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Coexistence of insulating phases in confined fermionic chains with a Wannier-Stark potential
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We study fermions on a finite chain, interacting repulsively when residing on the same and on nearest-neighbor
sites, and subjected to a Wannier-Stark linearly varying potential. Using the density matrix renormalization-
group numerical technique to solve this generalized extended Hubbard model, the ground state exhibits a
staircase of (quasi) plateaus in the average local site density along the chain, decreasing from being doubly
filled to empty as the potential increases. These “plateaus” represent locked-in commensurate phases of charge
density waves together with band and Mott insulators. These phases are separated by incompressible regions
with incommensurate fillings. These results differ from the many-body localization proposed for this model
earlier. It is suggested that experimental variations of the slope of the potential and the range of the repulsive
interactions will produce such a coexistence of phases which have been individually expected theoretically and
observed experimentally for uniform systems.
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Introduction. The complexity of quantum many-body
systems originates from the interplay of strong interac-
tions, quantum statistics, and a large number of quantum-
mechanical degrees of freedom. A paradigmatic model, that
includes itinerant electrons subject to local and nearest-
neighbor (NN) Coulomb interactions, is the extended Hub-
bard model (EHM), which leads to interesting features like
metal to insulator transitions, charge and spin density waves,
and other interesting phases. In one dimension [1–5], it has
also been used to describe data collected in experiments per-
formed on chains of cold atoms [6,7]. In higher dimensions,
it has been used to describe bulk and edge states in electronic
insulators [8].

Experiments on cold-atom arrays naturally involve finite
samples. Numerical calculations performed on such systems
used various boundary conditions: hard walls, periodic and
open boundaries, or potentials representing confining har-
monic traps [7,9,10]. These papers concentrate mostly on the
region around the “center” of the confined structure, whose
details are usually not sensitive to the particular form of the
boundaries, and so its possible structures are determined by
the local and iteractions and by the average particle density n.
Remarkably, experiments (e.g., on cold atoms) have observed
some of the theoretically predicted phases [11,12]. Less at-
tention has been paid to the structures near the “edges” of the
samples and to their dependence on the details of the boundary
conditions, in particular when the confinement is achieved
by varying site energies. Such a confining scheme has been
recently considered, using the self-consistent Hartree-Fock
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approximation, for the two-dimensional EHM, and found co-
existence of various structures (phases) near the free ends of
the samples [8].

One way to model the edges of such finite systems uses
a linear confining potential, which grows as one moves away
from the bulk [8]. In fact, such a linear potential is the same
as the Wannier-Stark potential, which arises due to a con-
stant electric field along the one-dimensional chain. For single
electrons, this potential generates a ladder of localized states,
which were predicted to remain (many-body) localized also
with interactions. [13] Indeed, recent experiments found a
coexistence of localized and weakly localized phases on 1D
finite-sized mosaic Wannier-Stark photonic lattices [14].

In this Letter, we generalize the EHM to a 1D fermionic
chain, confined by a linear potential, which mimics either
edge configurations in bulk systems or cold-atom arrays
placed in an electric field. Such a potential can be pro-
duced by a longitudinal electric field, as in the Wannier-Stark
model [15].

Given the complex nature of the many-body problem asso-
ciated with our system, we resort to one of the most accurate
numerical methods for correlated systems, the density matrix
renormalization group (DMRG) [16–21], which uses quantum
information to keep the most relevant states. As we show, the
linear potential generates in the ground state the simultaneous
existence of segments in which different phases coexist, each
of which having been observed separately before, on long uni-
form chains. This coexistence of phases differs from the may
body localized states proposed earlier [13–15]. This apparent
contradiction is one of our main results.

Our results are presented by plots of the local quantum-
averaged density on the sites i on the chain, 〈ni〉, the NN
density-density correlations 〈nini+1〉 and the NN spin-spin
correlations 〈sz

i s
z
i+1〉, (e.g., Fig. 2). Instead of a smooth

decrease, the local average of 〈ni〉 shows flat steps, cor-
responding to locked-in Mott or CDW structures (e.g.,
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FIG. 1. Schematic representation of the system considered.

212121 . . . , 101010 . . . , [22]). These locked-in steps are sim-
ilar to those observed for commensurate wave vectors in the
devil’s staircase (see Refs. [23,24] for the physical description
of these terms). Unlike all the previous cases, in which such
lock-ins occur in momentum space, here we find them in real
space.

Between these steps, 〈ni〉 decreases more smoothly, repre-
senting incommensurate regions, which can be thought of as
“domain walls” with varying lengths [25]. As shown below,
the local density of states on these intermediate sites exhibits
small energy gaps, which imply that they are incompress-
ible (insulating), in spite of having incommensurate fillings,
which could be due to Wannier-Stark localization [26] and
which deserve further study. We will refer to them hereafter
as incompressible incommensurate-filling phases “IIF.” In this
paper, we find a coexistence of all these phases on one single
sample, e.g. band and Mott insulators, charge density waves
with different mean fillings, and gapped incommensurate fill-
ing phases separating these regions.

The specific sequence of phases, and their sizes, can be
modified experimentally, e.g., by changing the slope of the
potential. Neighboring structures in a sequence are often also
neighboring in the phase diagrams found for uniform systems
(which are not subjected to the linear potential).

(a)

(d)

(b)

(e) (f)

(g) (h) (i)

(c)

FIG. 2. [(a)–(c)] The local density 〈ni〉; [(d)–(f)] the NN density-
density correlations 〈nini+1〉; [(g)–(i)] the NN spin-spin correlations
〈sz

i s
z
i+1〉, for V = 0, 3, 6 and different values of μ0. The black

diamonds in (c) indicate the mean value between neighboring sites.

Model. We study the generalized 1D EHM Hamiltonian

H = − t
∑

i,σ

(
c†

i,σ ci+1,σ + H.c.
) +

∑

i

(μi − μ)ni

+ U
∑

i

(ni,↑ − 1/2)(ni,↓ − 1/2)

+ V
∑

i

(ni − 1)(ni+1 − 1), (1)

where i is the site index, i = 0, . . . , L − 1. [27] Here, μ is
the fixed external chemical potential, c†

i,σ creates an electron

with spin σ (=↑,↓) at site i, ni,σ = c†
i,σ ci,σ , ni = ni,↑ + ni,↓,

while U and V are the repulsive interactions between electrons
on the same and NN sites, respectively (see Fig. 1). The
figure also shows the gradual decrease of the local occupation
as the confining potential increases from left to right. The
site-dependent local energy (the Wannier-Stark potential) μi
describes a linear external potential, μi = μ0[i/ic − 1]. The
site ic = (L − 1)/2 represents the center of the “edge,” where
μic

= 0. The particular form of H was chosen so that at μ = 0
(up to a constant energy) it is particle-hole symmetric when
i → L − 1 − i and ni → 2 − ni. In that case, we always have
nic

= 1.
For an infinite chain, μi is large and negative at large

and negative i, and therefore we expect all the sites there to
be filled, i.e., ni = ni,↑ + ni,↓ = 2. Similarly, μi is large and
positive at large and positive i, and therefore we expect all the
sites there to be empty, i.e., ni = 0. For a finite chain, as we use
here, this is still expected for a large slope, μ0 � 1, when the
whole “edge” between the fully occupied and empty “phases”
is confined within the chain. Indeed, this is confirmed by our
calculations. However, the “end” trivial phases disappear for
small slopes, for which the observed structures depend on the
open boundaries.

Results. We have used wide ranges for the parameters, such
that all the interesting structures appear in the resulting phase
diagrams. Unless otherwise stated, we use U/t → U = 10,
μ = 0, and L = 41. All energies are measured in units of
t . The Hamiltonian is diagonalized exploiting the DMRG
technique, with around m = 500 states and 4 to 6 finite-size
sweeps, which leads to a precision of around 10−10 in the
energy. For a very steep potential (μ0 → ∞), we obtain only
two coexisting “phases”: a completely filled band (ni = 2) up
to the center point ic, and completely empty sites (ni = 0)
above that point, as expected. Both regions are incompressible
and insulating. As the slope μ0 decreases (but remains large),
these two “phases” remain near the two ends of the system,
but new structures (“phases”) appear between them, in which
〈ni〉 decreases gradually from 2 to 0. Figure 2 presents typical
results, for three values of V . Note the electron-hole symme-
try between the two sides of Figs. 2(a)–2(c), which follows
directly from Eq. (1) at μ = 0.

For V = 0 (i.e., the simplest Hubbard Hamiltonian, left
column in Fig. 2), the system shows the following phases: for
large (but finite) values of μ0, it is a band insulator at both
extremes, completely filled on the left and completely empty
on the right. In the region located symmetrically around the
center point ic, we find a Mott-insulating state (one particle per
site, 〈ni〉 = 1), and an antiferromagnetic spin-spin correlation
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FIG. 3. (Top) Local density profile 〈ni〉 showing the sites where
the local density of states(LDOS) has been calculated, for V = 0
(μ0 = 10), V = 3 (μ0 = 16), and V = 6 (μ0 = 20). (Bottom) LDOS
showing gaps at the Fermi energy (at ω = EF = 0) for all cases,
using η = 0.01 (Eq. (S1) in Ref. [30]).

function, Fig. 2(g). As seen in this figure, the spin corre-
lation function, 〈sz

i s
z
i+1〉 	 −0.14 (note: sz

i ≡ (ni,↑ − ni,↓)/2,
the z−direction is arbitrarily chosen), agrees with its value
of the infinite Mott phase. [17,28] The three insulating com-
mensurate phases are separated by IIF regions with very small
but finite gaps, see Fig. 3. These regions differ from the com-
pressible regions found in Ref. [8], possibly because Ref. [8]
explores 2D systems using the mean-field approximation. As
μ0 decreases, the band insulating phases on both ends disap-
pear and the Mott region grows, as estimated below. These
results are also consistent with the behavior of the density-
density correlations, which vary between 4 on the left, via 1
in the Mott phase, to 0 on the right, Fig. 2(d).

For V = 3 (middle column in Fig. 2), the above three
insulating “phases” are supplemented by two regions with
an incipient (doped) CDW order on the two sides of the
Mott “phase,” with local mean fillings “quasiplateaus” around
〈ni〉 	 1.5 and 〈ni〉 	 0.5 (quarter filling of holes and of elec-
trons, respectively). The bar indicates a local average over a
few sites. Unlike the uniform case μi = 0, the local average
fillings in these regions are not exactly 1.5 and 0.5. Rather,
they can be fitted by 〈ni〉 = A − Bi + C cos(iπ ) (note that i
is the site number!). The oscillating term corresponds to a
CDW, with a wave vector q = π (our lattice constant is 1)
and structures 212121 . . . or 101010 . . . [22]. However, the
term −Bi represents a linear decrease of the actual average,
presumably in response to the linear potential. Without this
linear “background,” such a CDW is consistent with the re-
sults of the density-density and spin-spin correlations and with
previous results for the doped (non-half-filled) 1D EHM [29]
in a uniform potential, μi = 0, for which there is a transi-
tion from a Tomonaga-Luttinger liquid to a CDW phase for
intermediate values of 2t � V < U/2 and large values of U
(U � t). In those cases this CDW phase is insulating and
incompressible. As we discuss below, we also find that, in
spite of the varying average local densities, the local density
of states has a (small) gap at the Fermi energy, which is
consistent with an incompressible state. These regions may
become compressible at low finite temperatures, which may
be very different from the corresponding charge density

phases for a uniform system with a fixed average occupation.
As before, when μ0 decreases, the Mott region grows, the
incipient CDW regions move towards the boundaries and the
band-insulating regions disappear.

For V = 6 (right column in Fig. 2), the Mott region dis-
appears and is replaced by a half-filled CDW, 202020 . . . For
large μ0’s, this phase exists in the center and coexists with
doped CDW’s at both sides, with fillings 〈ni〉 	 1.5 and 	0.5,
respectively [black diamonds in Fig. 2(c)]. This coexistence of
two different CDW’s has not been seen before and constitutes
a situation which could be observed in cold-atom experiments.
As before, the doped CDW’s are accompanied by a very small
gradual decrease of the local average occupation -‘quasi-
plateaus’, presumably due to the slope in the potential. When
μ0 is lowered, the half-filled CDW occupies the whole chain.
This is expected, since it is well known that when V > U/2
and for a half-filled system, the uniform chain undergoes a
transition from a Mott phase to a CDW [5,29]. The results
are consistent with the behavior of the density-density and
spin-spin correlations. It is interesting to see a finite value
of the spin-spin correlations at the phase boundaries between
the half-filled and doped CDW’s. It is also interesting to see
that for V = 3 the average occupation 〈ni〉, and the amplitude
of the incipient CDW decrease gradually towards the central
Mott or CDW region, but this decrease becomes abrupt for
V = 6. The width of the IIF region (domain wall) between
the two CDW phases seems to shrink to zero above some
“critical’ value of V .

The above results exhibited “plateaus” only for 1/2, 1/4,
and 3/4 fillings. We expect similar “plateaus,” corresponding
to other simple fraction, e.g., 1/8. However, to see these one
would need a much larger number of sites, and this is not
possible with our present computer capabilities. Note, though,
that calculations with a smaller number of sites do still show
similar steps for these commensurate fillings.

Local density of states. To further explore the different
phases, we have calculated the local, site dependent, density of
states (LDOS), using the lesser and greater Green’s functions,
see details in Ref. [30]. In Fig. 3, we show the LDOS for par-
ticular sites of the chain for different parameters. We observe
that there is always a gap at EF = 0, even for the partially
filled sites (we have added the filling profile for comparison).
The gaps corresponding to these sites are smaller than the
corresponding gaps of the fully formed CDW (see the V = 6
case) and much smaller than those of the Mott region (see
Fig. 4). These gaps indicate that these regions are incompress-
ible (nonmetallic). This is not a finite size effect (since we
would have a finite LDOS at EF for fractional densities), but a
consequence of the linear potential. We also observe that the
LDOS consists of a series of peaks separated by minigaps, a
possible indication of Stark discretization [15].

Figure 4 shows a heatplot of the local density of states
along the chain for V = 0, μ = 0 and μ0 = 10. The Fermi
energy is marked by a white (dashed) line at ω = 0. As the
Hamiltonian is particle-hole symmetric around the middle
of the chain, the density of states for the right half of the
chain (20 � i � 40, not shown) is inverted as a function of
ω (details see in Ref. [30]). As mentioned above (Fig. 3), we
always find a gap at EF , indicating an incompressible state.
This gap is more than an order of magnitude smaller than the
Mott gap. We also see a structure in the Hubbard bands in the
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FIG. 4. Heat plot of the local density of states at different sites
(6 � i � 20) for μ0 = 10 and V = 0. The Fermi energy is marked
by a white (dashed) line at ω = 0.

form of three main substructures which evolve along the chain
sites. Each substructure extends to around three neighboring
sites, also an indication of Stark localization which requires
future study [15].

An interesting result for V = 0 is the existence of a (neg-
ative) high-energy localized state in the IIF region (clearly
seen in the density of states plots at the left of the chain,
Fig. S3 in Ref. [30]). We can see a small and narrow peak
at energies around ω ∼ −14 for the first sites of this region,
which evolves to higher energies (following the increase of
μ), while we approach the Mott region, increasing its width.
This state is reminiscent of the lower Hubbard band for the left
regions. A similar state is seen for the right half of the chain
which is reminiscent of the upper Hubbard band (not shown).
More results for the density of states, together with some
calculations in the atomic limit, are presented in Ref. [30].

Size of the Mott region. At the electron-hole symmetric case
(and V = 0), the upper and lower Hubbard bands are cen-
tered at ±U/2 respectively, each with a total width of 4. For
μ = 0, the size of the Mott region can be estimated recalling
that the Mott insulating state requires that the local μi lies
within the Mott gap, i.e., −U/2 + 2 < μi < U/2 − 2. At the
lower limit μmin = −U

2 + 2, yielding that iminμ0 = ic(μ0 −
U
2 + 2), while at μmax = U

2 − 2 one finds imaxμ0 = ic(μ0 +
U
2 − 2). Consequently, assuming that the width of the Hub-
bard bands is not modified by the presence of the confining
potential, the size of the Mott region is

LMott = imax − imin = (U/2 − 2)(L − 1)/μ0. (2)

As the confining potential slightly increases the width of the
Hubbard bands (not shown), the gap in-between them and
LMott are slightly overestimated.

To compare Eq. (2) with our numerical results, we have es-
timated the size of the Mott region by defining its boundaries
at the points where the linear fits of the numerical derivative of
the local occupation intercept 0 for each value of μ0, using the
results shown in Fig. 2(a). This procedure reveals that indeed

(a) (b) (c)

FIG. 5. Schematic plot of the various phases observed in the
chain subjected to a linear potential, for three different regimes
defined by the nearest-neighbor interaction V . The sequence of num-
bers, 212121 and 202020, refer to the occupations of neighboring
sites. MI: Mott insulator, BI: band insulator, IIF: incompressible
incommensurate-filling phase.

the size of the Mott region is proportional to 1/μ0 (see Fig. S2
in Ref. [30]), and it shrinks to zero for very steep potentials.

Changing the global chemical potential. Changing the
global chemical potential simply shifts the site at which the
linear potential vanishes to ishift

c = ic(1 + μ/μ0). For the in-
finite chain, this results by a simple shift of all the phases
in Fig. 2, along the chain, with no other change. The same
happens for finite chains with a large slope, when ishift

c remains
far from the boundaries of the chain. Otherwise, the structure
chages near the boundaries, see Fig. S5 in Ref. [30].

Discussion. In this paper, we study the one-dimensional
extended Hubbard model, subject to a linearly varying
Wannier-Stark potential on a finite chain, applying the
density-matrix renormalization group. We find an interesting
sequence of several insulating electronic phases in the ground
state, in which regions with commensurate charge density
waves coexist with band and Mott insulating phases. These
regions are separated by incompressible domain walls with
incommensurate fillings, which were not reported before. The
results are summarized in Fig. 5. Further research is needed to
define whether these incompressible walls are due to the Stark
many-body localization [26]. The steeper the slope of the ex-
ternal potential, the narrower the domain walls. These phases
and domain walls can be moved around by varying a global
chemical potential, thus, providing a possible functionality of
this kind of systems. Cold-atom chains placed in an external
electric field are suggested as experimental realizations of our
system.

Finally, although our accurate results are similar to those
found approximately in Ref. [8] for the edges of two-
dimensional samples, there remain several important differ-
ences, e.g., concerning the compressibility and conductance
of the intermediate phases. If the gaps we find persist to two
dimensions, those edges will become insulating at zero tem-
perature. Repeating our calculations for the two-dimensional
case may resolve these differences, and yield important infor-
mation on the edge states of topological systems.
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