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Magnons, as fundamental quasiparticles that emerge in elementary spin excitations, hold a big promise for
innovating quantum technologies in information coding and processing. By establishing the exact relation
between Fisher information and entanglement in partially accessible metrological schemes, we rigorously prove
that bipartite entanglement plays a crucial role during the dynamical encoding process. However, the presence
of an entanglement during the measurement process unavoidably reduces the ultimate measurement precision.
These findings are verified in an experimentally feasible cavity magnonic system engineered for detecting a weak
magnetic field by performing precision measurements through the cavity field. Moreover, we further demonstrate
that, within a weak-coupling region, measurement precision can reach the Heisenberg limit. Additionally,
quantum criticality also enables us to enhance measurement precision in a strong-coupling region.
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Introduction. In contrast to classical estimation theory,
quantum metrology seeks a higher-precision estimation of
some fundamental physical quantities by using various quan-
tum resources, such as squeezed light [1,2], entanglement
[3–9], steering [10–12], nonlocality [13], discord [14–16],
etc. In this scenario, quantum information science combined
with condensed-matter physics strikingly deepens our under-
standing of quantum features of quasiparticles and opens a
new avenue of implementing quantum-enhanced metrology
by virtue of quasiparticles [17–26], for example, quantum
metrology at quantum criticality [27–39], and by dynamic
structure factor [40,41].

Magnons, as the collective magnetic excitations of the
magnetically ordered states in interacting spins, have re-
ceived increasing attention due to their capability for carrying,
transporting, and processing quantum information [42–44].
Appealing features of magnons include their stability at room
temperature, high spin density, no ohmic losses, and fine tun-
ability of spin orientations. Promising potential applications
have stimulated recent research on cavity magnonics, espe-
cially on magnon-photon entanglement and magnon-magnon
entanglement [45–59], and the role of entanglement in quan-
tum batteries [60–62]. For quantum metrology, entanglement
is known to provide enhanced sensing precision in global
parameter estimations requiring also global measurements
[4–6]. However, global accessibility is often limited in cav-
ity magnonic systems [63,64]. Natural questions arise: What
is the role of bipartite entanglement in partially accessible
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metrological schemes? Can quantum-enhanced metrology be
realized in such cavity magnonic systems?

In this Letter, we address the aforementioned questions
by analyzing the influence of bipartite entanglement on the
scaling of quantum and classical Fisher information (QFI and
CFI), which quantify the measurement precision. We identify
two important conditions for enhancing measurement preci-
sion: Encoding the estimated parameter within the covariance
matrix of the partially accessible quantum state and mini-
mizing thermalization during the final measurement process
as well. The former is ensured by the bipartite entanglement
generated through quantum dynamics, whereas the latter is
to avoid bipartite entanglement in the measurement process.
Based on this finding, we verify optimal measurement pre-
cisions for different settings in the experimentally feasible
cavity magnonic system [65–68]. We show that the Heisen-
berg limit (HL) can be achieved in the weak-coupling case
with an initial squeezed magnon, whereas criticality-enhanced
metrology can be realized in the strong-coupling case without
a need for quantum squeezing.

Role of entanglement in partially accessible metrological
schemes. Partially accessible metrological schemes aim to
estimate a parameter B from the subsystem ρ̂c ≡ Trm(ρ̂cm)
where c and m represent two distinct subsystems, such as cav-
ity and magnon. Focusing on a pure state for the total system
ρ̂cm and assuming a Gaussian state for ρ̂c, we express ρ̂c as
ρ̂c = D̂(α)Ŝ(ζ )ρ̂thŜ†(ζ )D̂†(α) [69] in terms of the parameters
α, r, φ, and nth [70]:
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FIG. 1. (a) Schematic illustration of the cavity magnonic system.
A YIG sphere is placed in a cavity to sense the weak magnetic field
B, with a bias magnetic field B0 applied for magnon excitation. κc

and κm represent the damping rates of the cavity and the magnon,
respectively. (b) Metrological scheme for estimating the parameter
B. Quantum dynamics encode the estimated parameter within the
covariant matrix, while the measurement is performed on the cavity.
(c) Illustration of the Wigner function of a single-mode Gaussian
state in terms of displacement, squeezing, phase, and thermalization
parameters (α, r, φ, nth).

where dc
j = 〈x̂ j〉 is the displacement vector, γ c

jk = 〈{x̂ j − 〈x̂ j〉,
x̂k − 〈x̂k〉}〉/2 is the covariance matrix, x̂1 = (ĉ† + ĉ)/

√
2,

x̂2 = i(ĉ† − ĉ)/
√

2, and 〈Â〉 = Tr(ρ̂cÂ). The parameters α,
r, φ, and nth characterize the displacement, squeezing,
phase, and thermalization for subsystem ρ̂c, respectively [see
Fig. 1(c)].

The estimation precision provided by ρ̂c is the Cramér-
Rao bound [71–74], i.e., a lower bound (δB)2 � 1/FQ(ρ̂c). In
terms of the parameters α, r, φ, and nth [75], we analytically
derive the QFI (see the Supplemental Material (SM) [76]; see
also Refs. [77,78] therein):

FQ(ρ̂c) = 4

2nth + 1
[α′ᾱ′ cosh(2r) + Re(ᾱ′2eiφ ) sinh(2r)]

+ n′2
th

nth(1 + nth )
+ (1 + 2nth )2

2
(
1 + 2nth + 2n2

th

)
× [sinh2(2r)φ′2 + 4r′2], (2)

where ᾱ is the complex conjugate of α and the prime denotes
the derivative with respect to B.

If ρ̂c does not arise from critical dynamics, it is jus-
tifiable to assume finite values for α, r, φ, and nth and
their respective derivatives. Enhancing measurement preci-
sion primarily relies on particle number, i.e., Nc ≡ |α|2 +
nth + (2nth + 1) sinh2 r. We first consider the case where par-
ticle number is mainly sourced by the displacement, e.g., a
coherent state, Nc ∼ |α|2. Then, Eq. (2) implies FQ ∼ α′ᾱ′,
leading to the shot noise limit (SNL), i.e., FQ ∼ Nc. Here it is

reasonable to assume that the parameters and their derivatives
are of the same order. In the second case, if the thermalized
photons dominate, i.e., Nc ∼ nth, then QFI (2) does not in-
crease with Nc since FQ ∼ O(1).

Excluding the displacement and thermalized photons as
metrological resources, quantum squeezing emerges as a vital
resource for surpassing the shot noise limit (also see the study
in Refs. [2,79–85]). In the third case, assuming that quan-
tum squeezing is dominant, then Nc ∼ sinh2 r ∼ e2r and FQ ∼
sinh2(2r) ∼ e4r . Explicitly, it achieves the HL, FQ ∼ N2

c . To
incorporate the influence of the inevitable thermalization in
QFI, we assume the number of thermalized photons scales
as nth ∼ eνr [86]. Equation (2) reveals that the thermalization
does not really affect the scaling of QFI if nth dominates.
However, Nc ∼ e(2+ν)r can essentially depend on the thermal-
ization. So, QFI exhibits a scaling,

FQ ∼ N4/(2+ν)
c , (3)

which can exceed the SNL if ν < 2.
Bipartite entanglement can be quantified by the entan-

glement entropy S(t ) = −Tr[ρ̂c log2(ρ̂c)] [87]. For Gaussian
states, it reduces to [88]

S(t ) = log2(nth + 1) + nth log2

(
nth + 1

nth

)
, (4)

showing that entanglement increases with the number of ther-
malized photons nth grows. Combining Eqs. (3) and (4), we
deduce that the existence of bipartite entanglement decreases
the final measurement precision. Nevertheless, in order to
achieve scaling law (3), the parameters are required to be
encoded effectively in the covariance matrix of the subsystem
ρ̂c. The emergent entanglement guarantees such an encoding
from a product state, thus highlighting the significance of
bipartite entanglement in the dynamical encoding process.
This finding establishes fundamental laws governing the role
of bipartite entanglement in partially accessible Gaussian
metrology.

Quantum measurements. Now we discuss how to exper-
imentally realize the measurement precision given by the
Cramér-Rao bound. Based on the Gaussian measurements, the
CFI is obtained as follows [76] (see also Ref. [89] therein):

FC (ρ̂c) = [n′
th − (2nth + 1)r′]2

2(nth + 1)2
+ [n′

th + (2nth + 1)r′]2

2(nth + 1)2

+ (2nth + 1)2[φ′ sinh(2r)]2

4(nth + 1)2
, (5)

where we only considered quantum states with zero displace-
ment. Equation (5) reveals that the scaling of CFI matches
that of QFI, demonstrating that Gaussian measurements are
optimal. Experimentally, after acquiring probabilities through
Gaussian measurements, we can utilize the maximum like-
lihood estimator to estimate the unknown parameter [90].
Implementing Gaussian measurements involves two steps:
Applying a Gaussian unitary operation to the input system,
which includes additional ancillary (vacuum) modes, and
performing homodyne measurements on all output modes
[91–93]. Next, we apply these general results to a cavity
magnonic system, exploring distinct roles of entanglement in
dynamic encoding and measurement processes.
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Model. We consider a system consisting of a yttrium iron
garnet (YIG) sphere placed inside a microwave cavity and
subjected to a static magnetic field, B0 [65,66] [see Fig. 1(a)].
The microwave field induces magnon excitations in the ferro-
magnetic YIG sphere. Additionally, we introduce a weak field
B for estimation. Using the Holstein-Primakoff approximation
[94], the corresponding Hamiltonian is given by [66,95]

Ĥ = ωcĉ†ĉ + ωmb̂†b̂ + g(ĉ + ĉ†)(b̂ + b̂†), (6)

where ĉ† (b̂†) and ĉ (b̂) are creation and annihilation opera-
tors for the cavity photon (magnon) at frequency ωc [ωm =
μ(B0 + B)], respectively. The gyromagnetic ratio μ is set to 1
and g is the coupling strength. The Hamiltonian (6) applies to
the ferromagnetic YIG sphere only when g < gc ≡ √

ωcωm/2
[96]. Beyond the critical point gc, the system remains in the
superradiant phase.

The metrological scheme is shown in Fig. 1(b), where
the initial magnon-cavity state is prepared in the product
state ρ̂cm(0) = ρ̂c(0) ⊗ ρ̂m(0). Over time, the information of
the weak field B becomes encoded in the state ρ̂cm(t ) =
exp(−iHt )ρ̂cm(0) exp(iHt ). At time t∗, we perform Gaussian
measurements on the cavity state ρ̂c(t∗) = Trm[ρ̂cm(t∗)] and
estimate the value of B from the measurement results.

Far away from critical dynamics. When |ωc − ωm| 
 1 and
g 
 gc, we can employ the rotating-wave approximation (6)
to rewrite the Hamiltonian as

Ĥ = ωcĉ†ĉ + ωmb̂†b̂ + g(ĉ†b̂ + ĉb̂†). (7)

Its dissipative dynamics is described by the quantum Langevin
equations

∂t ĉ(t ) = −iωcĉ(t ) − igb̂(t ) − κc

2
ĉ(t ) + √

κcĉin(t ),

∂t b̂(t ) = −iωmb̂(t ) − igĉ(t ) − κm

2
b̂(t ) + √

κmb̂in(t ), (8)

where κc and κm denote the damping rates of the cavity mode
and the magnon mode, respectively. The input noises are
described by the annihilation operators ĉin and b̂in, satisfying
〈ĉ†

in(t1)ĉin(t2)〉 = ncδ(t1 − t2) and 〈b̂†
in(t1)b̂in(t2)〉 = nmδ(t1 −

t2). Here the values of nc and nm are subject to external en-
vironment thermal noise. For simplicity, we assume κm = κc

and nm = nc.
The initial state is chosen with the cavity in the vac-

uum state |0〉 and the magnon in a squeezed vacuum state
ρ̂m(0) = Ŝ(r0)|0〉〈0|Ŝ†(r0), which can be generated via para-
metric pumping [97–99]. The quantum Langevin equation (8)
is analytically solved and the evolution of ρ̂c(t ) can be divided
into two processes [76]:

ρ̂c(0)
no noise−−−−→

P1
ρ̂in(t )

noise−−→
P2

ρ̂c(t ), (9)

where ρ̂in(t ) denotes the cavity state in the noiseless case.
During the evolution the displacement of ρ̂c(t ) is always zero.
Focusing on the corresponding covariance matrices, we find
[76] the following:

P1: γ c
in(t ) = ξ (t )γ c

sq + [1 − ξ (t )]12,

P2: γ c(t ) = η(t )γ c
in(t ) + [1 − η(t )](2nc + 1)12, (10)
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FIG. 2. Time evolution of the time-rescaled QFI FQ/t2 (blue
dotted line) and CFI FC/t2 (red line) in (a) the resonance case
ωc = ωm = 2 and κc = nc = 0; (b) the dissipated case ωc = ωm = 2,
κc = 0.001, and nc = 30; and (c) the off-resonance case ωc = 2,
ωm = 2.5, and κc = nc = 0. (d) Scaling law of the CFI (FC ∼ Nk

c

with k = 1.90) for the parameter setting used in the experiment [68]:
ωc = ωm = 15.506 × 2π GHZ, g = 7.11 × π GHZ, and κc = κm =
1.029 × π MHZ. t∗ denotes the time of the CFI peak and Nc(t∗)
is the number of photons at that moment. (e) Time evolution of
entanglement S(t ) versus the detuning ωc − ωm.

where γ c
sq is the covariance matrix of the squeezed state

Ŝ(−r0e−i(ωc+ωm )t )|0〉, r0 is the squeezing parameter of the ini-
tial magnon state, and γ c

in(t ) and γ c(t ) are the covariance ma-
trices of ρ̂in(t ) and ρ̂c(t ), respectively. Here η(t ) = exp(−κct ),
ξ (t ) = 4g2 sin2(�t/2)/�2, and � =

√
4g2 + (ωc − ωm)2.

In the dissipative process P2, Eq. (10) implies that γ c(t )
tends toward a thermal state (2nc + 1)12 since limt→∞ η(t )
= 0. This process indicates the gradual dissipation of informa-
tion into the external environment, resulting in measurement
precision described by the QFI (CFI) being smaller than that
in the nondissipative case [see Figs. 2(a) and 2(b)].

Unlike process P2, process P1 describes the flow of
the magnetic field information between the cavity and the
magnon. At t = 0, the cavity is only a vacuum state without
any quantum resources and information. Then the appearance
of the dynamics-induced bipartite entanglement essentially
leads to the transmission of information from the squeezed
magnon state into the cavity [see Fig. 2(e)]. From Eq. (10), we
observe that the cavity state finally becomes a squeezed state
Ŝ(−r0e−i(ωc+ωm )t )|0〉 [100] at a time t∗ = π/(2g) satisfying
ξ (t∗) = 1. This condition is satisfied only for the resonant
case. It is crucial to emphasize that, at this special time t∗,
the whole system ρ̂cm(t∗) is in a nonentangled state, yet both
the information ωm and the initial squeezing resource r0 have
been completely transferred to the cavity part without ther-
malization. Thus, the HL precision (FC ∼ N2

c ) can be achieved
in the absence of noise by Eq. (3). Using experimental pa-
rameters [68], we show that the precision still remains near
HL, specifically FC ∼ N1.90

c as shown in Fig. 2(d). Here, the
Gilbert damping of magnons κm/ωm is on the order of 10−3

[68,101].
If the estimated weak magnetic field B deviates from

the bias field B0 along the z axis, the Hamiltonian
(7) acquires an additional term, −(Bx − iBy)b̂/2 − (Bx +
iBy)b̂†/2. In the SM [76], we show that these nonparallel
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components contribute to the displacement of the evolved
Gaussian state and their impact on QFI is limited to the
SNL. Significantly, the nonvanishing parallel component ef-
fectively encodes information into the covariance matrix,
leading to QFI following the HL. Consequently, in our sub-
sequent discussion, we can safely disregard the nonparallel
components [76]. Based on Ref. [67], crystalline anisotropy
becomes notable in nanomagnets around a 2-nm radius.
However, the YIG sphere considered here has a 360-nm di-
ameter [66]. Thus, the effect of crystalline anisotropy can be
disregarded.

The significance of dynamic entanglement in the encoding
information process becomes clearer through a contrasting
example where the inputs are magnon and cavity squeezed
coherent states with identical squeezing parameters. In this
setup, no bipartite entanglement will be generated, indicating
that information B cannot be efficiently encoded into the phase
parameter and is solely in the displacement parameter. Based
on the analysis below Eq. (4), the precision cannot surpass the
SNL, even in the presence of squeezing.

Returning to the initial scenario, however, entanglement
during the measurement process will introduce thermalization
[see Eq. (4)]. Consequently, the initial squeezing resource
r0 cannot be fully transferred to the cavity, disrupting the
HL precision. Figure 2(e) shows the entanglement evolu-
tion concerning the detuning parameter ωc − ωm. Vanishing
entanglement in the curve B (blue) indicates the quantum
state periodically returns to the initial state. A nontrivial
situation occurs in the resonant region A where entan-
glement vanishes after encoding the information into the
cavity’s covariance matrix, ensuring the realization of HL
precision. Far away from region A, increasing detuning
leads to strong entanglement between the cavity and the
magnon, thus failing to suppass the SNL [see Figs. 2(a)
and 2(c)].

Critical dynamics. In the strong-coupling regime, Hamil-
tonian (6) is directly diagonalizable as Ĥ = ε−ĉ†

1ĉ1 + ε+ĉ†
2ĉ2

using the Bogoliubov transformation [96]. The normal-to-
superradiant phase transition occurs at the critical point gc =√

ωcωm/2. Near this point (g → gc), the excitation energy of
the photon branch scales as ε− ∼ (gc − g)1/2 and its derivative
plays a crucial role in achieving criticality-enhanced metrol-
ogy. Thus, in contrast to the weak-coupling case, no specific
resource state is required and we can choose the vacuum states
as inputs.

Using Eqs. (1), (2), and (5), we derive the analytic expres-
sion of the covariance matrix γ c(t ) in Ref. [76]. There is a
special time t∗ = nπ/ε− (n ∈ Z>0) at which the covariance
matrix γ c(t∗) is finite, otherwise it diverges. It then follows
from Eq. (1) that the divergence of γ c at t �= t∗ implies the
divergence of the number of thermalized particles nth, e.g.,
nth(t∗/4) ∼ (gc − g)−1/2 [76]. Therefore, by the relation (4)
we find that the magnon-photon entanglement S(t ) becomes
large at t �= t∗, but almost disappears suddenly at t = t∗ [see
Fig. 3(a)].

Figure 3(b) shows that the measurement precision has a
maximum at the time t∗, meanwhile the entanglement almost
disappears at t = t∗. In this sense, the vanishing entangle-
ment in the measurement process enhances the measurement
precision. More rigorously, we obtain critical scalings of the
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FIG. 3. Time evolution of (a) entanglement S(t ), (b) time-
rescaled QFI FQ/t2, and CFI FC/t2 for critical dynamics. (c) Scaling
of CFI: FC ∼ (gc − g)k , with k = −2.01 for t = t∗ and k = −1.02
for t = t∗/4. Lines in panel (c) are the results of fitting the theo-
retical data. Other parameters are ωc = ωm = 2, g = 0.9999gc, and
t∗ = π/ε−.

relevant parameters [102] and QFI:

FQ(t∗) ∼ FC (t∗) ∼ (gc − g)−2t2
∗ ,

FQ(t∗/4) ∼ FC (t∗/4) ∼ (gc − g)−1t2
∗ , (11)

which are further confirmed by the numerical results shown in
Fig. 3(c).

It is worth noting that, compared with the t∗ case, the di-
vergent squeezing [cosh(2r) ∼ (gc − g)−1/2] in the t∗/4 case
causes no further enhancement in measurement precision.
This is mainly because such a divergence in the covariance
matrix also leads to a strong entanglement that makes the
cavity state more insensitive to the estimated parameter (see
the scalings of r′ and φ′ in Ref. [102]).

Conclusion. The usable bipartite entanglement in acces-
sible metrological schemes has been established by linking
Fisher information to entanglement. We have elaborated on
the significance of entanglement in the efficient encoding pro-
cess for high-precision quantum estimation, particularly start-
ing from the initial product state, while unveiling the adverse
impact of entanglement on the final measurement process.
These findings enable us to design quantum-enhanced esti-
mations within an experimentally feasible cavity magnonic
system. In particular, we have proposed an approach to
realizing the precision of the HL in the weak-coupling
regime. Regarding strong coupling, we have demonstrated
that the criticality-enhanced metrology should attribute to
the criticality-induced parameter sensitivity rather than to
criticality-induced squeezing. Our protocols show a potential
application of quantum metrology through current exper-
imental cavity magnonic systems [54,103–110], enabling
quantum-enhanced metrology with or without a particular
squeezed initial state.
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