission coefficients
at real energies, Phys. Rev. Lett. 102, 220402 (2009).

[30] A. Mostafazadeh, Optical spectral singularities as threshold
resonances, Phys. Rev. A 83, 045801 (2011).

[31] S. Longhi, PT-symmetric laser absorber, Phys. Rev. A 82,
031801(R) (2010).

[32] Y. D. Chong, L. Ge, and A. D. Stone, PT-symmetry breaking
and laser-absorber modes in optical scattering systems, Phys.
Rev. Lett. 106, 093902 (2011).

[33] H. Ramezani, H. K. Li, Y. Wang, and X. Zhang, Unidirectional
spectral singularities, Phys. Rev. Lett. 113, 263905 (2014).

[34] A. Mostafazadeh, Nonlinear spectral singularities for confined
nonlinearities, Phys. Rev. Lett. 110, 260402 (2013).

[35] S. Longhi, Spectral singularities and Bragg scattering in com-
plex crystals, Phys. Rev. A 81, 022102 (2010).

[36] L. Jin and Z. Song, Incident direction independent wave prop-
agation and unidirectional lasing, Phys. Rev. Lett. 121, 073901
(2018).

[37] V. V. Konotop, E. Lakshtanov, and B. Vainberg, Designing las-
ing and perfectly absorbing potentials, Phys. Rev. A 99, 043838
(2019).

[38] H. Moccia, G. Castaldi, A. Alù, and V. Galdi, Harnessing spec-
tral singularities in non-Hermitian cylindrical structures, IEEE
Trans. Antennas Propag. 68, 1704 (2020).

[39] H. Ramezani, Spectral singularities with directional sensitivity,
Phys. Rev. A 103, 043516 (2021).

[40] F. Loran and A. Mostafazadeh, Fundamental transfer matrix for
electromagnetic waves, scattering by a planar collection of point
scatterers, and anti-PT-symmetry, Phys. Rev. A 107, 012203
(2023).

[41] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Coupled-resonator
optical waveguide: A proposal and analysis, Opt. Lett. 24, 711
(1999).

[42] Here, CROW bands formed by the coupling of other modes in
the individual resonators in the CROW are neglected.

[43] L. E. R. Petersson and G. S. Smith, Role of evanescent waves in
power calculations for counterpropagating beams, J. Opt. Soc.
Am. A 20, 2378 (2003).

L041405-5

https://doi.org/10.1088/2040-8986/acea92
https://doi.org/10.1088/0953-8984/11/35/301
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1103/RevModPhys.79.1291
https://doi.org/10.1103/PhysRevB.82.121419
https://doi.org/10.1103/PhysRevLett.109.104301
https://doi.org/10.1103/PhysRevLett.115.204302
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/s41566-022-01005-y
https://doi.org/10.1126/science.257.5067.189
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1103/PhysRevLett.121.256802
https://doi.org/10.1103/PhysRevApplied.13.044040
https://arxiv.org/abs/2307.03654
https://doi.org/10.1002/lpor.200900049
https://doi.org/10.1080/17455030600836507
https://doi.org/10.1103/PhysRevLett.112.043904
https://doi.org/10.1103/PhysRevB.96.180301
https://doi.org/10.1109/LMWC.2020.3042205
https://doi.org/10.1103/PhysRevLett.127.014301
https://doi.org/10.1103/PhysRevA.85.023802
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/ncomms8257
https://doi.org/10.1103/PhysRevLett.128.183901
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1103/PhysRevA.83.045801
https://doi.org/10.1103/PhysRevA.82.031801
https://doi.org/10.1103/PhysRevLett.106.093902
https://doi.org/10.1103/PhysRevLett.113.263905
https://doi.org/10.1103/PhysRevLett.110.260402
https://doi.org/10.1103/PhysRevA.81.022102
https://doi.org/10.1103/PhysRevLett.121.073901
https://doi.org/10.1103/PhysRevA.99.043838
https://doi.org/10.1109/TAP.2019.2927861
https://doi.org/10.1103/PhysRevA.103.043516
https://doi.org/10.1103/PhysRevA.107.012203
https://doi.org/10.1364/OL.24.000711
https://doi.org/10.1364/JOSAA.20.002378


HE, CHEN, LI, TU, XU, AND ALÙ PHYSICAL REVIEW B 109, L041405 (2024)

[44] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L041405 for details of derivations and
circuit simulations. It also contains Refs. [45,46].

[45] W. E. Lamb and R. C. Retherford, Fine structure of the hydro-
gen atom by a microwave method, Phys. Rev. 72, 241 (1947).

[46] E. M. Purcell, Spontaneous emission probabilities at radio fre-
quencies, Phys. Rev. 69, 681 (1946).

[47] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S.
Kivshar, Fano resonances in photonics, Nat. Photon. 11, 543
(2017).

[48] P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao,
Anti-parity–time symmetry with flying atoms, Nat. Phys. 12,
1139 (2016).

[49] R. Carminati, J. J. Sáenz, J.-J. Greffet, and M. Nieto-Vesperinas,
Reciprocity, unitarity, and time-reversal symmetry of the S ma-
trix of fields containing evanescent components, Phys. Rev. A
62, 012712 (2000).

[50] H. Li, A. Mekawy, A. Krasnok, and A. Alù, Virtual parity-time
symmetry, Phys. Rev. Lett. 124, 193901 (2020).

[51] R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, Reci-
procity of evanescent electromagnetic wave, J. Opt. Soc. Am.
A 15, 706 (1998).

[52] C. J. Cattena, L. J. Fernández-Alcázar, R. A. Bustos-Marún,
D. Nozaki, and H. M. Pastawski, Generalized multi-terminal
decoherent transport: Recursive algorithms and applications to
SASER and giant magnetoresistance, J. Phys.: Condens. Matter
26, 345304 (2014).

[53] E. Domany, S. Alexander, D. Bensimon, and L. P. Kadanoff,
Solutions to the Schrödinger equation on some fractal lattices,
Phys. Rev. B 28, 3110 (1983).

[54] PT symmetry for propagating waves in an arbitrary optical
system also cannot be maintained when sweeping continuously
over frequency due to causality constraints [55].

[55] A. A. Zyablovsky, A. P. Vinogradov, A. A. Pukhov, A. V.
Dorofeenko, and A. A. Lisyansky, PT-symmetry in optics,
Phys. Usp. 57, 1063 (2014).

[56] M. Benzaouia, A. D. Stone, and S. G. Johnson, Nonlinear
exceptional-point lasing with ab initio Maxwell-Bloch theory,
APL Photon. 7, 121303 (2022).

[57] K. Ji, Q. Zhong, L. Ge, G. Beaudoin, I. Sagnes, F. Raineri,
R. El-Ganainy, and A. M. Yacomotti, Tracking exceptional
points above the lasing threshold, Nat. Commun. 14, 8304
(2023).

[58] A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and
A. Alù, Anomalies in light scattering, Adv. Opt. Photonics 11,
892 (2019).

[59] D. V. Nesterenko, S. Hayashi, and Z. Sekkat, Asymmetric sur-
face plasmon resonances revisited at Fano resonances, Phys.
Rev. B 97, 235437 (2018).

[60] D. V. Nesterenko, S. Hayashi, and V. Soifer, Ab initio spatial
coupled-mode theory of Fano resonances in optical responses
of multilayer interference resonators, Phys. Rev. A 106, 023507
(2022).

[61] N. Engheta and R. Ziolkowski, Metamaterials: Physics and
Engineering Explorations (Wiley, New York, 2006).

[62] A. Alù and N. Engheta, Pairing an epsilon-negative
slab with a mu-negative slab: Resonance, tunneling and
transparency, IEEE Trans. Antennas Propag. 51, 2558
(2003).

[63] A. Alù and N. Engheta, Physical insight into the “growing”
evanescent fields of double-negative metamaterial lenses using
their circuit equivalence, IEEE Trans. Antennas Propag. 54, 268
(2006).

[64] Z. Chen, Z. Li, J. Weng, B. Liang, Y. Lu, J. Cheng, and A. Alù,
Sound non-reciprocity based on synthetic magnetism, Sci. Bull.
68, 2164 (2023).

L041405-6

http://link.aps.org/supplemental/10.1103/PhysRevB.109.L041405
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1038/nphoton.2017.142
https://doi.org/10.1038/nphys3842
https://doi.org/10.1103/PhysRevA.62.012712
https://doi.org/10.1103/PhysRevLett.124.193901
https://doi.org/10.1364/JOSAA.15.000706
https://doi.org/10.1088/0953-8984/26/34/345304
https://doi.org/10.1103/PhysRevB.28.3110
https://doi.org/10.3367/UFNe.0184.201411b.1177
https://doi.org/10.1063/5.0105963
https://doi.org/10.1038/s41467-023-43874-z
https://doi.org/10.1364/AOP.11.000892
https://doi.org/10.1103/PhysRevB.97.235437
https://doi.org/10.1103/PhysRevA.106.023507
https://doi.org/10.1109/TAP.2003.817553
https://doi.org/10.1109/TAP.2005.861509
https://doi.org/10.1016/j.scib.2023.08.013

