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Dissipative drift instability of plasmons in a single-layer graphene
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We predict the plasmon instability associated with losses in hydrodynamic graphene with a drift-current bias.
The instability appears even in a single-layer graphene and becomes stronger for greater losses in graphene
in hydrodynamic regime but disappears in the lossless case. The unstable plasmon mode vanishes for zero drift
velocity instead of transforming into any plasmon mode existing in graphene without carrier drift. The dissipative
instability occurs for any finite drift velocity but the instability increment decreases down to zero for vanishing
carrier drift velocity. The strongest instability develops for codirected carrier drift and plasmon propagation
directions.
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Physical properties of a material system dramatically de-
pend on its dimensionality [1]. Plasma oscillations (plasmons)
in two-dimensional (2D) electron systems have been studied
since almost half a century ago [2–6]. It is remarkable that
plasmons in a 2D electron system are dispersive waves even
in a long-wavelength limit in distinction from plasma oscilla-
tions in 3D plasma. It means that 2D plasmons have nonzero
group velocity and hence can transmit electromagnetic sig-
nals, which opens the way to their practical applications for
information processing. In the beginning of the 21st century,
graphene, the ultimately thin (one-atom thick) 2D flatland
material, was discovered [7,8]. Since then a variety of dif-
ferent 2D materials have been synthesized and investigated
[9]. Due to the Dirac (linear) energy spectrum of massless
carriers in graphene, the dispersion of plasmons in graphene
(also termed as the Dirac plasmons) is too much different
from that for plasmons in 2D electron systems with massive
carriers [10–12]. Graphene plasmonics has been a source of
amazing and extraordinary discoveries in recent years, and
also paved a way to new, promising practical applications
in terahertz (THz) frequency range [13]. Graphene, due to
its unique physical and performance properties, is actively
being investigated as an element of compact detectors [14,15],
amplifiers [16,17], and a variety of other THz devices [18,19].

The motion of charge carriers in graphene can be described
by hydrodynamic theory at THz frequencies, when the rate
of carrier-carrier collisions is greater than the rate of car-
rier collisions with impurities and phonons in graphene and
greater than the frequency of exerted electric field [20–24].
Experimental confirmation of the hydrodynamic behavior of
charge carriers in graphene was reported in Refs. [25–27].
Hydrodynamic regime typically sets in for temperatures

*MoiseenkoIM@yandex.ru

T > 30–100 K depending on the carrier density in graphene
[27]. At such temperatures, the carrier-carrier scattering rate
is about γee � 5 × 1012 s−1 at the hydrodynamic regime on-
set and grows as γee ∼ T 2 for higher temperatures [27]. It
means that the hydrodynamic regime can take place in the
low part of THz frequency range ω < γee (ω/2π � 5 THz)
up to room temperature. Another important requirement that
should be fulfilled in the hydrodynamic regime is the in-
equality γ < γee, where γ is the rate of carrier momentum
relaxation due to disorder and phonons. The carrier momen-
tum relaxation rate can be as low as γ � 2 × 1012 s−1 in
graphene with high carrier mobility up to room tempera-
ture [28,29]; hence, the inequality γ < γee can be fulfilled.
In the hydrodynamic regime, graphene behaves as a fluid
and demonstrates interesting properties absent in the ballistic
regime γ , γee � ω [27,30]. Hydrodynamic graphene supports
the transverse-magnetic (TM) plasmons with phase velocity
Vph > VF/

√
2 [23,31,32], where VF = 106 m/s is the Fermi

velocity in graphene [33,34], while in the ballistic regime, the
plasmon velocity in graphene cannot be below VF [23,35].

Carrier drift makes graphene anisotropic and leads to the
effects of graphene birefringence and nonreciprocal Doppler
shift of Dirac plasmons [36–42]. The nonreciprocal Doppler
shift of Dirac plasmons in graphene with carrier drift bias was
experimentally observed in Refs. [43,44]. It was claimed in
Refs. [45,46] that the plasmon instability in bilayer graphene
with charge-carrier drift in the ballistic regime is possible due
to negative Landau damping for low phase velocity of plas-
mons Vph < V0 (Cherenkov instability condition), where V0 is
the drift velocity of charge carriers in graphene. However, as
it was later argued in Refs. [47,48], the Cherenkov instability
in graphene bilayer can take place only in the hydrodynamic
regime and it is prohibited in the ballistic regime. Remarkably,
the Cherenkov instability develops even in the absence of
dissipative collisions in graphene and it is prohibited in a
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single-layer graphene [45,49]. It is known however that a non-
Cherenkov plasmon instability can develop due to negative
Landau damping in the ballistic (collisionless) regime even in
a single-layer 2D electron system with massive charge carriers
as a result of the effect of the stationary electric field on high-
frequency electron dynamics [50]. The drift-induced plasmon
instabilities associated with material absorption (dissipative
instabilities) were predicted for 2D electron systems with
massive charge carriers [51,52]. However, those instabilities
exist only in two coupled plasmonic systems (with carrier
drift at least in one of those) but not in a single-layer 2D
electron system. The experimental work [53] demonstrates the
possibility of drift-induced non-Cherenkov amplification of
THz plasmons in a graphene transistor structure with a grating
gate.

In this paper, we predict the existence of a slow plasmon
mode in a single-layer graphene with a drift-current bias in the
hydrodynamic regime. The mode disappears for zero carrier
drift instead of transforming into any plasmon mode existing
in graphene without carrier drift. We show that this mode
becomes unstable in lossy graphene. The instability develops
exclusively due to losses in graphene and it disappears in a
lossless case. Remarkably, the dissipative instability occurs
for any finite drift velocity though the instability increment
decreases down to zero for vanishing carrier drift velocity.
The strongest instability develops for codirected carrier drift
and plasmon wave vector. We show that the instability in-
crement decreases for oblique angles between carrier drift
and plasmon propagation directions so that the unstable mode
becomes damped for angular deflection between those direc-
tions greater than 45◦ and finally this mode disappears in the
case of transversal drift. To discover this type of the plasmon
instability, we extend the hydrodynamic theory elaborated
in Refs. [20–24] by taking into account the effect of static
biasing (drift-inducing) electric field on the oscillating hydro-
dynamic variables.

The studied structure consists of a graphene sheet located
in the plane x-z between two semi-infinite dielectric materi-
als with dielectric constants ε1 and ε2. All calculations are
performed for the structure with ε1 = ε2 = εb = 4.5 (boron
nitride) [54]. We will consider plasmons propagating along
the x axis in graphene with the spatiotemporal dependence of
plasmon fields ∝ exp(−iωt + ikxx), where ω is the angular
frequency and kx is the plasmon longitudinal wave vector,
and we assume that the constant carrier drift current flows at
arbitrary angle to the plasmon propagation direction.

Graphene with the stationary carrier drift is generally de-
scribed by the 2D conductivity tensor σ̂. Elements of the
graphene hydrodynamic conductivity tensor are obtained by
solving the continuity equation, the charge-carrier momentum
balance equation, and the energy balance equation for 2D
motion of charge carriers in graphene [20–24]:

∂N

∂t
+ ∂ (NV)

∂x
= 0, (1)

∂S
∂t

+ ∇ · �̂ + eEN = −γ S, (2)

∂W

∂t
+ V 2

F ∇ · S + eNE · V = 0, (3)

where N is the charge-carrier density, V is the hydrodynamic
velocity, S is the macroscopic momentum density, W is the
macroscopic energy density, �̂ is the momentum flux tensor
(sometimes termed as the stress-energy tensor or energy-
momentum tensor) [20], e is the elementary charge (e > 0),
E is the in-plane electric field, γ = 1/τ , with τ being the
momentum relaxation time of charge carriers in graphene. The
relations between the physical quantities entered Eqs. (1)–(3)
can be written as [20,55]

S = MV, W = MV 2
F − P, P = M

(
V 2

F − V2
)/

3,

�̂ = PÎ + S ⊗ V, (4)

where M is the hydrodynamic mass density, P is the hydrody-
namic pressure, and Î is the unit tensor.

By linearizing the hydrodynamic equations (1)–(3) in
respect to the oscillating hydrodynamic variables around
the stationary drift state (see the Supplemental Material to
Ref. [55]), we obtain the expressions for each element of the
linear conductivity tensor of graphene with a constant carrier
drift taking into account the effect of static drift-inducing
electric field on the oscillating hydrodynamic variables. The
conductivity demonstrates the spatial dispersion and depends
on the frequency ω, plasmon longitudinal wave vector kx, drift
velocity V0, and the steady-state Fermi energy εF in graphene.
In contrast to 2D electron systems with massive carriers, the
graphene conductivity depends on drift velocity even in the
absence of spatial dispersion in the long-wavelength limit
(for zero wave vector), which is the consequence of breaking
the Galilean invariance in graphene with massless carriers
[24]. The explicit expressions for elements of the graphene
conductivity tensor are too much bulky in the case of oblique
carrier drift (even in the simplest case of collinear carrier
drift and plasmon propagation directions, the expression for
governing element σxx of the graphene conductivity tensor is
quite lengthy [55]). However, it is crucially important that
the carrier momentum relaxation rate γ > 0 is involved as
a prefactor in the real part of every element of the graphene
conductivity tensor. Though the rest of factors in the elements
of the conductivity tensor also contain the carrier momentum
relaxation rate, the real parts of some tensor elements can be
nevertheless negative for certain drift velocities, giving rise
to the plasmon instability. However, the instability disappears
when γ = 0 for any drift velocity value. Therefore, this type
of instability is a dissipative one by its very nature.

In general, all elements of the graphene conductivity tensor
enter the dispersion equation for surface waves in graphene
propagating along the x axis [56]:[

ωε0

(
ε1

ky1
− ε2

ky2

)
+ σxx

]
(ky2 − ky1 − σzzμ0ω)

= −σxzσzxμ0ω, (5)

where ky1,2 = ±√
ω2ε1,2/с

2 − k2
x are the normal-to-plane-of-

graphene components of the plasmon wave vectors in different
media, c is the speed of light, ε0 and μ0 are the electric and
magnetic constants, respectively. The signs of ky1,2 are cho-
sen in order to correspond with the exponential decay of the
plasmon field away from the graphene layer. We assume the
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frequency to be a real quantity and seek for complex solutions
for the plasmon wave vector.

When the direction of charge-carrier drift coincides
with (or opposite to) the direction of plasmon propagation
(Vz0 = 0, Vx0 
= 0), the condition σzx = σxz = 0 is valid and
dispersion relation (5) splits into two equations:

ky2 − ky1 − σzzμ0ω = 0, and (6)

ωε0

(
ε1

ky1
− ε2

ky2

)
+ σxx = 0. (7)

Equation (6) describes the transverse-electric (TE) modes
and it has no solution in the form of surface wave for
Vz0 = 0 because, in this case, the graphene conductivity σzz

exhibits the inductive nature (Imσzz > 0) in a low part of
THz frequency range, which does not satisfy the condition of
existence of the surface TE modes in graphene [57]. However,
Eq. (6) can have solution for the surface TE modes in a low
part of THz frequency range if the direction of carrier drift
is transverse to the TE wave propagation direction and Vz0

exceeds a threshold value as shown in Refs. [56,58]. We do not
consider TE modes in this paper because these modes were
studied in Refs. [56,58] in detail.

In this paper, we focus on exploring Eq. (7), which de-
scribes the dispersion of surface TM plasmons (more exactly,
plasmon-polaritons). We found two different surface plasmon
modes with TM polarization existing in graphene for codi-
rected carrier drift and plasmon wave vector (Rekx > 0,Vx0 >

0). The dispersions of these modes are shown in Figs. 1(a) and
2 by solid lines for different drift velocities of charge carriers
in graphene. One of the modes is attenuated (Imkx > 0), and
the other is amplified (Imkx < 0) for all studied THz frequen-
cies. To be concise, we will term the mode with Imkx > 0 as
the “damped mode,” and the mode with Imkx < 0 as “ampli-
fied mode.”

Let us start with considering the damped mode. For V0 =
0, this mode is the well-known surface TM plasmon in
graphene. For each finite value of the drift velocity Vx0 there
is a cutoff frequency below which there are no damped TM
modes. This is due to the capacitive nature of graphene con-
ductivity (Imσxx < 0) below these frequencies [see the dashed
lines in Fig. 1(a)], which does not satisfy the condition of the
surface TM plasmon mode existence [57]. The real part of
the graphene conductivity Reσxx is positive for the damped
mode and grows with increasing Vx0 at a fixed frequency,
which leads to an increase in the attenuation of this mode [see
Fig. 1(b)]. The cutoff frequency decreases with decreasing
Vx0 and becomes zero for Vx0 = 0. With the losses taken
into account, all dispersion curves enter the fast-wave region
(Rekx < ω

√
εb/c) in Fig. 1(a), although the TM modes re-

main surface waves. In this region, the surface TM modes
suffer from strong damping [overdamped plasmon segments
of the attenuation curves, where the inequality Imkx/Rekx > 1
is valid, are shown by dashed lines in Fig. 1(b)]. In the lossless
case, the surface TM mode exists totally in the slow-wave
region (Rekx > ω

√
εb/c) for any drift velocity without cut-

off. A similar damped surface TM mode (not shown in the
figures) exists for counterdirected carrier drift and plasmon
wave vector (Vx0 > 0, Rekx < 0). It differs only slightly from
the damped mode codirected with the carrier drift, which

(b)

(a)

z

FIG. 1. (a) The real and (b) imaginary parts of the longitudinal
wave vector of the damped plasmon mode as functions of frequency
for codirected carrier drift and plasmon longitudinal wave vector for
different values of Vx0. The imaginary part of graphene conductivity
is shown in panel (a) by dashed lines (top horizontal axis). The
segments of the plasmon increment curves, where the inequality
Imkx/Rekx > 1 is valid, are shown by dashed lines in panel (b).
Graphene parameters are εF = 200 meV and τ = 0.5 ps.

is considered above, due to the insignificant effect of the
Doppler shift for these modes (|Rekx| � ω/Vx0). The dif-
ference between the wavelengths of damped plasmon modes

FIG. 2. The real (solid curves) and imaginary (dashed curves)
parts of the plasmon longitudinal wave vector for the amplified
plasmon mode propagating downstream of the carrier drift. Graphene
parameters are εF = 200 meV and τ = 0.5 ps.
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propagating downstream and upstream of the carrier drift does
not exceed 5% in the entire range of THz frequencies. This re-
sult is in good agreement with the experimental data reported
in Refs. [43,44]. It is worth noting that in Refs. [43,44] as well
as in theoretical papers [36–42], the effect of drift current on
the plasmon modes already existing in graphene even without
carrier drift is studied only.

The damped mode exists at any oblique drift angle even
when the carrier drift is strictly perpendicular to the plasmon
propagation direction. The attenuation of this mode decreases
with increasing the angle between the carrier drift and the
plasmon propagation directions. The decrease of plasmon
damping for oblique drift is due to decreasing the component
of drift velocity Vx0. In the case of carrier drift perpendicular to
the plasmon wave vector the attenuation decreases at least by a
factor of 2 compared to the attenuation of plasmons in the case
of collinear drift and the plasmon propagation directions. For
Vz0 = 0.7VF and Vx0 = 0, the damping of the plasmon mode
decreases by at least 40% in the entire frequency range under
study as compared with the plasmon mode in the absence of
electron drift in graphene.

Now we consider the surface TM plasmon which does
not exist in any form in graphene without carrier drift. Fig-
ure 2 shows the real and imaginary parts of the plasmon
longitudinal wave vector of the amplified TM plasmon mode
for codirected carrier drift and plasmon propagation direc-
tions. The phase velocity of amplified plasmon mode (Vph =
ω/Rekx) is close to the carrier drift velocity so that the value
of Rekx decreases with growing drift velocity for a given
frequency. This behavior is typical for dissipative instabilities
in 2D electron systems with massive charge carriers [51,52].
The imaginary part of the plasmon wave vector is negative
at THz frequencies for any finite drift velocity value, which
indicates the amplification (instability) of this mode along
the propagation direction. Amplification takes place due to
the fact that the real part of the graphene conductivity is
negative Reσxx < 0 for all frequencies and wave vectors of
this mode. The increment of amplified mode tends to zero for
Vx0 → 0, and its dispersion curve merges with the abscissa
axis in Fig. 2 so that the mode frequency is equal to zero for
all wave vectors in this case. The increment of the amplified
plasmon mode is almost independent of the real part of the
plasmon wave vector (see Fig. 2) which is also consistent with
the characteristic features of dissipative plasmon instabilities
in 2D electron systems with massive carriers [51,52]. The
increment of the amplified mode vanishes in the lossless case
(when γ = 0) while its dispersion remains almost indepen-
dent of losses if the inequality |Rekx/Imkx| > 1 is satisfied.
Remarkably, the amplification increment increases with grow-
ing losses in graphene for any fixed drift velocity within
the hydrodynamic regime. We have not found an amplified
mode propagating upstream of the carrier drift for the studied
frequencies and drift velocities.

In the case of oblique carrier drift, the tensor nature of
the graphene conductivity leads to the excitation of in-plane
component of the plasmon electric field Ez and additional
components of magnetic field Hx and Hy. Therefore, the plas-
mons are the hybrid TM+TE modes in this case and one has
to solve the general dispersion relation (5) which involves all

elements of the graphene conductivity tensor instead of using
the dispersion relation (7) for TM modes. The calculations
show that the increment of the amplified mode decreases with
increasing the angle α between the carrier drift and plasmon
propagation directions. The amplification turns into attenua-
tion for α > 45◦, and finally this mode disappears in the case
of transversal drift α = 90◦.

Since the amplified mode is very slow (its phase velocity is
by two orders of magnitude smaller than the speed of light),
the spatial dispersion in graphene totally determines the prop-
erties of this mode and even is the cause of its very existence.
That is why such mode did not appear in Refs. [55,56,58]
where the spatial dispersion was not taken into account.

For experimental observation of the predicted unstable
plasmon mode in graphene with a drift current bias, the real-
ization of necessary conditions for the hydrodynamic regime
in graphene is mandatory. As discussed in the Introduction,
such conditions can be fulfilled at temperatures higher than
30–100 K (depending on the carrier density in graphene)
for frequencies below 5 THz. For utilizing the slow unstable
plasmon mode in practice, special transducers for excitation
of this mode and for conversion of the amplified mode into
THz signal are needed.

In conclusion, we predict the existence of a slow plas-
mon mode in a single-layer graphene with a drift-current
bias in the hydrodynamic regime. The mode disappears for
zero carrier drift instead of transforming into any plas-
mon mode existing in graphene without carrier drift. We
show that this mode becomes unstable in lossy hydrody-
namic graphene with a drift-current bias and disappears in
a lossless case. The instability appears even in a single-
layer graphene and becomes stronger for greater losses in
graphene in hydrodynamic regime. The dissipative instability
occurs for any finite drift velocity but the instability increment
decreases down to zero for vanishing carrier drift velocity.
The strongest instability develops for codirected carrier drift
and plasmon propagation directions. The instability increment
decreases for oblique angles between the carrier drift and
plasmon propagation directions so that the unstable mode
becomes damped for angular deflection between those di-
rections greater than 45◦ and finally this mode disappears
in the case of transversal drift. These remarkable properties
of predicted dissipative instability drastically differentiate it
from the Cherenkov instability, which exists only in coupled
plasmonic systems (with the carrier drift at least in one of
them) even in a lossless case if the plasmon phase velocity is
smaller than drift velocity, and it is prohibited in a single-layer
graphene. For describing the plasmon dissipative instability,
we extend the existing hydrodynamic theory by taking into ac-
count the effect of static biasing (drift-inducing) electric field
on the oscillating hydrodynamic variables for arbitrary angle
between the carrier drift and plasmon propagation direc-
tions. The results of this paper can be used for creating
miniature amplifiers and emitters based on hydrodynamic
graphene operating at room temperature in THz frequency
range.
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